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The flood of high-dimensional data resulting from mass cytometry experiments that measure more than
40 features of individual cells has stimulated creation of new single cell computational biology tools.
These tools draw on advances in the field of machine learning to capture multi-parametric relationships
and reveal cells that are easily overlooked in traditional analysis. Here, we introduce a workflow for high
dimensional mass cytometry data that emphasizes unsupervised approaches and visualizes data in both
single cell and population level views. This workflow includes three central components that are common
across mass cytometry analysis approaches: (1) distinguishing initial populations, (2) revealing cell sub-
sets, and (3) characterizing subset features. In the implementation described here, viSNE, SPADE, and
heatmaps were used sequentially to comprehensively characterize and compare healthy and malignant
human tissue samples. The use of multiple methods helps provide a comprehensive view of results, and
the largely unsupervised workflow facilitates automation and helps researchers avoid missing cell
populations with unusual or unexpected phenotypes. Together, these methods develop a framework
for future machine learning of cell identity.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

1.1. High dimensional single cell biology

Single cell biology is transforming our understanding of the bio-
logical mechanisms driving human diseases and healthy tissue
development [1]. Mass cytometry is a recently developed technol-
ogy that enables simultaneous detection of more than 40 features
on individual cells [2,3]. High dimensional mass cytometry mea-
surements are single cell, quantitative, and well-suited to unsuper-
vised computational analysis. New analysis tools have been
created to take advantage of the massive amounts of data that
result from high content single cell techniques like mass cytome-
try. Variations of many of these tools have been developed and
applied for gene expression analysis, a field facing similar prob-
lems with data dimensionality. These tools draw on advances in
machine learning and statistics that are not yet widely applied in
biological studies. Many of these tools are complementary and
address different aspects of data analysis, and it can be challenging
for biologists to know when and how to use these tools to get the
most out of their data. Advances have also been made in automat-
ing and standardizing the flow cytometry data analysis workflow
[4–6]. Here, we present a modular workflow focused on high
dimensional single cell analysis that combines multiple tools to
provide a comprehensive view of both cells and populations.
Rather than making the workflow fully automated, the goal here
was to combine the complementary benefits of expert analysis
and machine learning. This approach maintains single cell views,
provides automatic population assignment for each cell, and facil-
itates statistical comparison of the key cellular features that char-
acterized each population. This semi-supervised workflow
facilitates comparison of populations discovered by different com-
putational approaches, in different clinical samples, or using differ-
ent biological features (e.g. RNA expression, cell surface protein
expression, and cell signaling).

An advantage of traditional analysis in flow cytometry is the
reliance on identification of known, prominent populations with
strong supporting biology in the literature. Given the typical panel
size for fluorescent experiments, this type of supervised analysis is
fast and usually adequate. Unfortunately, expert manual gating has
been shown to be particularly prone to inter-operator variability
[7] and a tendency to overlook cell populations [8–10]. Recent
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efforts have developed new tools for high dimensional cytometry
data that bring in elements of machine learning and statistical
analysis, including clustering [11–14], dimensionality reduction
[8], variance maximization [15], mixture modeling [6,16–18], spec-
tral clustering [19], neural networks [20], and density-based auto-
mated gating [21]. Here, we highlight use of these tools in a
sequential single cell bioinformatics workflow (Table 1). In partic-
ular, different tools address aspects of data visualization, dimen-
sionality reduction, population discovery, and feature
comparison. It can be valuable to apply multiple tools in order to
view data in different ways and fully extract biological meaning
at the single cell level (Fig. 1) and the population level (Figs. 2
and 3). After identifying cell subsets with the aid of computational
tools, measured features, such as protein expression in the exam-
ples here, can be compared between and within the subsets.
Traditional statistics used include medians, variance, and fold
changes. Other statistical methods such as histogram statistics
and probability binning have also been used to compare distribu-
tions in flow cytometry data [22–24].
1.2. Overview of the analysis workflow

The workflow presented here was applied to a CyTOF dataset
from the analysis of healthy human bone marrow and a diagnostic
sample of blood from a patient with acute myeloid leukemia
(AML). The annotated FCS files and a step-by-step guide are avail-
able online from Cytobank (www.cytobank.org/irishlab) [25] and
FlowRepository (http://flowrepository.org/experiments/640) [26].
This workflow was developed for use with high-dimensional mass
cytometry data. However, it can also be applied to fluorescent flow
cytometry data. The main steps presented consist of event restric-
tion, population discovery, and population characterization. Each
of these aspects of data analysis can be achieved with a variety
of techniques (Table 1), and some tools address multiple steps.
By sequentially combining three different techniques, this work-
flow draws on the strengths of specific tools, keeps biologists in
Table 1
A modular machine learning workflow for semi-supervised high-dimensional single cell d

