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The main purpose of this survey is to understand completely the 

geometry, constraints and algorithmic implementation for metric 

rectification of planes. In this survey, I consider the perspective images and 

thus, using rectification helps me to measure metric properties from a 

perspective image. Additionally, because I consider perspective images, the 

concept of projective transformation is important. Thus, I start with defining 

the projective transformation. 

 

A projective transformation is a transformation which is used in 

projective geometry. I can say that it is the composition of a pair of 

perspective projections. It helps to understand the change of perceived 

positions of observed objects if the point of view of the observer changes. 

Projective transformation maps lines to lines, however it is not necessary to 

preserve parallelism. Here, it is important to state that projective 

transformations do not preserve sizes or angles but it preserves incidence 

and cross-ratio. These two preserved properties are very important in 

projective geometry. Furthermore projectivity is another name of the 

projective transformation. We can define any plane projective 

transformation as an invertible 3 x 3 matrix in homogeneous coordinates. In 

other words, any invertible 3 x 3 matrix defines a projective transformation 

of the plane. If projective transformations are not affine, they cannot define 

on all of the plane. It can only be defined on the complement of a line, and 

the missing line is mapped to infinity.   

 



An example of a projective transformation can be given by a 

perspective transformation. If I consider the figure which is below, I can say 

that a perspective transformation with center O, is mapping the plane P to 

the plane Q. The transformation is not defined on the line L, where P 

intersects the plane parallel to Q and going through O. 

 

 

Here in this example, perspective transformation gives a 

transformation from one plane to another. However, if we identify the two 

planes by fixing a Cartesian system in each, we get a projective 

transformation from the plane to itself.  

We learned the general concepts of projective transformation so far. 

Besides these concepts, there are several applications of plane projective 

transformation in computer vision, such as: mosaicing and photogrammetry. 

In the most of these applications, the projective transformation can be 

determined uniquely if four or more image points in the Euclidean world 

coordinates are known. Thus, after the transformation is completed, 



Euclidean measurements can be made on the world plane directly from 

image measurements. These Euclidean measurements can be angles and 

lengths. Additionally, the image can be rectified by a projective warping to 

one which would have been obtained from a fronto-parallel view of the 

plane.   

D. Liebowitz and A. Zisserman [1] did a research for metric 

rectification for perspective images. I concentrated to this paper in my 

survey. The researchers showed that providing the Euclidean coordinates of 

four is not necessary to determine uniquely the projective transformation. 

The idea is that instead using metric properties on the world plane, length 

ratio and an angle can be used directly to partially determine the projective 

transformation up to a particular ambiguity. Although this partial 

determination requires less information about the world plane to be known, 

it is sufficient to enable metric measurements of entities on the world plane 

to be made from their images.  

This is a very important contribution and this contribution is the 

extended and improved version of the Collins and Beveridge’ paper: 

“Matching Perspective Views of Coplanar Strucuters using Projective 

Unwarping and Similarity Matching [2].” In this paper, the researchers 

stated that once the vanishing line of the plane is identified, the 

transformation from world to image plane can be reduced basically to an 

affinity. Thus, the researchers used this approach to reduce the dimension of 

the search, from eight to six, in registering satellite images. Because the idea 

of metric rectification for perspective images of planes constructed on the 

significant step which is done by Collins and Beveridge, I would like to 

introduce this paper first. Then I will turn back the metric rectification.  



 

Collins and Beveridge [2] considered the problem of matching 

perspective views of coplanar structures composed of line segments. They 

considered both model-to-image and image-to-image correspondence 

matching. We know that these matching scenarios generally require 

discovery of an eight parameter projective mapping. However, if the horizon 

line of the object plane can be found in the image, these problems reduce to 

a six parameter affine matching problem. The researchers achieve this by 

using vanishing point analysis which is taken as a significant step in 

Liebowitz and Zisserman [1]. Besides, if the intrinsic lens parameters of the 

camera are known, the problem becomes four parameter affine similarity 

matching.  

