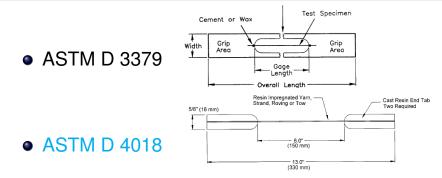
Methods and standards for testing of composite materials

Karel Doubrava

Faculty of Mechanical Engineering, CTU in Prague

January 11, 2016

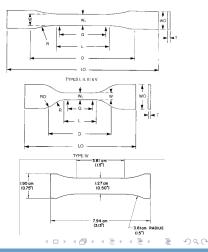

イロト イポト イヨト イヨト

Contents

- Test of laminates
- Mechanical testing of fiber
- Mechanical properties test of matrix
- Mechanical testing of lamina
- Tests of Sandwich Construction
- Tensile properties
- Compressive properties
- shear
- 3
- Monitoring of Composite Construction
 - Resistance strain gauges
 - Optical fiber FBG
 - DIC

Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

Mechanical testing of fiber


• Fiber properties from test of UD laminate

Property (100%) =
$$\frac{\text{Property} \times 100}{V_{f}}$$

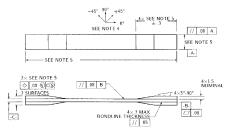
Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

Mechanical properties test of matrix

- Tension ASTM D 638 F_m^{tu} , F_m^{ty} , E_m^t , ν_m^t , ε_m^{tu}
- Compression
 ASTM D 695
 ECU ECU ECU
 - $\mathsf{F}_{\mathrm{m}}^{\mathrm{cu}},\,\mathsf{F}_{\mathrm{m}}^{\mathrm{cy}},\,\mathsf{E}_{\mathrm{m}}^{\mathrm{c}},\,\nu_{\mathrm{m}}^{\mathrm{c}},\,\varepsilon_{\mathrm{m}}^{\mathrm{cu}}$
- Shear ASTM E 143, ASTM D 5379
 F^{su}_m, F^{sy}_m, G^s_m

Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

< < > < < > <

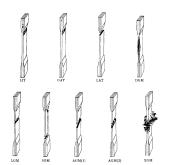

Mechanical testing of lamina and laminate

- Tension ASTM D 3039
- Compression ASTM D 3410, ASTM D 695
- Shear ASTM D 3518, ASTM D 5379, ...
- Interlaminar shear ASTM D 2344

Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

Tension properties ASTM D 3039

- Tensile strength $F^{tu} = P^{max}/A$
- Tensile chord modulus of elasticity $E_1 = \frac{\sigma_1^b - \sigma_1^a}{\varepsilon_1^b - \varepsilon_1^a},$ a...0.1%, b...0.3%
- Poisson ratio $\nu = -\frac{\Delta \varepsilon_2}{\Delta \varepsilon_1}$



イロト イポト イヨト イヨト

Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

Tensile Test Failure Code/ Typical Mode ASTM D 3039

Туре	Code	Area	Code	Location	Code
Angled	А	Inside grip	I	Bottom	В
edge Delam.	D	At grip	А	Тор	т
Grip/tab	G	< 1W from grip	W	Left	L
Lateral	L	Gage	G	Right	R
Multi-mode	М	Multiple areas	М	Middle	М
long.–Splitting	S	Various	۷	Various	V
eXplosive	Х	Unknown	U	Unknown	U
Other	0				

Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

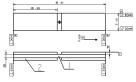
Compression in-plane tests

- ASTM D 695 (SACMA SRM-1)
- ASTM D 3410 (Celanese, IITRI)
- ASTM D 5467

Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

Compression properties ASTM D 695

- Compressive strength $F^{cu} = P^{max}/A$
- Compressive modulus of elasticity $E_1 = \frac{\Delta\sigma}{\Delta\varepsilon}$


Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

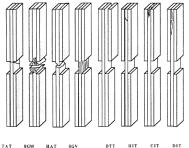
Compression ASTM D 3410

Procedure A – Celanese

http://www.wyomingtestfixtures.com

Procedure B - IITRI

(ロ) (字) (日) (日)