Analysis step Traditional

Data collection (1) Panel design Human expert
(2) Data collection Human expert

Data processing (3) Cell event parsing Instrument software

(4) Scale transformation Human expert

Distinguishing initial
populations

(5) Live single cell gating Biaxial
gating + human expert(6) Focal population gating

Revealing cell subsets (7) Select features Human expert
(8) Reduce dimensions or
transform data

N/A

(9) Identify clusters of cells Human expert

(10) Cluster refinement Human expert

Characterizing cell
subsets

(11) Feature comparison Select biaxial single
cell views

(12) Model populations N/A
(13) Learn cell identity Human expert
(14) Statistical testing Prism, excel

§ Methods with broad application (e.g. R/flowCore) are listed minimally at select steps
� Denotes the primary approach used at each step in the sequential analysis workflow
touch with single cell views, and enables analysis of data from dif-
ferent studies and single cell platforms.

In the case of the example dataset here, the overall biological
goal was to identify and compare three populations of cells: leuke-
mia cells (AML blasts) and non-malignant cells (non-blasts) in the
blood of a leukemia patient, and bone marrow cells from a healthy
donor. In the analysis workflow, cell events were first manually
gated based on event length and DNA content to include intact,
single cells (Fig. 1) [11]. Next, visualization of stochastic
neighbor embedding (viSNE) was used to identify and gate major
subsets (Fig. 1). Gated cells from healthy bone marrow and AML
were then analyzed by spanning-tree progression analysis of
density-normalized events (SPADE) to discover and compare cell
subsets (Fig. 2). Finally, the cell subsets identified by SPADE were
further characterized using complete linkage hierarchical cluster-
ing and a heatmap in R (Fig. 3). The details of mass cytometry data
collection and processing prior to initial cell selection (gating) are
not covered in detail here. These early steps include experiment
design, collection of data at the instrument (and instrument setup),
any normalization, and transformation of the data to an appropri-
ate scale (Table 1).

The initial event restriction step that begins the workflow
focuses the analysis on populations of cells. The goal at this step
is to remove events that do not contribute useful information while
making minimal changes to the data and not over-focusing. Event
restriction is traditionally performed using biaxial gating (Table 1),
but given the high dimensionality of mass cytometry data, use of
viSNE (Fig. 1) can simplify the process of distinguishing initial pop-
ulations and avoid overlooking cells with unusual or unanticipated
phenotypes. The second step, cell subset identification, is also tra-
ditionally performed by expert gating (Table 1). However, cluster-
ing tools such as SPADE [12] (Fig. 2), Misty Mountain [13], and
Citrus [14], among others, can be used to automatically assign cells
to groups or clusters in high dimensional data. In the workflow
here, the goal is to find all the phenotypic clusters of cells in
healthy bone marrow, AML blasts, and non-blast cells from AML
blood (Fig. 2). As the final step, characterization of discovered cell
ata analysis.

Additional methods§ Method here

– –
– –

Bead normalization and event
parsing [39]

–

Logicle [47] –

No event restriction, AutoGate [61] viSNE + human expert (Fig. 1)�

Statistical threshold [53] Human expert�

Heat plots [62], SPADE [12], t-SNE
[63], viSNE [8], ISOMAP [27], LLE [29],
PCA in R/flowCore [64]

SPADE�, viSNE

SPADE, k-medians, R/flowCore,
flowSOM [65], Misty Mountain [13],
JCM [30], ACCSENSE [66], DensVM
[28], AutoGate, Citrus [14]

SPADE (Fig. 2)�, viSNE + human expert
(Fig. 1)

Citrus, DensVM, R/flowCore –

viSNE, SPADE, heatmaps [25,53], his-
togram overlays [25,53], violin or box
and whiskers plots [64], wanderlust
[31], gemstone

Heatmaps (Fig. 3A)�, viSNE (Fig. 1C),
SPADE (Fig. 2C)

