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ABSTRACT 

 Recently, a new substructure coupling/uncoupling approach has been introduced, called 
Modal Constraints for Fixture and Subsystem (MCFS) [Allen, Mayes, & Bergman, Journal of 
Sound and Vibration, vol. 329, 2010].  This method reduces ill-conditioning by imposing 
constraints on substructure modal coordinates instead of the physical interface coordinates.  The 
experimental substructure is tested in a free-free configuration, and the interface is exercised by 
attaching a flexible fixture.  An analytical representation of the fixture is then used to subtract its 
effects in order to create an experimental model for the subcomponent of interest.  However, it 
has been observed that indefinite mass and stiffness matrices can be obtained for the 
experimental substructure in some situations.  This paper presents two simple metrics that can be 
used by the analyst to determine the cause of indefinite mass or stiffness matrices after 
substructure uncoupling.  The metrics rank the experimental and fixture modes based upon their 
contribution to offending negative eigenvalues.  Once the troublesome modes have been 
identified, they can be inspected and often reveal why the mass has become negative.  Two 
examples are presented to demonstrate the metrics and to illustrate the physical phenomena that 
they reveal. 

1. INTRODUCTION 
 Component mode synthesis (CMS) has been a fundamental tool for the structural analysis 
of large complex systems for years.  Instead of the system being modeled as a whole, it is broken 
up into substructures that are then modeled and reduced.  This approach is often a necessity due 
to shear model size, and individual system components are often constructed by different 
companies.  This is especially true in the aerospace community.  The Craig-Bampton 
substructure representation [1] has become the most popular and efficient approach within the 
aerospace industry.  In recent years, there has been a renewed interest in combining analytical 
based and experimental based substructures using CMS and the imposition of constraints.  The 
direct approach would be to enforce compatibility in the physical connection degrees of freedom 
between two substructures, but this proves difficult in many problems for several reasons.   
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 Recently, a new approach has been introduced, called Modal Constraints for Fixture and 
Subsystem (MCFS) [2].  This method reduces ill-conditioning by imposing constraints on 
substructure modal coordinates instead of the physical interface coordinates.  The experimental 
substructure is tested in a free-free configuration, and the interface is exercised by attaching a 
flexible fixture, which was dubbed a “transmission simulator” in subsequent works [3].  An 
analytical representation of the transmission simulator is then used to subtract its effects to 
produce the desired experimental model of the substructure.  This process produces a 
substructure model that is typically much more accurate than a simple free-free model would be, 
because of the mass-loading effect of the transmission simulator.  However, it has been observed 
that indefinite mass and stiffness matrices can be obtained for the experimental substructure if 
the analyst is not careful (e.g. the system has negative mass or stiffness).  Similar problems were 
encountered by other researchers when removing rigid masses from a structure [4].  This paper 
derives simple metrics that can be used by the analyst to determine which of the systems’ modes 
contribute most to offending negative eigenvalues of either the mass or stiffness matrices.  The 
metrics reveal problems with the subcomponent models that can sometimes be addressed by 
removing problematic modes or by refining the subcomponent models.  Two examples are 
presented illustrating the metrics and the physics that they reveal. 

2. THEORY 

2.1. Application of Modal Constraint 
 The MCFS component mode synthesis approach uses free-free substructure 
representations, since free-free modal tests are typically more convenient and accurate than the 
alternatives.  In order to properly exercise a substructure during a free-free vibration test, the 
interface is connected to the transmission simulator [3].  Ultimately this transmission simulator 
must be subtracted in order to have an experimental representation of the desired substructure.  A 
simple beam example, shown in Fig. 1, will be used to illustrate the process.  Component C is the 
system tested to obtain an experimental model, component A is a finite element model (FEM) 
representation of the transmission simulator, and component B is the substructure for which an 
experimental representation is desired.  Component C is the Combination (hence the letter C) of 
the Base system B and the Added transmission simulator A, so C = A+B.  We wish to infer the 
properties of B from the measurements that were acquired on the assembly C.  The transmission 
simulator mass-loads the left end of beam C, so the model that is obtained for B will form a good 
basis for B when it is subsequently assembled to some other structure at the same point (its left 
end). 

 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 1:  Subtraction of a fixture (or transmission simulator) from an experimental substructure. 
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 The experimental representation of B is obtained by coupling C and a negative modal 
representation of A (written as B = C-A), which was shown in [2] to cancel the forces exerted by 
A onto C under certain basic conditions.  The uncoupled equation of motion in modal coordinates 
is given by 
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where ωC  is a diagonal matrix of nC experimentally derived modal frequencies for component C, 
and ωA  is a diagonal matrix of nA  transmission simulator frequencies computed from its FEM 
model.  For either system, φ denotes a matrix of mass normalized mode shapes and f the forces 
applied at the physical coordinates x . 
 It is assumed that the response of component C is measured at nm  locations during the 
vibration test.  In order to couple component C and negative component A, the usual approach is 
to enforce compatible displacements at the interface degrees of freedom.  However, in general, it 
is difficult to place sensors and measure all of the degrees of freedom at the interface, especially 
the rotations.  The next best approach would be to enforce displacement compatibility between 
the two components at the measured locations, 
 

  xCm − xAm = 0  (2) 

 

but this leads to several difficulties due to measurement errors at the measurement points.  An 
alternative emerges after transforming to modal coordinates, 
 

  φCmqC − φAmqA = 0  (3) 

 

where φCm  and φAm  are the measured partitions of the experimental and transmission simulator 
components, respectively.  Equation (3) can be solved for the transmission simulator modal 
response  
 

  qA = φAm
T φAm⎡⎣ ⎤⎦

−1
φAm

T φCmqC = φAm
† φCmqC  (4) 