Э

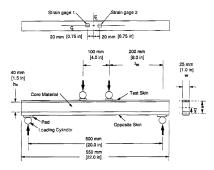
Mechanical testing of lamina

Failure Code ASTM D 3410

Acceptable Failure Modes and Areas

Туре	Code	Area	Code	Location	Code
Angled	А	Inside grip	Ι	Bottom	В
Brooming	В	At grip	А	Тор	Т
end-Crushing	С	Gage	G	Left	L
Delamination	D	Multiple areas	М	Right	R
Euler bucling	Е	Tab adhesive	Т	Middle	М
tHrough-thickness	Н	Various	۷	Various	۷
Kink bands	к	Unknown	U	Unknown	U
Lateral	L				
Multi-mode	М				
longSplitting	S				
Transverse shear	Т				
eXplosive	Х				
Other	0				

Unaceptable Failure Modes and Areas


イロト 不得 とうほう 不良 とう

ъ

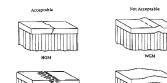
Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

Compression ASTM D 5467

4PB of sandwich beam

$$F^{cu} = \frac{P^{max} I_m \left(a - \bar{y} + \frac{h_f}{2} \right)}{2w \left[h_f (a - \bar{y})^2 + \frac{E_o}{E_f} h_o \bar{y}^2 \right]} \\ E_1 = \frac{\sigma_1^b - \sigma_1^a}{\varepsilon_1^b - \varepsilon_1^a}, \\ a...0.1\%, b...0.3$$

ヘロト 人間 ト 人臣 ト 人臣 ト


ъ

Mechanical testing of lamina

FGM

Failure Code ASTM D 5467

Туре	Code	Area	Code	Location	Code
Skin to core Delamination	D	At load cylinder	Α	Left	L
Filament fracture	F	Gage	G	Right	R
tHrough-thickness	Н	Multiple areas	М	Middle	М
Layer instability	L	Outside gage	U	Various	V
local Wrinkling	W	Various	V	Unknown	U
Multi-mode	ΜL	Unknown	U		
core Crushing	С				
long.–Splitting	S				
Transverse shear	Т				
eXplosive	Х				
Other	0				

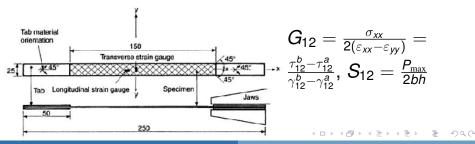
Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

Shear in-plane tests

- $\pm 45^{\circ}$ tensile shear test
- Rail Shear Method
- V–Notched Beam Method
- Tube torsion test

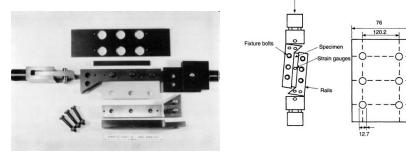
→ Ξ → < Ξ →</p>

< < > < < > <


Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

$\pm 45^{\circ}$ tensile shear test

BS EN ISO 14,129, ASTM D 3518
Ply < 0.125 mm, 16 plies


$$\sigma_{11} = \frac{\sigma_{xx}}{2} + \tau_{xy}, \sigma_{22} = \frac{\sigma_{xx}}{2} - \tau_{xy}, \tau_{12} = \pm \tau_{xy},$$

$$\varepsilon_{11} = \varepsilon_{22} = \frac{\varepsilon_{xx} + \varepsilon_{yy}}{2}, \gamma_{12} = \varepsilon_{xx} - \varepsilon_{yy}$$

Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

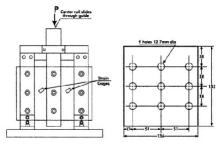
Two-rail shear test ASTM D 4255

http://www.wyomingtestfixtures.com

$$S_{xy} = rac{P^{\max}}{Lh}, \ G_{12} = rac{\Delta au_{xy}}{\Delta \gamma_{xy}} = rac{\Delta P}{2Lh\Delta arepsilon_{45}}$$