Median [53], JCM, PCA –
– Human expert� (Figs. 1B, 2B, and 3B)
R/flowCore –

based on particular strengths or published applications.
shown here.
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Fig. 1. Distinguishing initial populations with viSNE analysis of per-cell protein expression and expert gating. Plots show the use of viSNE to obtain a comprehensive single
cell view and to initially distinguish cancerous and non-malignant cells in the blood of an AML patient. (A) Expert analysis of mass cytometry data identified intact single cells
using event length and intercalator uptake. Subsequent viSNE analysis arranged cells along unitless t-SNE axes according to per-cell expression of 27 proteins. Expression of
CD45 protein is shown for each cell on a heat scale. viSNE automatically arranged leukemia cells in one area of the map and facilitated selection of AML blast and non-blast
cells by expert gating. Populations identified by viSNE and expert gating were subsequently analyzed by SPADE (Fig. 2). (B) Human interpretation of population identities
based on viSNE analysis is shown. (C) Plots show expression of the 27 proteins, nucleic acid intercalator (NA), and density measured per cell.
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subsets takes place downstream of manual gating or automated
discovery tool implementation, and generally consists of feature
expression comparison with heatmaps, violin plots, and histogram
overlays for visualization, as well as data modeling and other sta-
tistical analysis. This workflow emphasizes integration of auto-
mated, unsupervised approaches with minimal human gating
and processing. This type of semi-supervised cell population dis-
covery and characterization can decrease human bias and variabil-
ity and identify phenotypically unusual or rare cell subpopulations.
1.3. Advantages of machine learning tools: dimensionality reduction,
clustering, and modeling

Not all tools perform the same analysis functions. Three func-
tions that are useful for high-content single cell analysis include
dimensionality reduction, clustering of cells into populations, and
modeling. SPADE and viSNE both include dimensionality reduction
steps that project multi-dimensional data into a lower dimensional
space for visualization and further interpretation. These algorithms
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aim to preserve key high-dimensional phenotypic relationships
between cells when visualizing and comparing them in 2D space.
Depending on the structure of the data, other dimensionality
reduction tools might be used (Table 1). Locally linear embedding
(LLE) and isometric mapping (ISOMAP) are designed for the types
of continuous phenotypic distributions seen in developmental pro-
gressions. ISOMAP accounts for geodesic distance in addition to
local linear distances between high dimensional data points in
order to reduce the dimensions of continuous and non-linear data
[27,28]. A similar principle is applied with LLE, where locally linear
embedding of similar data points in high dimensional space is pre-
served while allowing for a non-linear global embedding of the
data during projection into low dimensional space [29]. In contrast,
multidimensional scaling (MDS) and principal component analysis
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(PCA) preserve linear, multi-dimensional variance. One of the
advantages of PCA and other techniques, such as joint clustering
and modeling [30], is the creation of a model that can be applied
to newly analyzed samples. In addition to the unsupervised tools
discussed here, population analysis techniques that include some
supervision can be particularly useful for mapping features across
known developmental progressions [31,32].

Notably, dimensionality reduction alone does not assign cells to
groups. Here, dimensionality reduction with viSNE is used to aid
expert interpretation of cluster identity. In this example, cells are
projected onto a biaxial plot space by viSNE and then gated.
Thus, viSNE is being used to see the phenotypic relationships of
the cells according to all 27 protein features. This can help
researchers visualize high dimensional data without losing rare
populations that are best observed in single cell views. Following
t-SNE or viSNE analysis, a human expert can look for cell clusters
or major populations, as is the case here (Fig. 1), or a computational
tool can identify cell clusters (Table 1), as with t-SNE + DensVM
analysis [33]. As the workflow becomes increasingly unsupervised,
it is especially important to include a single cell view early in the
analysis so that expert can perform quality checks and get a sense
of the overall biological results.