 

in which †
Amφ  is the left generalized inverse of the transmission simulator modes at the 

measurement locations.  This solution requires that the transmission simulator modal partition at 
the measurement degrees of freedom be full column rank, which implies that nm ≥ nA .  The 
modal coordinates cannot be directly measured, so these constraints must be written in terms of 
the physical coordinates before they can be implemented.  Premultiplying (4) by φAm  and then 
transforming back into physical coordinates produces  
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  xAm = φAmφAm
† xCm = PAmxCm = x̂Cm  (5)  

 

where PAm  is an orthogonal projector onto the column space of φAm , and x̂Cm  is then the 
orthogonal projection of the response of substructure C at the measurement locations onto this 
space.  Therefore, the modal constraints used in the MCFS approach do not strictly enforce the 
constraint in Eq. (3), but instead enforce the least-squares fit given in Eq. (5).  The best synthesis 
result will be obtained if ˆCm Cmx x≈ , in which case the columns in φCm  can be written as a linear 
combination of columns in φAm , or R φCm( )⊂ R φAm( ).   
 The modal constraints can be enforced and the constrained generalized coordinates 
eliminated from eq. (1) with the transformation 
 

  
qC

qA

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

IC

τ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
qC = TqC  (6) 

 

in which τ = φAm
† φCm .  The unforced equation of motion for the reduced or coupled system then 

has the form 
 

  0r C r Cm q k q+ =  (7) 
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and 
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2 − τ TωA
2τ  (9) 

 
since the matrices in Eqs. (8) and (9) actually represent approximations for the experimental 
based substructure B mass and stiffness matrices using the modal coordinates of C as a basis (see 
eq. (6) above). The synthesized equation of motion for experimental based substructure B is then 
 

  ˆˆ 0B C B Cm q k q+ =  (10) 

with 
  m̂B = IC − τ

Tτ  (11) 

and 
  k̂B = ωC

2 − τ TωA
2τ  (12) 
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In order for the experimental substructure B to be physically realistic, the mass matrix and the 
stiffness matrix must be positive definite, and positive semi-definite, respectively. 
 The following section presents an alternative derivation, which shows that the MCFS 
substructure modal uncoupling technique is equivalent to approximating the transmission 
simulator mass and stiffness matrices using a SEREP TAM representation [5] for the measured 
degrees of freedom and then removing the approximated transmission simulator mass and 
stiffness from a finite element model for C.  The approach will only be accurate if the modes of 
the C system at all points on the transmission simulator can be accurately represented using the 
modes of the transmission simulator as a basis.  The metrics for ranking the contributions of the 
subcomponent modes to negative mass and stiffness are presented in Sections 2.3 and 2.4 
respectively. 
2.2. Alternate Derivation of MCFS Uncoupling by Decomposition 
 An alternative approach for deriving the relationships for the experimentally based 
substructure B mass and stiffness matrices is based on the more physically intuitive 
decomposition of substructure C.  In practice, one does not have a finite element model for C, 
which is the reason that one is trying to perform experimental substructure uncoupling.  
However, if the finite element model for C were known, its equation of motion in physical 
coordinates could be written as, 
 
  C C C C CM x K x F+ =  (13) 

 
where the displacement vector can be partitioned into degrees of freedom associated with 

substructure A and substructure B as xC = xCA
T xCB

T⎡
⎣

⎤
⎦

T

.  The physical mass matrix MC  can be 

transformed to modal coordinates using 
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 (14) 

 
The mass coupling tends to be small in structural finite element models, so the cross terms are 
often negligible.  (This assumption is not necessary, see the derivation below for stiffness for an 
alternative.)  Neglecting those mass coupling terms, one obtains T T

C CA AA CA CB BB CBm M Mφ φ φ φ= +  
and if the modes are mass normalized the mass matrix of the C system can be written as 
 
  mC = I = mA + mB  (15) 

in which 

  
mA = φCA

T M AAφCA

mB = φCB
T M BBφCB

  (16) 

 
are the modal mass representations of substructures A and B in substructure C modal space.  
Equation (15) can then be written as 
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  mB = I − mA  (17) 

 
If one had a finite element model for C, the mass matrix for B could be computed using these 
relationships.  Of course, if one had a FEM for C one could simply delete A, but this derivation 
shows how the models for the subcomponents are related.  At this point, one can note a similarity 
between Eq. (17) and Eq. (11).  This reveals that the modal substructuring result produces an 
estimate of the mass matrix for system A, denoted ˆ Am , which is given by 
 

  m̂A = τ
Tτ  (18) 

 
 Performing the same analysis for stiffness gives 
 

  kC = ωC
2 = kA + kAB + kBA + kB  (19) 

 
where 

  
kA = φCA

T KAAφCA

kAB = kBA
T = φCA

T KABφCB

kB = φCB
T KBBφCB

 (20) 

 
In contrast with mass, the stiffness coupling terms kAB  and kBA  are not zero.  Rearranging Eq. 
(19) produces 
 

  k̂B = kB + kAB + kBA = ωC
2 − kA  (21) 

 
in which k̂B  is the modal stiffness approximation for substructure B.  Comparing Eq. (21) with 
Eq. (12) gives the approximation of the transmission simulator modal stiffness as 
 

  k̂A = τ
Tω A

2τ  (22) 

 

 To develop the comparison further, consider a finite element model for the transmission 
simulator, substructure A, alone.  In physical coordinates, the equation of motion can be written 
as 
 

  AA A AA A AM x K x F+ =  (23) 

 
The displacement vector xA  can be partitioned into the measured degrees of freedom and their 
compliment  
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  xA =
xAm

xAo

⎧
⎨
⎪
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 (24) 

 
The transmission simulator modes can be partitioned in the same manner 
 

  φA =
φAm

φAo

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (25) 