 

 As stated above, the main point of this paper is that the full 

perspective matching problem for coplanar structures can often be reduced 

to a simpler four parameter affine matching problem when the horizon line 

of the planar structure can be determined in the image. Here, the important 

point is to know the horizon line, thus the image can be transformed to show 

how the structure would appear if the camera’s line of sight was 

perpendicular to the object plane. The researchers stated this process as 

rectification in aerial photogrammetry.  

 

 Matching problems involve solving two different things in the same 

time.  These are a discrete correspondence between two sets of features 

which are model-image or image-image, and an associated transformation 

that maps one set of features into registration with the other. This can be 



seen as a match being a correspondence and transformation constitutes 

matching. As I stated above, the relevant set of transformation in the eight 

parameter projective transformation group for planar structures under a 

perspective camera model. We need to pay attention to the restrictive 

transformations. Because these restrictive transformations can often more 

easily computed, and this makes the matching easier. In their paper, the 

researchers considered the Frontal planes as one of these special cases. 

Considered frontal planes are the planar structures which are viewed head-

on with the viewing direction of the camera held perpendicular to the object 

plane. So, why the frontal planes are special case? Because if we know the 

intrinsic camera parameters, perspective mapping of a frontal plane to its 

appearance in the image can be described with just four affine parameters. 

These parameters are an image rotation angle, a 2D translation vector and an 

image scale.  

  

Thus, we can say that, generally the perspective projection of a frontal 

plane is described by a six parameter affine transformation. However, if we 

are using a calibrated camera and we know its intrinsic lens effects, thus it 

can be inverted to recover the ideal pinhole projection image. After 

correction for intrinsic lens effects, the frontal view of an object plane can be 

described by a four parameter affine similarity mapping. Besides this, there 

are some arbitrary orientations. Planes which are viewed at an angle, the 

function mapping object coordinates to image coordinates is not affine. It 

becomes a more general projective transformation. As we know that the 

lines which are parallel on a tilted object plane appear to converge in the 

image plane, intersecting at a vanishing point. Here the researchers 

considered the vanishing point concept. Besides, two or more vanishing 



points from different sets of coplanar planar lines form a line in the image 

called the vanishing line or horizon line of the plane. If we turn back to our 

frontal planes, for frontal planes, all parallel lines on the object remain 

parallel in the image. The reason of this is that the image projection of a 

frontal plane is described by an affine transformation, and this 

transformation preserves parallelism. Here, we can say that these set of 

parallel lines in the image intersect in a point at infinity. Additionally, all 

vanishing points of parallel lines appear at infinity for frontal planes, and the 

vanishing line passes through them is also said to be at infinity. The result of 

these considerations is that if we apply a projective mapping to the image 

which takes the vanishing line of a coplanar structure to the line at infinity, 

the vanishing points of all lines in the object plane will also appear at 

infinity. Thus, all parallel lines in the planar structure will appear parallel in 

the image. So we can understand that the new image is a frontal view of the 

object plane. By this way, the mapping from object to image can be 

represented as an affine transformation.  

 

 Here the important point to understand that the vanishing line of a 

frontal plane appears at infinity in the image plane, and besides that is 

possible to recover a frontal view from the image of a tilted object plane by 

applying a projective transformation which maps the objects’ vanishing line 

to infinity. However, then another question comes to mind. We see that there 

is six-dimensional space of projective transformations which map a given 

line in the image off to infinity. Which one we need to choose as the best? 

This questions’ answer is considered in the rectification section of this 

paper. The researchers considered a pinhole camera image to solve this 

problem, and after some considerations they found a result which is a frontal 



view of the object plane which is a rectified four parameter affine view. 

Additionally, they stated that even if when the camera lens parameters are 

not known, this transformation can be used to map a vanishing line to 

infinity. In this situation, we cannot recover the pure pinhole image and we 

cannot interpret the position of the vanishing line in the image geometrically 

in terms of 3D plane orientation. However, the image can be rectified to 

present some six parameter affine mapping of the frontal object plane.  

  

The last important part in this paper is the correspondence matching. 