2. Data collection, processing, and initial population
identification

2.1. Data collection

In mass cytometry, as with fluorescent flow cytometry, single
cell suspensions are stained with metal-conjugated antibodies
specific to molecules of interest. At the mass cytometer, cells are
aerosolized and streamed single-file into argon plasma where they
are atomized and ionized. The resulting ion cloud passes through a
quadrupole to exclude low mass ions and enrich for reporter ions
whose abundance is proportional to cellular features. These repor-
ter ions are quantified by time of flight mass spectrometry [34] and
recorded in an IMD format file. These data are typically parsed into
single cell events and converted to a flow cytometry standard (FCS)
file for analysis [35]. Many software programs can handle
FCS files, including Cytobank (www.cytobank.org), FlowJo
(www.FlowJo.com), R/Bioconductor, MATLAB, Cytoscape, and
GenePattern (http://genepattern.broadinstitute.org/) [36]. Text
files containing the expression matrix (where rows are cells and
features are columns, and there is a median intensity value for each
cell) can also be extracted directly from the IMD file from the
cytometer or from the FCS file for manual analysis outside of flow
cytometry analysis software. In Cytobank, export of text files with
intensity values is available from the FCS file details page. An
expression matrix can also be extracted from the FCS file in R
and MATLAB using FCS file parsing functions. In R, the package
‘‘flowCore’’ can be used to extract the intensity values from the
FCS file using the exprs() function [37]. In MATLAB, the tool ‘‘FCS
data reader’’ includes the function fca_readfcs() to extract the
intensity values of FCS files [38].

Here, the healthy human bone marrow sample analyzed was
obtained as a de-identified sample left over from diagnostic analy-
sis of non-cancerous tissue in the Vanderbilt Immunopathology
core. Acute myeloid leukemia peripheral blood samples were col-
lected from consented patients. In all cases, samples are collected
in accordance with the Declaration of Helsinki following protocols
approved by Vanderbilt University Medical Center (VUMC)
Institutional Review Board. The patient blood sample evaluated
here was collected at the time of diagnosis following initial evalu-
ation and prior to any treatment.

2.2. Data processing and scale transformation

In order to prepare data for dimensionality reduction and anal-
ysis, initial processing steps aim to ensure the quality of cell events
and perform appropriate scale transformations. Quality control
varies by user and is especially important when conducting studies
across time or using data from different instruments. Data normal-
ization using internal bead controls can be applied as part of this
data processing [39]. In this case, the two samples were collected
sequentially on the same instrument and no signal normalization
was required. Efforts are underway to facilitate comparison of data
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among groups and centers and to report elements of panel design,
instrument settings, data processing, and normalization.
MIFlowCyt is a data standard set by International Society for
Advancement of Cytometry (ISAC) that specifies the minimum
amount of information that must be included in an FCS file to
ensure reproducibility and transparency [40]. ISAC has also estab-
lished a file format for classification results from flow cytometry
data (CLR) [41] that handles cell classification from manual or
automated identification and compliments the Gating-ML file for-
mat that was developed for sharing biaxial gate classifications [42].
Additionally, there have been efforts to standardize and compare
computational flow cytometry data analysis tools. The FlowCAP
project compares automated tools for cytometry data analysis
using standardized datasets [5]. EuroFlow is a consortium of
research groups that optimize flow cytometry protocols and anal-
ysis methods and set standards for the field of immunology and
hematological studies [43]. Reporting of optimized antibody panels
has also been standardized in the form of Optimized Multicolor
Immunofluorescence Panels (OMIPs) [44]. Cytobank (www.cyto-
bank.org) and FlowRepository (www.flowrepository.org) provide
online access to annotated cytometry data files, including mass
cytometry datasets [25,26].

Because cytometry data are log-normal, a log or log-like scale is
typically used to visualize and interpret the data. Commonly used
scales include inverse hyperbolic sine (arcsinh), logarithmic, and
logicle (also referred to as ‘‘bi-exponential’’) scales [45]. Logicle
or log-like scales more accurately represent the spread of data
around 0 than logarithmic scales, given that modern cytometers
can produce negative and zero values that cannot be transformed
using logarithmic scales. The implementation of the arcsinh scale
here was first used for fluorescent flow cytometry [46] and is
now standard for mass cytometry. Typically, a cofactor is included
as part of the arcsinh scale transformation as a way of setting a
channel specific minimum significance threshold. The cofactor is
set to an intensity value below which differences are not signifi-
cant. For mass cytometry, cofactors typically range from 3 to 15
and depend on background and signal to noise with the detection
channel and antibody-metal conjugate. In fluorescent flow cytom-
etry, cofactors generally range from 25 to 2000 and are especially
useful in correcting for channel specific differences in spreading
of negative events that depend on fluorophore selection, compen-
sation, and instrument setup. For fluorescent flow cytometry data,
appropriate compensation must also be applied prior to analysis in
order to correct for any spillover between channels. Algorithms
have been developed for fluorescent cytometry to automatically
determine scale transformations [47,48]. Applying an appropriate
scale transformation prior to computational analysis is critical
because it impacts quantification of distance between cells in the
same way that it affects visualization of distance in biaxial plots.