 

 Note that that the modal partition φAm  was assumed to be full column rank in the previous 
derivation in Section 2.1.  If this is the case, then the physical mass and stiffness matrices in Eq. 
(23) can be reduced to the measurement degrees of freedom using any of a number of different 
reduction techniques.  This is usually done to generate a reduced mass representation, or test-
analysis model (TAM), that is used in test-analysis correlation and analytical model validation 
[6].  A popular technique for TAM development is called the System Equivalent Reduction 
Expansion Process (SEREP) [5].  Using this approach, the complete mode shapes of A are 
written in terms of the measured modal partition φAm  as 
 

  
†

†
†

Am Am
A A Am Am A Am Am

Ao Am

T
φ φ

φ φ φ φ φ φ
φ φ
⎡ ⎤

= = =⎢ ⎥
⎣ ⎦

 (26) 

 

The reduced mass and stiffness matrices for component A at the measurement degrees of 
freedom are then computed using  
 

  M Ar = TA
T M AATA  (27) 

 

  KAr = TA
T KAATA  (28) 

 
It was previously assumed that φCm  can be written as a linear combination of columns in φAm .  If 
this is the case, then φCm  can be written as follows, 
 

  φCm = φAmγ  (29) 

 
where γ  is an nA × nC  coefficient matrix.  Post-multiplying Eq. (26) by γ  gives the 
approximation of the mode shapes of C at all of the points on the transmission simulator, φ̂CA , 
using the mode shapes of A as a basis. 
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  φ̂CA = φAγ = TAφAmγ = TAφCm  (30) 

 
Substituting Eq. (30) into the first of Eqs. (16) gives the approximation for the transmission 
simulator modal mass 
 

  m̂A = φ̂CA
T M AAφ̂CA = φCm

T TA
T M AATAφCm  (31) 

 
Substituting for transformation TA  from Eq. (26) produces 
 

  m̂A = φCm
T φAm

†TφA
T M AAφAφAm

† φCm  (32) 

 
or, assuming modes φA  are mass normalized 
 

  m̂A = φCm
T φAm

†TφAm
† φCm = τ Tτ  (33) 

 
which agrees with Eq. (18).  The corresponding modal stiffness approximation is then 
 

  k̂A = φ̂CA
T KAAφ̂CA = φCm

T φAm
†TφA

T KAAφAφAm
† φCm  (34) 

or 
  k̂A = φCm

T φAm
†Tω A

2φAm
† φCm = τ TωA

2τ  (35) 

which agrees with Eq. (22).  Hence, this analysis has shown that the MCFS substructure modal 
coupling technique is equivalent to approximating the transmission simulator mass and stiffness 
matrices using a SEREP TAM representation for the measured degrees of freedom and then 
removing them from a FEM model for C.  The accuracy of the approach is dependent upon the 
accuracy of the approximation φCA ≈ φ̂CA . 

2.3. Ranking Modes based on Mass Approximation 
 Given a set of experimental modes for substructure C and a set of analytical modes for 
transmission simulator A, it is desirable to determine how each mode contributes to negative 
mass and stiffness in the estimate for B.  Once the modes that contribute most have been 
identified the problem can be remedied as discussed in Section 3, sometimes by simply removing 
them from the model for C.  From the previous analysis, the approximation for the mass matrix 
of substructure B is given by m̂B = I − m̂A , where the transmission simulator mass is 
approximated by m̂A = τ

Tτ .  Matrix τ  has dimension nA × nC  and was previously shown to have 
the form 
 
  τ = φAm

† φCm = φAm
T φAm⎡⎣ ⎤⎦

−1
φAm

T φCm  (36) 

 
 Prior to ranking modes, it is interesting to develop a better understanding of what matrix 
τ  represents.  It was previously illustrated that for the MCFS synthesis method to be accurate, 
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the experimental modes at the measurement locations for substructure C, φCm , must lie in the 
range space of the transmission simulator modes at the same measurement locations, φAm .  As 
mentioned previously, if this is the case then one can write the modes of C as linear 
combinations of the modes of A using φCm = φAmγ , where γ  is the corresponding coefficient 
matrix.  Premultiplying this expression by the generalized inverse of φAm  gives 
 
  † †

Am Cm Am Amφ φ φ φ γ γ= =  (37) 

 
and since †

Am Cmτ φ φ= , τ and γ can be interchanged and one can write,  
 
  φCm = φAmτ  (38) 

 
A least squares solution for τ  gives back the expression in Eq. (36).  If this solution is then 
substituted into Eq. (38), the result is 
 
  φ̂Cm = φAm φAm

T φAm⎡⎣ ⎤⎦
−1
φAm

T φCm = PAmφCm  (39) 

 
which is consistent with Eq. (5).  Therefore, the use of τ  in the MCFS synthesis approach 
produces an approximation of the substructure C experimental modes at the measurement 
locations, φ̂Cm , which minimizes the norm of the error, e = φCm − φ̂Cm .  Matrix τ  then just 
represents the linear combination of transmission simulator modes that produces the best fit to 
the experimental modes. 
 As mentioned previously, in order for m̂B  to be a physically meaningful representation of 
the mass of substructure B, it must be positive definite, meaning its eigenvalues must be positive.  
This then implies that the eigenvalues of m̂A = τ