In this part, the researchers considered a two step approach to match a 

coplanar line segments seen from two arbitrary 3D viewpoints. As a first 

step, the researchers rectified both sets of line segments. Thus, perspective 

matching problem becomes a simpler affine matching problem. As a second 

step, the researchers used a local search matching algorithm to find the 

optimal affine map and correspondence between the two sets of line 

segments. Here, if both sets of line segments can be extracted from images, 

then an image-to-image matching problem can be solved. On the other hand, 

if one set of segments can be derived from a geometric object model, thus a 

model-to-image matching problem can be solved. 

 

By introducing the Collins and Beveridge [2] paper, I showed the 

important step which is used by Liebowitz and Zisserman [1]. The point is 

that if the vanishing line of the plane can identified, thus the transformation 

from the world to image can be reduced to an affinity. Liebowitz and 

Zisserman improved this result in four ways: 

 



1. The researchers showed that affinity can be reduced to a 

similarity by using known metric information.  

2. The researchers showed that an imaged plane can be rectified 

directly from metric information without identifying the 

vanishing line first.  

3. The researchers described how the metric rectification of a 

plane constraints the camera internal calibration parameters. 

4.  For increasing the accuracy of the results, the researchers 

estimated vanishing points using a Maximum Likelihood 

Estimator.     

  

 Firstly, the researchers stated that by using known metric 

information the affinity can be reduced to a similarity. We know that once 

the metric structure recovery can be stratified, we can determine firstly the 

affine and then metric properties.  

If we state the points on the image plane as x, these points are related 

to the points on the world plane. Thus, if we state the points on the world 

plane as x’, we can show this relationship as x’ = Hx where the 

transformation matrix is H. It is important to say that x and x’ are 

homogeneous 3-vectors. After that, the researchers showed that 

transformation matrix can be uniquely decomposed into a concatenation of 

three matrixes. These matrixes are S, A and P. Here S matrix represents the 

similarity transformation, A matrix represents affine transformation and P 

matrix represents the pure projective transformation. Thus, this relationship 

can be stated H = SAP where pure projective transformation is 



 

 

Remember that vanishing line of the plane is l∞ = (l1,l2,l3)
T
 which has two 

degrees of freedom. Here, I would like to give information about the 

vanishing line l∞ of the plane, because determining the projective 

transformation matrix depends on the vanishing line of the plane. As we 

know, vanishing line is considered on the world plane, and can be stated as 

the image of the line at infinity. Here, l∞ is important, because parallel lines 

intersect at the vanishing points in the image and these vanishing points lie 

on l∞.  

 

Affine matrix has two degrees of freedom which are represented by α 

and β. α and β specify the image of the circular points geometrically. Here it 

is important to know that the circular points are a pair of complex conjugate 

points on the line at infinity. These circular points are I and J. Additionally 

these are transformed from coordinates of their metric plane to the affine 

plane. Here, the importance of the circular points is that they are invariant to 

Euclidean transformations. This means that if we can identify the circular 

points, metric properties of the plane can be identified too. 

   

 

 

 



Similarity transformation matrix has four degrees of freedom; 

 

Here, R is a rotation matrix, t is a translation vector and s is isotropic 

scaling.  

 

 After determining these concepts, the researchers give the generally 

known rectification process by applying constraints sequentially on the 

projective and affine components of the rectification homography. This is a 

two step rectification process which is firstly starts from projective to affine 

and secondly continues from affine to metric.  

 

 The first rectification process is mainly determining the P. We know 

that this requires the identification of the vanishing line of the plane. The 

researchers assumed that the transformation from projective to affine is 

determined. Because P is determined, the image can be affine rectified and 

affine properties such as length ratios on parallel line segments measures. 

Then, the researchers moved on the recovery of metric geometry. For 

recovering the metric geometry from affine, affine transformation of the 

plane which was the matrix A must be considered. This will restore the 

angles and length ratios for non-parallel segments. As we know, the affine 

matrix has the parameters, α and β. We have to provide the constraints on α 

and β. This is stated that there are three methods. These are  

1. A known angle between lines 

2. Equality of two unknown angles 

3. A known length ratio 



I would like to consider these three methods. Firstly, we have to know that 

in each case it is shown that the constraint is a circle. This is in fact a circle 

in the complex plane since α and β are originally real and imaginary 

components, and the circles may be plotted on the plane with α as the real 

axis and β the imaginary. However, since α and β are real, the complex 

interpretation is not significant in seeking a solution. 