2.3. Initial population identification and quality assessment

Beginning data analysis with a single cell view reveals the qual-
ity of the data and allows experts to spot rare cell subsets or arti-
facts that can be obscured in aggregate analysis. It is valuable to
review the single cell data to verify computational analysis results,
and it is vital in publications to provide representative single cell
views of findings. Here, intact single cells were gated by human
analysis of event length and iridium intercalator uptake (Fig. 1).
This initial gating might be accomplished various ways, such as
use of cisplatin exclusion to identify live cells [49]. Event length
is generally higher for the mass cytometry equivalent of ‘cell dou-
blets’ that can occur when the signal from two cells is not well sep-
arated in time. Intercalator uptake helps mark all cells and is
proportional to nucleic acid content [11,34]. A biaxial view of each
channel was then used to evaluate data quality prior to
computational analysis. If no intercalator positive events are seen
in this view, it suggests that there were no cells in the sample or
there was an error in DNA intercalator staining. Once intact, single
cells have been identified (Fig. 1A), a quick check using traditional
biaxial plots or histograms can be used to ensure there is no clear
overstaining. Severe overstaining results in errors while collecting
data on the cytometer because event length is too great and indi-
vidual cell events cannot be distinguished. Additionally, checks
could be included at this step for contaminant signals. Atomic mass
contaminants, such as barium and lead, can be found in water, buf-
fers or glassware. Collecting data for the corresponding channels
(137 and 138 for Ba, 208 and 209 for Pb) can be used to track these
contaminants. In summary, intact single cells are first gated by a
human expert. This step may be automated, but it represents an
opportunity for quality assessment and initial familiarization with
the data prior to computational analysis.
3. Unsupervised machine learning tools

3.1. viSNE

viSNE is a cytometry analysis tool that employs t-stochastic
neighbor embedding (t-SNE) in mapping individual cells in a two
or three-dimensional map that is based on their high dimensional
relationships [8,50]. viSNE can be used to provide a human read-
able two-dimensional (2D) view of cells that are arranged in a
way that approximates high-dimensional phenotypic similarity.
viSNE is implemented in MATLAB and Cytobank [25], and the
Cytobank implementation of viSNE is shown here (Fig. 1). viSNE
can be run using a single population of cells or multiple popula-
tions drawn from one or more files. However, cell features selected
for analysis must have been measured on all cell populations in a
comparable way and features must be measured on comparable
scales. It is sometimes helpful to subsample cell events from pop-
ulations to speed the analysis or test robustness. Sampling can be
‘equal’ with respect to the starting populations, in order to ensure
that each cell population is represented on the viSNE map by the
same number of cells, or ‘proportional’, so that each population is
represented by a number of cells proportional to its abundance.
When data are thought to contain rare cell subsets, subsampling
should be avoided to preserve rare cells. Initial gating can be used
to focus the analysis on a population of interest and increase its rel-
ative abundance. Here, equal numbers of cells were selected from
the AML PBMC and healthy marrow files for the viSNE analysis.

The cell features selected for viSNE mapping affect the structure
of the viSNE map. Markers that vary highly between cell subsets
will polarize subsets, placing them farther apart in tightly grouped
islands. Markers with low variance on subsets will cause those
cells to be placed closer together on the map. Thus, including
markers that are not expressed on any cells can result in compres-
sion of islands on the map and loss of subset polarization. Features
that might contribute to clustering can be selected in an unsuper-
vised manner based on variance. For example, features that vary
more in disease than in healthy controls might be particularly use-
ful in stratifying cells associated with distinct molecular subgroups
[51]. Here, all 27 markers in the panel were included in viSNE map-
ping because all were expressed and variable on the cells in the
samples. The displayed viSNE map shows cells from the AML
patient file only (Fig. 1). The resulting viSNE map showed a broad
distribution of heterogeneous CD45lo AML cells and several distinct
islands of non-blast cells (Fig. 1B). Relative protein expression as
heat intensity can be viewed for each marker in the panel and
are shown here for the 27 markers on the panel (Fig. 1C). The
two main populations of AML blast and non-blast cells were then
manually gated from the viSNE map and exported as separate
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FCS files for further comparison to healthy bone marrow cells using
SPADE and heatmaps. All healthy marrow cells were exported from
the viSNE analysis as no additional gating was required to identify
major populations. Depending on the sample and biological ques-
tion, it may be useful to gate initial major populations from several
or all files in this step of the analysis.