Tτ  must be less than 1.0, which implies that the 
singular values of τ  must be less than 1.0.  This condition may or may not be satisfied, 
depending on several factors.  In the event that this is not satisfied, one would like to determine 
which modes of the subcomponents are causing the mass matrix to become negative.  The 
following subsections present methods for ranking the contribution of each subcomponent mode 
to the negative mass or stiffness.  These methods are loosely based on the Effective 
Independence method for ranking sensor locations in vibration testing [7]. 
2.3.1. Rank Substructure C Experimental Modes 
 In this subsection, it is assumed that there is a given set of transmission simulator modes 
to be used in the construction of τ .  The objective is to determine the contribution of the 
experimental modes of substructure C to the singular values of τ , such that experimental modes 
can be included or excluded, depending on their contributions to singular values greater than 1.0.   
 Define the nA × nA  matrix QCM = ττ T .  Let LCM  represent a diagonal matrix of the 
eigenvalues of QCM  sorted in descending order, and let ΨCM  be the corresponding eigenvectors.  
Note that the eigenvalues of QCM  are the squares of the singular values of τ .  Therefore, 
determining the contributions of the experimental modes to the eigenvalues of QCM  is equivalent 
to determining their contributions to the singular vales of τ .   Define the expression 
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  eCM = τ TΨCM⎡⎣ ⎤⎦
^2

 (40) 

 
where [ ]^2  represents a term-by-term square.  Each row represents one of the substructure C 
experimental modes, and each column represents one of the eigenvalues of QCM .  It was shown 
in [7] that each column of eCM  adds to the corresponding eigenvalue of QCM .  Therefore, term 
eCMij  gives the contribution of the ith experimental mode of substructure C to the jth eigenvalue 
of QCM .  If eCM  is normalized with respect to the eigenvalues of QCM  
 

  eCMn = τ TΨCM⎡⎣ ⎤⎦
^2

LCM
−1  (41) 

 
then term eCMnij  gives the fractional contribution of the ith experimental mode of substructure C 
to the jth eigenvalue.  Using Eqs. (40) and (41), experimental modes that contribute significantly 
to offending eigenvalues of QCM  can be identified for possible omission from the C mode set.  
However, it is important to note that while eCMij  gives the contribution if the ith C mode to the jth 
eigenvalue of QCM for the current mode set, deleting this mode does not mean that the 
corresponding eigenvalue will be reduced by this amount.  As a mode is deleted, the matrix QCM  
must be recomputed for the new mode set, which in general may have different eigenvalues with 
a different distribution over the remaining modes.  Therefore, once identified modes are deleted 
from the C mode set, the eigenvalues of the new matrix QCM  must be calculated to make sure 
they are less than 1.0. 
2.3.2. Rank Substructure A Finite Element Model Modes  
 In this subsection, it is assumed that there is a given set of experimental modes for 
substructure C to be used in the construction of τ .  The objective is to determine the contribution 
of the transmission simulator modes, substructure A, to the singular values of τ , such that 
transmission simulator modes can be included or excluded, depending on their contributions. 
 Analogous to the previous subsection, define the nC × nC  matrix QAM = τ Tτ = m̂A .  Let 
LAM  represent a matrix of the eigenvalues of QAM  sorted in descending order, and let ΨAM  be 
the corresponding eigenvectors.  Note that the eigenvalues of QAM  are also the squares of the 
singular values of τ .  Therefore, determining the contributions of the transmission simulator 
modes to the eigenvalues of QAM  is also equivalent to determining their contributions to the 
singular values of τ .   As before, define the expression 
 

  [ ]^2
AM AMe τ= Ψ  (42) 

 
Now each row represents one of the substructure A transmission simulator modes, and each 
column represents one of the eigenvalues of QAM .  Each column of eAM  adds to the 
corresponding eigenvalue of QAM , so term eAMij  gives the contribution of the ith transmission 
simulator mode to the jth eigenvalue of QAM .  Normalizing with respect to the eigenvalues of 
QAM  yields 
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  [ ]^2 1
AMn AM AMe Lτ −= Ψ  (43) 

 
where eAMnij  gives the fractional contribution of the ith transmission simulator mode to the jth 
eigenvalue.  Using Eqs. (42) and (43), transmission simulator modes that contribute significantly 
to offending eigenvalues of QAM  can be omitted, or the transmission simulator mode set can be 
truncated such that the resulting eigenvalues of QAM  are less than 1.0. 

2.4. Ranking Modes based on Stiffness Approximation 
 In all of the cases analyzed to date, it has been the mass approximation of substructure B 
that has been most restrictive with respect to the proper sign definiteness of the resulting matrix 
after subtraction of transmission simulator A.  However, the stiffness approximation for 
substructure B, k̂B = ωC

2 − τ Tω A
2τ , should also be examined to verify positive semi-definiteness.  

Note that both ωC  and ωA  will in general contain 6 zeros on the diagonal corresponding to rigid 
body modes.  The generalized inverse of the diagonal matrix ωC  then has the simple form 
 

  ωC
† =

0 0
0 ωCe

−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (44) 

 
in which ωCe  is a diagonal matrix of the elastic experimental frequencies for substructure C.  
The stiffness approximation can then be written as 
 

  k̂B = ωC I −ωC
†τ Tω AωAτωC

†⎡⎣ ⎤⎦ωC  (45) 

 

Defining τK = ω AτωC
† , Eq. (45) becomes 

 

  k̂B = ωC I − τ K
TτK⎡⎣ ⎤⎦ωC  (46) 

 

For k̂B  to be positive semi-definite, the matrix I − τK
Tτ K  must be positive definite.  This 

condition has the same form as that used in the mass approximation.  The singular values of τK  
must therefore be less than 1.0.  As in the case of mass, modes can now be ranked with respect to 
the substructure B stiffness approximation. 
2.4.1. Rank Substructure C Experimental Modes  
 As in the previous case of mass, it is assumed that there is a given set of transmission 
simulator modes to be used in the construction of τK .  The objective is to determine the 
contribution of the experimental modes of substructure C to the singular values of τK .  Define 
the nA × nA  matrix QCK = τ Kτ K