 

Now, I will consider the method, in a known angle between lines, Ө is 

the angle between the lines imaged as la and lb on the world plane. Besides, 

α and β lie on the circle with centre 

 

And we can define the radius as: 

 

where the line directions a = -la2/la1 and b = -lb2/lb1. If Ө = π / 2, the centre 

will be on the α axis.  

 

Second method is the equality of two unknown angles. Here, the 

researchers are supposed that the angle between two lines imaged with 

directions a1, b1 is the same as that between lines imaged with directions a2, 

b2.  

Thus, α and β lie on the circle with centre on the α axis 

 

And the squared radius 



 

 

Last method is using a known length ratio. Here, the researchers are 

supposed that the length ratio of the two non-parallel line segments is s on 

the world plane. Besides, the situation is illustrated as  

 

Here, the researchers stated that α and β lie on the circle with center on the α 

axis and can be showed as 

 

And radius can be showed as: 

 

 

Here, we are trying to determine α and β. For to determine α and β, 

two independent constraints are always required. Additionally, it is 



important that the constraints are dependent on line orientation and the same 

constraint circle results from any parallel line sets.  

 

Before introducing the unstratified rectification process, I would like 

to give more information about the metric structure recovery which we 

considered above. Here, I consider a concept from the Oliver Faugeras’ 

paper[3] which is used as the basis approach in D. Liebowitz and A. 

Zisserman’ paper [1] in metric structure recovery. In this paper, the 

researchers considered the stratification of three-dimensional space for 

projective, affine and Euclidean structures. My concentration is on the last 

stratification part which considers three-dimensional space as a Euclidean 

space. As we know, this part comes after the stratification of three-

dimensional space as a projective space and as affine space. This part is the 

final part in stratification. Here the point is considering the world as a 

Euclidean space embedded in the affine space which is constructed before. 

This consideration consists of two main parts 

1. Euclidean transformation of the plane which are the absolute 

points. 

2. Euclidean transformation of the space which is the absolute 

conic.  

 

By understanding these concepts, we can combine the absolute conic 

and absolute point concepts to our general consideration. 

 

 Firstly, I consider the Euclidean transformation of the plane. Here, the 

point is to specialize the set of affine transformations of the plane. This 

requires not only preserving the line at infinity, but also need to preserve two 



special points on that line. The two special points are called absolute points, 

I and J. The coordinates of these points is (1, ±i, 0) where i = . Here, we 

need to turn back to affine transformation of the plane. We know that there 

is a one-to-one correspondence between the usual affine plane and the 

projective plane minus the line at infinity. In the affine plane, an affine 

transformation defines a correspondence X → X’, and this can be expressed 

in matrix form as  

 

where B is a 2 x 2 matrix of rank 2 and b is a 2 x 1 vector. 

 

 The researchers stated that I and J remain invariant depending on B 

matrix. Thus,  

 

which gives 

 

As can be seen that b11 – b22 = b12 + b21 = 0, Thus we can write 

 

where c > 0 and 0 ≤ α ≤ 2π. This class of transformations can be called the 

class of similitudes. Here, it forms a subgroup of the affine group and 

therefore of the projective group. The name of this group is the similitude 



group or the Euclidean transformations group. The affine point which is 

represented by X, first rotated by α around the origin, scaled by c, and at last 

translated by b. The researchers are specialized the class of transformations 

by assuming that c=1. Thus they obtained another subgroup which is called 

the group of rigid displacements. 

       

 After that, the researchers gave an application of the use of the 

absolute points. This really helps to understand the concept. In this example, 

they showed that how the absolute points can be used to define the angle 

between two lines. They defined the angle α which is between two lines l1 

and l2. For defining this angle, they considered their point of intersection m 

and the two lines im and jm which join m to the absolute points I and J. This 

can be seen from the figure as well. 