The MATLAB implementation of viSNE can be accessed through
the freely downloadable cyt tool (http://www.c2b2.columbia.
edu/danapeerlab/html/cyt.html). Cyt employs a user interface that
allows for selection of features for mapping, selection of files or
gates to be mapped, an interface for visualizing parameter inten-
sity on a heat scale, and a tool within the interface for manually
gating populations resulting viSNE map.

3.2. SPADE

SPADE is an algorithm that includes dimensionality reduction,
clustering of cells into populations (also referred to as ‘nodes’),
and visualization using a 2D minimum spanning tree. Data must
be appropriately scaled and intact cell events gated prior to
SPADE analysis as described above. Here, this is done prior to
viSNE gating. SPADE has been implemented in Cytobank, R,
Cytoscape (http://www.cytoscape.org/), and MATLAB. In R, the
package ‘‘spade’’ includes functions to implement individual steps
of SPADE and to execute a comprehensive SPADE analysis [52].
CytoSPADE is a plugin available for use in Cytoscape that provides
a user interface with the R implementation (http://www.cy-
tospade.org). The MATLAB implementation of SPADE requires the
SPADE V2.0 MATLAB tool that is freely downloadable (http://
pengqiu.gatech.edu/software/SPADE/index.html). Here, the
Cytobank implementation of SPADE was used to compare popula-
tions identified in viSNE guided gating. User-defined parameters
for SPADE analysis include downsampling, feature selection, and
a target number of nodes. Target downsampling, which can be
indicated as either a percentage of cells or an absolute number,
specifies how much weight to give clusters of varying density. A
lower downsampling percentage increases the likelihood that
sparse regions of density will be given their own clusters rather
than being grouped into clusters with regions of higher density.
When a sample is thought to contain rare subsets of cells, entering
a lower downsampling value can help distinguish these cells as a
separate population [11,12]. Feature selection in SPADE can also
be based on selecting highly variable or biologically relevant mark-
ers, as described above for viSNE. The number of nodes indicates
the target number of clusters (i.e. cell subsets) that the algorithm
should produce, and 200 nodes is a good default for standard mass
cytometry datasets containing �105–107 total intact single cells.
Including more nodes in the analysis helps to assign rare subsets
to their own clusters. These clusters can be easily combined in a
process called ‘‘bubbling’’, in which a human expert manually
refines the cluster identity. A table of basic statistics, such as med-
ian intensity of each feature, is generated for each population of
cells identified by SPADE and can be downloaded as a text file.
Cell subsets identified by SPADE can additionally be exported as
individual FCS files for further analysis, as in the heatmap analysis
shown here (Fig. 3).

In the example here, three populations were analyzed. The two
populations of AML blast and non-blast cells identified by viSNE
(Fig. 1) were compared with the population of healthy bone mar-
row cells stained with the same mass cytometry antibody panel.
Here, a concatenated file containing all three populations was also
included to allow visualization of all cells simultaneously on one
tree (Fig. 2C). SPADE can initialize with a fixed or random seed
and is random in the Cytobank implementation. The same random
seed can be set from run to run in the MATLAB implementation.
However, when new files are added to the analysis, a different tree
can still stem from the same seed, which necessitates re-running
the analysis to include any additional files. For this analysis, the
downsampling percentage was set to 1%, the target number of
nodes was 100, and the features used for clustering were all 27
measured markers in the panel. The resulting SPADE trees are
shown in Fig. 2.

Including SPADE in this analysis workflow has several advan-
tages. First, SPADE produces a visualization of population abun-
dances by altering the sizes of each node depending on how
many cells it encompasses. For example, it can be seen in the
SPADE tree that the non-blast AML cells fall almost exclusively into
one node, reflecting their relative homogeneity and the lack of nor-
mal immune cell populations in the AML patient’s blood (Fig. 2).
Clustering with SPADE also assigns each cell to a discrete group,
which minimizes analysis variability and prevents loss of cells that
are outside of gated regions in manual biaxial gating. In a standard
SPADE analysis, the algorithm is asked to ‘‘over cluster’’, producing
hundreds of relatively small clusters rather than grouping cells into
fewer, larger groups. This over clustering gives high resolution to
improve rare subset identification and allows for a thorough anno-
tation and characterization of all potentially discrete biological
populations in the heatmap analysis.
4. Characterizing and visualizing populations