T .  Let LCK  represent a matrix of the eigenvalues of QCK  sorted in 
descending order, and let ΨCK  be the corresponding eigenvectors.  Analogous to the mass 
problem, define the expression 
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  eCK = τ K
TΨCK⎡⎣ ⎤⎦

^2
 (47) 

 
Each row represents one of the substructure C experimental modes, and each column represents 
one of the eigenvalues of QCK .  Each column of CKe  adds to the corresponding eigenvalue of 
QCK .  Therefore, term eCKij  gives the contribution of the ith experimental mode of substructure C 
to the jth eigenvalue of QCK .  The metric can also be normalized as was done for eAM  and CMe  
and used to determine which modes contribute most to the offending eigenvalues of the stiffness 
matrix.   
2.4.2. Rank Substructure A Finite Element Model Modes  
 One can also rank the modes of the transmission simulator A to the offending eigenvalues 
of the stiffness matrix.  The derivation follows the same form as those presented previously with 
QAK = τ K

TτK = k̂A , resulting in the following metric. 
 
  eAK = τKΨAK[ ]^2  (48) 

3. Numerical Examples 
 This section applies the proposed metrics to two different systems.  The first is an 
assembly of beams which was studied in a prior publication [8].  Many of the results presented 
there are repeated here because they are important to illustrate the issues that can arise.  The 
second system is part of the three-dimensional assembly studied in [2], and it illustrates the 
complexities that can arise in a more complicated problem. 
3.1.  Two Dimensional T-beam System 
 Consider the substructure uncoupling problem pictured in Fig. 1, which was described in 
Section 2.  For the following example all of the subcomponents were modeled with finite 
elements in order to eliminate any measurement uncertainties.  Beam A was 152 mm long, 25 
mm wide and 19 mm thick, while Beam B was 305 mm long with the same cross section.  The 
finite element model was set up so that only in-plane motion, both axial and bending, was 
possible.  The mesh for beams A and B consisted of 21 and 30 nodes respectively. 
 The first fifteen modes of C will be used in the uncoupling, corresponding to a modal test 
in which all modes out to 20kHz have been extracted.  Each system has three rigid body modes 
with zero natural frequencies and the natural frequencies of the elastic modes are shown in Table 
1.  The corresponding mode shapes are not shown, but the lower modes were all observed to 
involve bending of the horizontal beam, B, while the vertical one (transmission simulator A) 
undergoes rigid body rotation.  Some of the higher frequency modes show the horizontal beam 
vibrating axially as the transmission simulator bends.  The first six free-modes of A are used in 
the transmission simulator model, three of which are rigid body modes, the 4th and 5th involve 
bending of beam A and mode 6 involves axial motion of beam A.  Six modal constraints are used 
to join the negative transmission simulator A to C.  Displacement in both the axial and bending 
directions at all 21 nodes of the finite element model of A are used in forming the modal 
constraints, although in an experiment one would likely not have such a detailed set of 
measurements.  The rotations at those nodes are not used, since one cannot usually measure 
rotations in practice. 
 Table 1 shows the natural frequencies of the B system estimated by the modal 
substructure uncoupling procedure.  The actual FEA natural frequencies of the B system are also 
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shown as well as the percent difference.  All of the natural frequencies below 17kHz are very 
accurately predicted, having less than 3% error.  However, the modal substructuring procedure 
returns three natural frequencies which are purely imaginary and do not correspond to any of the 
analytical natural frequencies.  Recall that the negative transmission simulator model is still part 
of the B system even after substructure uncoupling.  Its effect is to cancel the force exerted on B 
by the actual transmission simulator A (see [2]), but each of the nodes on the transmission 
simulator are still valid points on the B system and one can determine how the negative 
transmission simulator moves in each of B’s modes.  The deformation shape of each of the 
modes corresponding to the three imaginary natural frequencies was observed and they were 
found to involve motion primarily on the negative transmission simulator model subsystem A; 
the motion was three orders of magnitude smaller on component B in each of these modes.  A 
few FRFs of the B system were reconstructed (not shown here) in the axial and bending 
directions, and they were seen to overlay the analytical FRFs out to 17kHz, confirming that the 
spurious modes did not have a large effect on the FRFs.  In some applications there would be no 
need to eliminate these spurious modes since they do not seem to affect the model for B.  
However, one may not always be so fortunate and in any event these spurious modes are 
problematic since they cannot be imported into most finite element packages.  
 

 Subcomponents System B 
Mode fn,A  fn,C MS est. fn,B Actual fn,B % Error 

4 4326.5 652.3 1083.3 1081.6 0.2% 
5 11926.4 1453.6 0+i*1334.2 - - 
6 16853.0 2924.7 2996.4 2981.6 0.5% 
7 - 3090.5 5903.3 5845.1 1.0% 
8 - 5751.6 8421.5 8422.1 0.0% 
9 - 7285.6 0+i*9157.5 - - 

10 - 9251.0 9824.0 9662.5 1.7% 
11 - 12615.3 14832.6 14434.8 2.8% 
12 - 13919.7 16965.1 16868.9 0.6% 
13 - 14950.0 18066.0 20162.6 -10.4% 
14 - 16853.0 0+i*20213 25365.3 - 
15 - 19507.0 33706.2 26847.1 25.5% 

Table 1: Elastic Natural Frequencies (Hz) of Subsystems C and A, and those that result from using 
MCFS to compute B=C-A.  The actual natural frequencies of the FEA model for B are also shown. 