 

 

Then, the angle is given using the Laguerre Formula 

 



This can be considered as an equal result with the cross ratio of the four 

points I, J, m1, and m2 of intersection of the four lines with the line at 

infinity l∞. 

 

 The second important part when considering the three-dimensional 

space as a Euclidean space is the transformation of the space which 

considers the absolute conic. Like specializing the set of affine 

transformations of the plane, we can also specialize the affine 

transformations of the space. This requires that the affine transformations 

leave a special conic invariant. They obtained the conic, Ω, as the 

intersection of the quadric of equation with π∞: 

 

They stated that this conic can also be called the absolute conic. It is 

important to state that in π∞, Ω can be interpreted as a circle which has the 

radius i =  
. This gives us an imaginary circle. Thus, in the standard 

projective basis, all its points have complex coordinates. Additionally, if m 

is a point of Ω, the complex conjugate point which can be seen as  will 

also on Ω. The reason is the usage of equations with real coefficients when 

defining equation of the absolute conic. The researchers also showed that the 

affine transformations which keep Ω invariant can be written as 

 

Where c > 0 and C is orthogonal, this means it satisfies the equation         

CCT = I.  



After giving some information about Euclidean transformation of the 

plane and space, we can move the unstratified rectification. We know that 

the researchers used two step rectification process in the beginning, however 

then they are considered the unstratified rectification instead of using this 

two step process. As can be seen from the study, the important point is to 

determine the parameters of matrixes AP. However, instead of using the 

previous process, it is possible to determine the parameters of AP directly 

from metric information without first using affine information, such as 

parallelism, to determine P from the vanishing line. In general, non-linear 

constraint on the parameters is generated by direct application of the metric 

constraints. However, if we consider the orthogonal lines, it can be seen that 

the constraint on the four rectification parameters is linear. 

 

At this point, the parameters are represented by the conic D. This is 

for to obtain a linear constraint. This conic is dual to the circular points. We 

can define the conic as D = IJT + JIT
. And this will be 3 x 3 matrix which 

has a rank two. If we can determine the image of D, thus we can determine 

the imaged circular points. Additionally, the circular points are imaged on 

the vanishing line at ((α±iβ)l3, l3, -αl1-l2± iβl1)
T
. Additionally if we can 

determine the circular points, the rectification parameters l∞, α and β can be 

determined.  

 

In the paper, the researchers considered that orthogonal lines are 

conjugate wrt D, this means such as they satisfy la
TDlb = 0 for orthogonal 

lines la and lb. Thus, each pair of orthogonal lines places a linear constraint 

on D. Five orthogonal line pairs such as five right angles can be sufficient to 

determine D linearly, provided lines of more than two orientations are 



included. In another way D can be determined by four orthogonal line pairs 

together with the rank two constraints, but this time the solution becomes 

non-linear. 

 

 Here, before starting the implementation details, I would like to 

consider the general and important points of conics and circular points. 

Thus, this consideration will help us to understand the reason of defining the 

conic as D = IJT + JIT
.  

  

In  D. Liebowitz and A. Zisserman’ paper [1] which is mainly 

considered in this survey, the researchers obtained a linear constraint by 

representing the parameters using conic D which is dual to the circular 

points. Besides, the conic is defined as D = IJT + JIT
. For better 

understanding of this, an investigation of the Euclidean structure is needed 

[4]. We need a projective encoding of Euclidean structure for recovering the 

metric information implicit in projective images. The important point in 

Euclidean structure is the dot product between direction vectors or dually the 

dot product between normals to hyperplane. These are the different ways of 

saying the same thing. The former leads to be strafied “hyperplane at infinity 

+ absolute conic” formulation [5], the latter is the “absolute quadratic”[6].  