4.1. Population heatmaps

With some algorithms it is not straightforward to compare the
results of an analysis of one set of samples with the results from
another set of samples. For example, with SPADE it is not straight-
forward to map a new sample onto an existing minimum spanning
tree defined using different samples. Instead, a new SPADE analysis
is generally run that includes both the new and old samples. In
contrast, a heatmap can be used to compare populations identified
in different analysis runs of SPADE or populations identified by dif-
ferent clustering techniques. Heatmaps also provide a compact
view that facilitates comparing many populations according to a
large variety of measured features. In heatmaps, different types
of biological and clinical information can also be used to group
populations or assessed for association with resulting groups
[46,53]. While population heatmaps provide an intuitive,
high-level view of the results, they can obscure variation within
subsets [25]. To address this, statistics other than median expres-
sion can be shown in the heatmap, such as variance or the 95th
percentile of expression [1,54].

For the last step in the workflow here, tables of statistics for the
hundreds of cell subsets identified in the three starting populations
(Fig. 2) were exported from SPADE as text files listing median
expression of each feature for each cell subset. Cell subsets were
excluded from further analysis if they contained less than 1% of
the cells in the starting population. This arbitrary threshold was
set in order to exclude sparse clusters where low cell number could
potentially increase the error of reported medians. Here, the 1%
threshold resulted in exclusion of approximately 5% of the total cell
events from heatmap characterization. The table of statistics was
then imported into R using the ‘‘read.table’’ function from the
R.utils package [55] and visualized as a hierarchically clustered
heatmap using the ‘‘heatmap.2’’ function in the gplots package
(Fig. 3A) [56]. Output of a hierarchical dendrogram as part of the
heatmap can be specified as one of the input parameters of the
heatmap.2 function. The R package ‘‘stats’’ also offers a function
called ‘‘heatmap’’ that performs the same function as heatmap.2
with slight differences in visualization options. After the clustered
heatmap was generated, expert analysis was used to assign biolog-
ical classifications to each group of populations in the hierarchical

http://www.c2b2.columbia.edu/danapeerlab/html/cyt.html
http://www.c2b2.columbia.edu/danapeerlab/html/cyt.html
http://www.cytoscape.org/
http://www.cytospade.org
http://www.cytospade.org
http://pengqiu.gatech.edu/software/SPADE/index.html
http://pengqiu.gatech.edu/software/SPADE/index.html
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clustering, and included the same populations seen in viSNE
(Fig. 1B) and SPADE (Fig. 2B): dendritic cells (DCs), monocytes, nat-
ural killer cells (NKs), CD8+ T cells, CD4+ T cells, B cells, immature
myeloid cells (Imm. myel.), four subsets of AML blast cells (AML1
through AML4), and erythroid blast cells (Ery. bl.) (Fig. 3B).

Use of a clustered heatmap in the workflow allows for simulta-
neous visualization of several markers for the same clusters (pop-
ulation of cells) from multiple files. Furthermore, nodes are
hierarchically clustered, and this clustering can be pruned at vari-
ous levels by the user to further group the nodes into biological
populations. It is also important to note that the distance between
nodes has quantitative meaning in the clustered heatmap dendro-
gram, as opposed to the distances on the SPADE tree that are for
visualization purposes and not quantitative. Heatmap analysis
therefore compliments the SPADE visualization by facilitating
simultaneous visualization of nodes from multiple files and by
quantifying phenotypic distances between the nodes.
4.2. Other packages and flowCore

There are many R packages designed for statistical and visual
analysis of flow cytometry data, including flowCore [37], flowViz
[57], flowStats [58], and flowClust [58], among others. These pack-
ages include functions for producing heat maps, histograms, bar
plots, biaxial density plots, and are part of efforts to automate
and standardize computational analysis of cytometry data [5,6].
Apart from the R packages designed for flow cytometry data anal-
ysis, other analysis and visualization packages can be applied to
single cell data. For example, box and whisker plots or violin plots
can be produced to show median, range, and the distribution of the
feature in each subset.
5. Other considerations for automated flow cytometry data
analysis