 The eigenvalues of the mass matrix of B that was estimated with the modal substructuring 
procedure were found and the lowest five were: -0.012, -0.00038, 3.9e-016, 0.0077, 0.074.  Two 
of these are negative and one is practically zero, indicating that the model for B is not physically 
realizable.  A model such as this is incompatible with certain solvers in FEA packages (which 
require positive definite mass), so one would prefer to find a physically realizable approximation 
to this model. 
 In order to investigate this further, the source of these negative eigenvalues was 
investigated using the metrics developed in this paper.  The matrix τ was formed and CMQ  was 
found to have two eigenvalues that were slightly greater than one and a third that was almost 
exactly equal to one.  The EFI procedure was used to compute the contribution of each of the 
modes of C to the eigenvalues of the mass matrix.  The elements of CMe corresponding to the 
modes that contributed most to those eigenvalues are shown in the table below.  Each column 
heading gives the corresponding eigenvalue of QCM  (recall that the eigenvalues of ˆ Bm  are one 
minus the eigenvalues of CMQ ), and the CMe  values give the contribution of each mode to that 
eigenvalue.  Contributions below 0.01 have been shown with zeros to improve readability. 
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Contribution to Eigenvalues of CMQ  

Mode of 
C CMe  for 

λ = 1.012 
CMe  for 

λ = 1.00038 
CMe  for 
λ = 1 

14 0 0 1 
6 0.77 0 0 
5 0 0.38 0 
4 0 0.37 0 
3 0.08 0.01 0 
7 0 0.08 0 
9 0.07 0 0 

11 0 0.06 0 
2 0.02 0.03 0 

12 0.04 0 0 
Table 2: Contribution, CMe , of each mode of C to the eigenvalues of CMQ . 

 Several interesting observations can be made.  First, mode 14 is entirely responsible for 
the zero eigenvalue in ˆ Bm .  Visual inspection reveals that mode 14 involves purely axial motion 
of beam A.  A corresponding mode exists in subsystem A, with the exact same natural frequency.  
That mode was completely unaltered when A was joined to C since it has a node at the 
connection point, so essentially the same mode exists in both A and C.  The zero eigenvalue in 
ˆ Bm  apparently comes about because this mode’s mass is entirely removed from C by the 

substructure uncoupling process.  Recall from eqs (7-12), that the B system has exactly the same 
number of modes as the C system, so if a mode is removed completely from C by the uncoupling 
process then a spurious mode must remain in the model for B. 
 The other two offending eigenvalues are more difficult to interpret.  The table shows that 
the sixth mode of C is the dominant contributor to the first negative eigenvalue, contributing 0.77 
of the total value of 1.012.  Mode 6, shown with a blue line and open circles in Figure 2, involves 
axial motion of beam B and bending motion of beam A.  As mentioned previously, the lower 
modes of C all exhibit bending motion of B with beam A undergoing approximately rigid body 
rotation, so this is the first mode to show significant bending in A.  The fact that this mode 
contributes 0.77 of the 1.012 eigenvalue signifies that this mode carries a significant proportion 
of the mass associated with bending motion of the transmission simulator, mass which must be 
removed to accurately predict the natural frequencies of B.  Hence, the uncoupling algorithm is 
working with regard to this mode so long as the amount of mass subtracted is correct.  To 
diagnose the situation further, the orthogonal projection of C’s motion onto the space of A’s 
modes, x̂Cm , was found using the orthogonal projector AmP  in eq. (5) and it is also shown in 
Figure 2 with a red line and with dots at each of the node points.  The zoom view shows that the 
reconstructed motion matches the true motion very well; the maximum difference between the 
two is 1.4%.  Hence, it seems that this mode’s contribution to CMQ is physical and represents 
mass that should be removed. 
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Figure 2:  Shape of Mode 6 of system C: (black/dots) undeformed structure, (blue/circles) mode of 

C, (red/dots) projection, x̂Cm , of C onto the free modes of A. 

 The other mode shapes that contribute to this eigenvalue were also viewed, revealing that 
there were significant errors when projecting modes 9 and 12 onto the transmission simulator’s 
motion; the maximum difference between the actual motion and the projection was 9.4% and 
44.6% respectively.  Mode 12’s shape is shown in Figure 3 with a blue line.  The plot reveals 
that the 3rd bending mode of the beam would be needed to describe the observed motion, but the 
model that was used for A only included the first two bending modes (and one axial mode).  This 
reveals that the modal basis of the transmission simulator is inadequate to describe mode 12’s 
motion.  Because the transmission simulator model does not contain the third bending mode, the 
uncoupling process might erroneously attribute the third-mode motion to other modes, and hence 
remove more mass from the first and second bending modes than it should.  This might explain 
why too much mass is removed from the system when the transmission simulator model is 
subtracted, resulting in negative eigenvalues in the estimated mass matrix.  The first eigenvalue 
of CMQ  is 1.012, and the table shows that mode 12 contributes 0.04 to it, so if mode 12 were not 
present then this eigenvalue might reduce below 1.0 resulting in a positive definite model for B. 
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Figure 3:  Shape of Mode 12 of system C: (black/dots) undeformed structure, (blue/circles) mode of 

C, (red/dots) projection, x̂Cm , of C onto the free modes of A. 