  

If want to understand the generalities of this concept, we need to 

consider a k-dimensional Euclidean space. If we are dealing with the planar 

scene and its 2D images, we need to use k as 2. On the other hand, if we are 

dealing with ordinary 3D space, we need to use k as 3. In this structure, 

homogeneous Euclidean coordinates, points, displacement vectors and 

hyperplanes are encoded as homogeneous k+1 component column vectors   



x = (x,1)T, t = (t,0)T and row vectors p = (n, d) where x, t, n and d are the 

usual k-D coordinate vectors of the point, the displacement, the hyperplane 

normal and hyperplane offset respectively. It is important to state that            

p . x = n . x + d = 0 and p . t = n . t is satisfied by the points and 

displacements on the plane respectively. Here, the displacement directions 

can be attached to the point space as vanishing point or a hyperplane at 

infinity p∞ of points at infinity. Finite and infinite points are mixed by 

projective transformation. In the presence of a projective transformation 

which is encoded by an arbitrary nonsingular (k+1)*(k+1) matrix T, 

directions which are column vectors and points transform contravariantly, 

for example if T acting on the left which means that x → Tx, v → Tv. 

hyperplanes which are row vectors transform covariantly for to preserve the 

point-on-plane relation p . x = n . x + d = 0, such as T-1
 acting on the right 

which means p → pT-1
.   

   

 Another important concept in the Euclidean structure is the absolute 

quadratic and conic. If we consider the usual Euclidean dot product between 

hyperplane normals, we face with this equation  

n1 . n2 = p1 Ω p2
T 

where Ω matrix is stated as 

 

 

This matrix is the absolute (hyperplane) quadratic which is symmetric 

and has rank k. Encoding the Euclidean structure in projective coordinates is 

done by Ω. Ω transforms like a point in each of its two indices under 



projective transformation, thus the dot product between plane normal is 

invariant which means Ω → T Ω TT
 and pi →  piT

-1
. This gives us that        

p1 Ω p2
T = n1 . n2 is constant.  

  

If Ω is restricted to coordinates on p∞, it becomes nonsingular. 

Besides it can be inverted to give the k x k symmetric positive definite 

absolute conic Ω*. Here, the measurement is the dot products between 

displacement vectors, it is like that Ω measures them between hyperplane 

normals. It is important to state that Ω* is defined only on direction vectors, 

thus is not defined on finite points, and it has no unique canonical form in 

terms of unrestricted coordinates, unlike Ω.  

 

The other important concept in the Euclidean structure is the circular 

points. The complex conjugate vectors satisfy  under 

given any two orthonormal direction vectors such as x, y. Intuitively, these 

complex directions lie on the absolute conic, and any complex projective 

point which lies on the absolute point can be decomposed into two 

orthogonal direction vectors. These are its real and imaginary parts. If we 

consider the 2D case, there will be only one such conjugate pair up to 

complex phase, and Euclidean structure of the plane can be characterized by 

these circular points. However, it can be harder for numerical purposes. 

Because of this, if we avoid complex numbers by using the real and 

imaginary parts of x and y, instead of x±, the numerical solutions becomes 

easier. Here, I want to state that the phase freedom in x± corresponds to the  

2 x 2 orthogonal mixing freedom of x and y. 

 



As a result, we can say that Ω is easy to use, however the rank k 

constraint det Ω  = 0 must be handled by constrained optimization. The 

absolute conic Ω* has neither constraint nor gauge freedom, however it has 

significantly more complicated image projection properties. Thus it can only 

be defined once the plane at infinity is known and a projective coordinate 

system on it has been chosen such as by induction from one of the images.  

 

After considering the general and important concepts of conics and 

circular points, I would like to turn back the D. Liebowitz and A. Zisserman’ 

paper [1]. Here, if we consider their implementation in details, we can see 

that the researchers consider three important points:  

1. Vanishing point estimation 

2.  Image warping 

3.  Automatic detection of vanishing points and orthogonal 

directions.  

I will consider these one by one. 

  

Firstly, I consider the vanishing point estimation. As I stated above, 

projective transformation matrix P consists of the vanishing line of the plane 

and can be determined by the intersection of two imaged parallel lines. The 

intersection of two lines, such as l1 and l2, represented as x = l1 * l2. 