ъ

ヘロト 人間 ト 人臣 ト 人臣 ト


152

Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

Three-rail shear test ASTM D 4255

イロト 不得 とくほ とくほとう

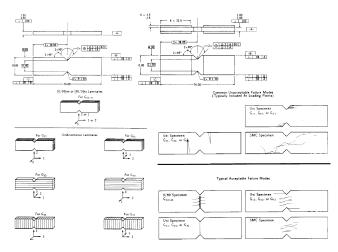
$$S_{xy}=rac{P^{ ext{max}}}{Lh},~G_{12}=rac{\Delta au_{xy}}{\Delta au_{xy}}=rac{\Delta P}{4Lh\Deltaarepsilon_{45}}$$

Э

Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

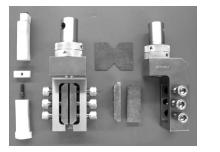
Shear V-Not. Beam ASTM D 5379

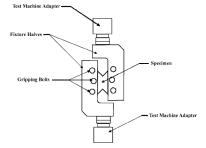
 $\begin{aligned} F^{u} &= \frac{P_{\max}}{wh}, \\ \tau_{i} &= \frac{P_{i}}{wh}, \\ \gamma &= |\varepsilon_{45^{\circ}}| + |\varepsilon_{-45^{\circ}}| \\ G &= \frac{\Delta \tau}{\Delta \gamma}, \end{aligned}$


・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

DQC

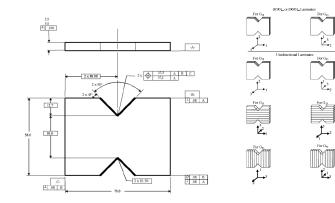
э


Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina


Shear V-Not. Beam ASTM D 5379

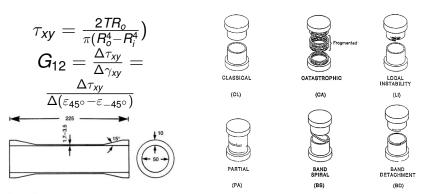
Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

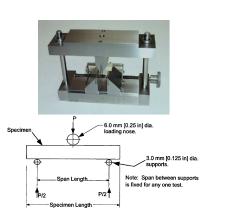
Shear V-Not. Rail ASTM D 7078

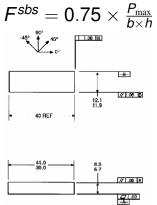


$${\cal F}^{\it u}=rac{P_{
m max}}{wh},\, au_{\it i}=rac{P_{\it i}}{wh},\,\gamma=ertarepsilon_{
m 45^\circ}ert+ertarepsilon_{
m -45^\circ}ert\,{f G}=rac{\Delta au}{\Delta\gamma}$$

Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina


Shear V-Not. Rail ASTM D 7078


Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina


Tube torsion test ASTM D 5448

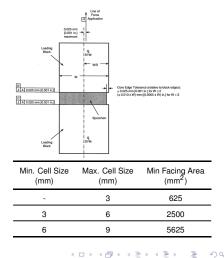
Mechanical testing of fiber Mechanical properties test of matrix Mechanical testing of lamina

Shear of Short-Beam ASTM D 2344

ensile properties Compressive properties hear

< < > < < > <

Sandwich Construction


- Tensile properties ASTM C 297
- Compression ASTM C 364, ASTM C 365, ASTM D 7336
- Shear ASTM C 273, ASTM C 393
- Bending ASTM D 7249, ASTM D 6457