 Various modifications to the substructuring process were explored, revealing that the 
discrepancy in Figure 3 could be reduced greatly by increasing the number of modes in system A 
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to seven.  When that was done, the maximum discrepancy between x̂Cm  and Cmx  was found to 
reduce from 44.6% to 6.2%.  The substructuring calculations were repeated and the 
corresponding negative eigenvalue of ˆ Bm  had disappeared (although the other remained). 
 Another alternative would be to reduce the number of modes used in C so that the six-
mode model for A would adequately span the observed motion of C.  Using six modes for system 
A and eleven modes for system C, a positive definite mass matrix was obtained with the smallest 
eigenvalue being 0.00034.  However, since fewer modes were used for C, the model obtained for 
B was only accurate up to 14kHz, whereas the FRFs were accurately reconstructed out to 17kHz 
when 15 modes were used for C. 
3.2. Three Dimensional Cylinder/Fixture System 
 The next example considered is one of the system’s discussed in [2] where the concept of 
modal constraints was introduced.  Substructure C, illustrated in Fig. 1, consists of a hollow 
cylinder and an attached ring-shaped fixture with tabs.  The objective is to obtain an 
experimental representation of the cylinder alone, substructure B, by subtracting off a finite 
element representation of the fixture (or transmission simulator) using the MCFS approach.  For 
this illustrative example, it is assumed that the response of the cylinder and transmission 
simulator is measured in three degrees of freedom at 12 points on the transmission simulator, as 
described in [2].  One hundred modes for substructure C were simulated with a finite element 
model, including six rigid body modes and elastic modes ranging between 433.8 and 6165 Hz.  
Fifty modes were calculated for the transmission simulator using finite element model, including 
six rigid body modes and elastic modes ranging between 200.4 and 9,382.0 Hz. 

 
Figure 4:  Experimental substructure C consisting of cylinder (B) and transmission simulator (A).  

Substructure uncoupling will be used to remove the gold colored transmission simulator A from the 
assembly. 

3.2.1. Ranking modes of C 
 The first application studied is the case where the first 18 modes will be retained for the 
transmission simulator with frequencies up to 1853.8 Hz and all 100 modes will be included for 
the composite substructure C. When this is done, the mass matrix obtained is not positive 
definite.  The lowest six eigenvalues of the mass matrix are: -0.197, -0.0764, -0.134, -0.118, 
0.398 and 0.679.  Four of the eigenvalues are below zero, caused by four corresponding 
eigenvalues of  QCM that are greater than 1.0.  The metrics proposed in this paper will be used to 
rank the C modes to determine how they contribute to the mass approximation for substructure 
B.  Equation (40) was again used to compute the contributions of the experimental C modes to 
each of the eigenvalues of QCM .  Figure 5 illustrates the cumulative sum over the rows of eCM  
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for the first six columns corresponding to the six largest eigenvalues of QCM .  The four largest 
eigenvalues slowly increase in value until the 19th-22nd modes are added, at which point they 
jump above 1.0 and settle at values between 1.5 and 2.2.  In contrast, the fifth and sixth 
eigenvalues increase slowly over all of the modes always remaining below 0.5.  
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Figure 5:  Cumulative sum of eigenvalues of QCM  versus number of modes included in the sum. 

 The numerical values of eCM  are shown in Table 3, in the same format that was used in 
the previous section.  An additional column is also shown that gives the total contribution of 
each mode to all of the eigenvalues of QCM  that are greater than one (all four that are shown in 
this case).  One observes that mode 21 contributes the most to the large eigenvalues of QCM , 
contributing over 86% to the 3rd eigenvalue.  The total contributions of modes 19, 20 and 22 
make up a similar fraction of the other eigenvalues. 
 

Eigenvalues of QCM  Mode of 
C Sum CMe  for 

λ1 = 2.140 
CMe  for 

λ2 = 1.845 
CMe  for 

λ3 = 1.838 
CMe  for 

λ4 = 1.734 
21 1.60 0 0.01 1.59 0 
20 1.48 1.04 0.17 0 0.27 
19 1.34 0.21 0.43 0 0.69 
22 0.98 0.37 0.58 0 0.03 
26 0.95 0.10 0.38 0 0.47 
29 0.32 0.32 0 0 0 
25 0.17 0.02 0.07 0 0.08 
23 0.11 0 0.02 0 0.08 
34 0.08 0 0 0.08 0 
35 0.08 0 0.08 0 0 

Table 3: Contribution, CMe ,  of each mode of C to the eigenvalues of QCM . 
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 These results suggest that if modes 19-22 are eliminated from system C, then QCM  should 
be less than 1.0.  However, when this is done, one of the eigenvalues remains above 1.0.  The 
26th mode must also be eliminated from the database to produce a positive definite mass matrix.  
However, one should not discard modes without cause since they may be important to the model 
for B and to the substructuring predictions obtained with it.  To check whether these modes 
might be important to the model of the cylinder, each mode was plotted.  For example, the 20th 
mode of the C substructure is shown in Fig. 6.  This and the other mode shape plots reveal that 
all of the modes in question are dominated by motion of the transmission simulator.  The ratio 
between the maximum displacement of the cylinder part of the structure to the maximum 
displacement of the transmission simulator was between 4.1% and 10% for these modes.  Once 
the transmission simulator is subtracted, one would expect that this mode might contribute very 
little to the modal mass of B, so small errors and approximation due to the truncated modal basis 
could cause this mode to have negative mass after substructure uncoupling.  

 

 
Figure 6:  20th Mode of the Cylinder + transmission simulator.  

 To see whether these modes were truly insignificant for the substructure model, the full 
system described in [2] was assembled and its frequency response functions were calculated.   
Figures 7 and 8 show the drive point FRF of the coupled system at point 301z, which is shown in 
Fig. 4.  Three cases are shown.  The solid blue line labeled “analytical” is the FRF of a finite 
element truth model.  The green dashed line is the FRF predicted by substructuring using all of 
the modes of the cylinder (the C system), and is the same result that was reported in [2].  One can 
see that the substructuring prediction agrees very well with the truth model.  The red dash-dot 
line is the substructuring prediction obtained after deleting modes 19-22 and mode 26 of the 
cylinder, as just described.  The truncated substructuring prediction also agrees very well with 
the truth model, except near a few peaks at 1300 and 2300 Hz.  The region where the 
discrepancies occur is magnified in Fig. 8.  The FRFs of the system in the axial direction were 
also shown in [2], but they are not repeated here since there was no discernible difference 
between the predictions when modes 19-22 and 26 were deleted.  These results seem to confirm 
that these modes are not very important to the subcomponent model.  Even then, one would 
prefer to avoid decreasing the accuracy of the subcomponent model, but for this system none of 
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these problematic modes can be discarded without degrading the substructuring predictions to 
some extent at least. 
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Figure 7:  FRF of Cylinder-Plate system described in [2] including all modes of the 

Cylinder+Transmission simulator (“All”) and after eliminating modes 19-22 and 26 (“Trunc.”).  
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Figure 8:  Zoom view of Fig. 7 showing the high frequency region where the substructuring 

predictions are seen to degrade when modes 19-22 and 26 are excluded from the cylinder model.  