However, the problem is that there are more than two imaged parallel lines 

available. Thus, the vanishing point is over constrained. Additionally, a set 

of line segments may not intersect precisely a point because of the presence 

of measurement error. Because of these reasons, there are several 

approaches to estimate the vanishing point. B. Caprile and V. Torre [7] 

proposed to calculate a weighted sum of all pairwise line intersections. 



Collins [8] proposed an approach which is an application of Bayesian 

statistics to error in projective spaces. However, in this paper, the 

researchers proposed a different approach which is significantly improves 

the accuracy of the metric rectification. The researchers defined and 

implemented a maximum likelihood estimate of the vanishing point. Thus, 

they minimized the errors by using this approach.  

  

Their approach can be summarized as follows. They supposed that 

there are n > 2 line segments li, and they tried to estimate the vanishing point 

v. Here, they are trying to find the ML estimate of the vanishing point 

however this involves finding the estimate of the line segments. They stated 

that isotropic mean zero Gaussian noise on the end points can help to model 

the error in the fitted line segments. Assuming the end points of l are xa
 and 

xb
, ML estimator minimizes  

 

which is subject to the constraint v.li = 0 where d┴(x,l) is the perpendicular 

image distance between the point x and line l. Additionally, the researchers 

minimized the cost function by showing that C(v) can be obtained in closed 

form by given v. Then, they minimized C(v) over v using the Levenberg-

Marquart numerical algorithm. They obtained an initial solution for v from 

the null vector of the matrix (l1,l2,…ln) via singular value decomposition. 

   

 The second point which is considered in implementation details is the 

image warping. Generally, images are wrapped by the inverse homography 

to each pixel in the target image. Bilinear interpolation is used to determine 



the density at the source point in the original image. Besides, the researchers 

stated that if we want to automate the warping and ensure that the convex 

hull of the original image is correctly mapped into the rectangle of the target 

image, we have to use oriented projective geometry.  

  

The third point is the automatic detection of vanishing points and 

orthogonal directions. Detecting two dominant directions of lines in the 

image which are orthogonal in the plane can be used to achieve automation 

of the correction process. The researchers obtained the dominant directions 

by a frequency histogram on line direction with frequency weighted by 

segment length. Generally, the histogram is bimodal and readily segmented. 

Here, they used to assumption that the lines in each dominant direction is 

parallel and a vanishing point is determined by this way. After that they have 

an affine image and they searched this affine image for dominant directions 

and lines in the two directions constrained to be right angles. However, this 

searching provides only one constraint and thus there is an ambiguity in 

relative scale. Here, the important point is that histogram approach gives 

good performance when detecting dominant directions of parallel lines in 

affine images, however it doesn’t give good performance when detecting 

vanishing point. Thus, for example Hough Transform must be accomplished 

for more robust vanishing point detection.  

   

   

   

 

 

  



REFERENCES 

 

[1] D. Liebowitz and A. Zisserman. Metric rectification for perspective 

images of planes. In Proceedings of Computer Vision and Pattern 

Recognition, 1998. 

 

[2] R. T. Collins and J. R. Beveridge. Matching perspective views of 

coplanar structures using projective unwarping and similarity 

matching. In Proc. CVPR, 1993. 

 

[3] O. D. Faugeras. Stratification of three-dimensional vision: projective, 

affine, and metric representation. J. Opt. Soc. Am., A12:465–484, 

1995. 

  

[4] W. Triggs. Autocalibration from planar scenes. In Proc. ECCV, 1998. 

 

[5] J. G. Semple and G. T. Kneebone. Algebraic Projective Geometry. 

Oxford University Press, 1952. 

 

[6] B. Triggs. Autocalibration and the absolute quadric. In IEEE Conf. 

Computer Vision & Pattern Recognition, Puerto Rico, 1997. 

 

[7] B. Caprile and V. Torre. Using vanishing points for camera 

calibration. IJCV, pages 127–140, 1990. 

 

[8] R.T. Collins. A Bayesian anlysis of projective incidence. In J.L. 

Mundy and A. Zisserman, editors, Proc. 2nd European-US Workshop 

on Invariance, Azores, pages 151–163, 1993. 
 

 

 

  

 

 

 