Tensile properties Compressive properties shear

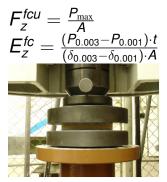
Tensile properties ASTM C 297

$$F_z^{ftu} = \frac{P_{max}}{A}$$

Tensile properties Compressive properties shear

Compr. Edgewise ASTM C 364

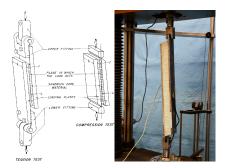
						International in million di la differenzia nel socialita di la differenzia di di di di la differenzia di di la di la differenzia di		w -	<u>0.8</u> *	Tool Side	
Failure Type	Code	Area	Code	Location	Code	ात्र हरा	0.02			LIC 0.02]	
Facesheet compression	F	At end	Α	Тор	Т				0,8	t ₆	- t,
facesheet delam. Buckling	В	Gage	G	Bottom	В	Unacceptable_	Facesheet	A	cceptable Failure M	—>4 t i≪- lodes	-
honeycomb facesheet Dimpling	D	Various	V	Middle	М	End Failure	Buckling Failure	п	Dimpling Failure (honeycomb only)	Б	Core Shear Failure
core Compression	С	Unknown	U	Various	V						
core Shear	S			Unknown	U			,		(
Multi mode	М					Loss than 1xt from clamp or potting	N	Ĩ	ľ l		
overal Panel buckling	Ρ					÷₩	Ш	Facesheet		Core	
eXplosive	Х							Failure		Failure	


26/32

Tensile properties Compressive properties shear

Flatwise Compr. ASTM C 365

Min. Cell Size (mm)	Max. Cell Size (mm)	Min Facing Area (mm ²)
-	3	625
3	6	2500
6	9	5625



イロト 不得 トイヨト 不良 トー

э

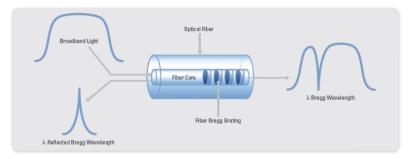
Tensile properties Compressive properties shear

Shear of Core ASTM C 273

 $\tau = \frac{P}{Lb}, \gamma = \frac{u}{t},$ $G = \frac{(\Delta P / \Delta u)t}{Lb}$

Failure Type	Code	Area	Code	Location	Code
core Shear	S	At end	А	Тор	т
Interface failure	I	Gage	G	Bottom	В
eXplosive	Х	one Corner	С	Middle	М
Other	0	Various	V	Entire length	Е
		Unknown	U	Various	V
				Unknown	U

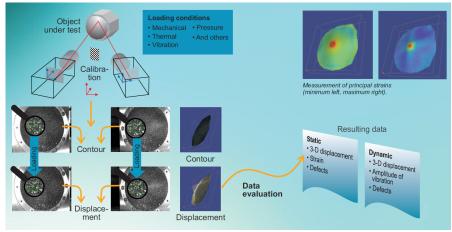
Resistance strain gauges Optical fiber – FBG DIC


Resistance strain gauges

- Grid size
- Self-heating $P = U \cdot I = \frac{U^2}{R} R = 350\Omega$
- Temperature compensation half bridge
- Surface preparing
- 2 components adhesive

イロト 人間ト イヨト イヨト

Resistance strain gauges Optical fiber – FBG DIC


Fiber Bragg Grating (FBG) Sensors

$$\frac{\Delta\lambda}{\lambda_0} = (1 - p_e) \cdot \varepsilon (\alpha_{Lamda} + \alpha_n) \cdot \Delta T$$

Resistance strain gauges Optical fiber – FBG DIC

DIC

http://www.dantecdynamics.com/

ъ

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○

Resistance strain gauges Optical fiber – FBG DIC

References

Mallick, P. K.: Composites Engineering Handbook, CRC Press, 1997, ISBN 0824793048
Hodgkinson, J.M.: <i>Mechanical testing of advenced fibre composites</i> , Woodhead Publishing 2000, ISBN 1855733129
Carlsson, L.A., Adams, D.F., Pipes, R.B.: <i>Experimental Characterization of Advanced Composite Materials</i> , Third Edition, CRC Press, 2002, ISBN1587161001
COMPOSITE MATERIALS HANDBOOK – VOLUME 1 Polymer Matrix Composites, Guidelines for Characterization of Structural Materials

MIL-HDBK-17, US Army Research Laboratory, 2002, Fort Belvoir

3

・ロト ・ 同ト ・ ヨト ・ ヨト