5.1. Algorithm selection

Three major considerations when choosing tools or algorithms
for flow cytometry data analysis include (1) linear vs. non-linear
measurement, (2) supervised or unsupervised approaches, and
(3) need for modeling. The first consideration is whether a linear
or non-linear method of dimensionality reduction is best for the
data. Phenotypic relationships between cells may follow a ‘creode’,
or necessary path, that is non-linear with respect to protein
expression (i.e. co-expression or co-variance of molecules is not
linearly correlated with important progressions in cellular identity
or trajectories in data space) [10]. In this case, nonlinear dimen-
sionality reduction tools may better preserve the high dimensional
phenotypic relationships between cells compared to tools that
assume a linear relationship between variables. The second consid-
eration is whether an unsupervised or supervised method is
needed. In an exploratory analysis where novel populations are
anticipated, unsupervised approaches will minimizes the risk of
overlooking the populations. Lastly, a consideration is whether or
not the goal of analysis is to build a model. Mixture modeling tools
can be implemented for analysis of flow cytometry data that will
produce a model as output for downstream analysis. Additional
issues to consider include (1) selection of features, which is gener-
ally initiated by hypotheses and pragmatic concerns and then nar-
rowed to include those features with biologically meaningful
variation [51], and (2) aspects of statistical power, including sam-
ple size, cluster density, and false discovery rate (FDR). It is vital to
calculate FDR or a related statistic, such as the f-measure, in cases
where a truth is known [5].
5.2. Scalability of workflow

Biomedical studies that employ flow and mass cytometry often
accrue large numbers of samples over long periods of time. This
and similar workflows can be adapted to accommodate data from
these large studies. In order to account for experimental or instru-
ment variability, normalization is necessary in these cases in order
for compare samples run at different times or from different
instruments. Bead normalization has been optimized for use with
mass cytometry to control for machine variability between runs
[39,59,60]. Polystyrene beads embedded with heavy metal iso-
topes are run with every sample as a standard that can be used
to correct MI values for each event based on technical variability.
When samples accrue over a long period of time, a key considera-
tion is that new results may not be easily mapped back to the orig-
inal viSNE map or SPADE tree without re-analysis. This is one
advantage of heatmaps, which compare samples according to a
simple ‘model’ of the data, such as median expression of selected
features.

This workflow as presented includes manual intervention that
could be prohibitive when analyzing many data files simultane-
ously. While all steps of this analysis could generally be batched
and automated, human review of single cell data is advantageous
at workflow breakpoints to verify computational results and spot
artifacts. Cytobank and other flow cytometry data analysis soft-
ware allow for rapid, simultaneous viewing and pre-processing of
multiple files, including scale transformation and gating. viSNE
analysis can currently be run on up to 800,000 cells in Cytobank,
and this limit is pragmatic, not theoretical. Many files can be run
simultaneously by subsampling cells equally or proportionally
from each file prior to the viSNE run. SPADE can also be run on
many files simultaneously, and data files with cluster information
can be quickly downloaded in a compressed folder.

Import of text files into R and selection of nodes based on the
number of cells they contain can be automated and batched for
highly scalable and rapid heatmap analysis. However, a potential
limitation of large-scale analyses is the visualization of all nodes
simultaneously on the heatmap. It may be useful in these cases
to segment the SPADE tree into major populations by ‘‘bubbling’’
and then building separate heatmaps from each bubble rather than
for the whole tree. Depending on the expected prevalence of rare
cells in the dataset, the user can request fewer nodes in the
SPADE run in order to decrease the final number of clusters to be
analyzed and visualized on the heatmap.
6. Conclusions

Data analysis in cytometry remains largely manual, supervised,
and focused on large changes in magnitude of expression. As new
tools are developed to assist in gating, reduce dimensionality, and
automate analysis, it is important to show biologists the value of
these tools and to integrate them into workflows that can become
routine. The workflow presented here blends supervised and unsu-
pervised analysis tools so that biologists can visualize results at the
single cell level while still getting an accurate view of the big pic-
ture. Combining tools also allows the analyst to visualize data in
multiple ways, which can be useful to extract the most meaning
from a data set. Existing tools allow for identification of popula-
tions based on single cell expression profiles and characterization
of these subsets using standard statistics, including expression
magnitude, marker variance, and subset abundance. Going for-
ward, tools that quantify cellular heterogeneity, identify critical
population features, and assign biological identity to
machine-identified subsets will be particularly useful in filling
out the toolkit.
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