3.2.2. Ranking modes of A 
 For this case the same subcomponents C and A will be used once again with 100 and 18 
modes respectively, only now we shall see how the modes of A contribute to the negative 



Allen, Kammer & Mayes, IMAC XXIX, 2011  20/22 

eigenvalues.  The eigenvalues of QAM = τ Tτ = m̂A  are the same as those of CMQ .  Following the 
procedure previously outlined, the contributions, AMe , of each of the modes of A to those 
eigenvalues are shown in Table 4.  Modes 9 and 7 contribute significantly to the first and fourth 
of the eigenvalues of QAM , but there are a total of seven modes that contribute at least 
moderately to the negative eigenvalues.  There is no justification for removing any of these 
modes from the model for A, but it is possible that the transmission simulator model is more 
massive than it should be due to an inaccurate value for its density.  To explore this, the modal 
mass of the seven dominant modes in Table 4 was reduced to attempt to eliminate the negative 
eigenvalues.  Trial and error revealed that the modal mass of these modes had to be reduced to 
40% of the original value to obtain a positive definite mass matrix.  There does not seem to be a 
physical justification for such a large reduction; this is a topic of ongoing research.  However, it 
is interesting to note that the substructuring predictions for this system were still very accurate 
(identical to those shown above and in [2]) even after reducing the modal mass of the 
transmission simulator so dramatically. 
 

Eigenvalues of QAM  Mode of 
A Sum AMe  for 

λ1=2.140 
AMe  for 

λ2=1.845 
AMe  for 

λ3=1.838 
AMe  for 

λ4=1.734 
9 1.42 1.41 0 0 0 
7 1.35 0 0.01 0 1.34 
6 0.90 0.15 0.47 0.29 0 
1 0.88 0.16 0.48 0.23 0 

10 0.80 0 0.48 0.32 0 
11 0.79 0 0.30 0.49 0 
2 0.79 0.37 0 0.42 0 

12 0.37 0 0.01 0 0.35 
13 0.11 0 0.05 0.03 0.02 
14 0.09 0 0.03 0.06 0 

Table 4: Contribution, AMe ,  of each mode of A to the eigenvalues of AMQ . 

3.2.3. Ranking modes of C with respect to stiffness 
 The final application considered is the ranking of the C structure modes based on the 
stiffness approximation.  The case of 18 transmission simulator modes and 100 C modes is again 
examined.  Applying the previously presented procedure, the eigenvalues of QCK = τ Kτ K

T  are 
computed.  In contrast with the mass analysis, all of the eigenvalues of are less than 1.0, 
therefore the stiffness approximation for substructure B will be positive semi-definite.  This is 
consistent with the authors’ experience that the mass approximation of B is usually the most 
restrictive. 

4. CONCLUSION  
 The Modal Constraints for Fixture and Subsystem method of component mode synthesis 
has recently been introduced as a means of deriving experimental models of substructures.  The 
experimental substructure is tested in a free-free configuration while the interface is exercised by 
attaching a flexible fixture or transmission simulator.  An analytical representation of the 
transmission simulator is then used to subtract its effects to produce the desired experimental 
model of the base structure.  It has been observed that indefinite mass and (possibly) stiffness 
matrices can be obtained in this process.  This paper presented simple metrics that can be used by 
the analyst to determine which modes of each of the subcomponents causes the mass matrix to 
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become indefinite, by ranking the experimental and transmission simulator modes based upon 
their contribution to the offending negative eigenvalues. 
 The metrics were applied to two systems and were found to produce significant insight 
into the cause of the negative mass.  The mass was found to become negative for two reasons: 1.) 
the system contains modes that are completely removed by the substructuring process leaving 
mass near zero or 2.) the modal model of the transmission simulator is inadequate to describe the 
motion of the transmission simulator in the C system, leading to inaccuracies that cause too 
much mass to be removed.  The first problem can sometimes be addressed by removing certain 
modes from the C system, although this was found to degrade the substructuring predictions 
somewhat for the cylindrical system.  To address the second problem, one must either increase 
the number of modes used to describe the transmission simulator A, or reduce the number of 
modes in C. 
 The metrics presented here can also be used to determine which of the transmission 
simulator’s modes (A) contribute most to the negative eigenvalues.  Once those modes have been 
identified, their modal mass can be reduced so that C minus A does not produce negative mass.  
One example was presented where the negative mass was eliminated by identifying which 
transmission simulator modes contributed most to the negative mass and increasing their modal 
scale factors by 58% (i.e. decreasing their modal mass to 40% of its original value).  This was 
found to produce a physically realizable model, but such a large reduction in modal mass does 
not seem reasonable.  This is just an initial effort into the idea of mass adjustment and further 
research is needed to understand when this is or is not a viable solution. 
 The issue of the transmission simulator modes not spanning the space of the modes of C 
was also explored, and the proposed metrics were found to sometimes point to modes for which 
the span was inadequate.  For the beam system, this problem was remedied by increasing the 
number of modes in the transmission simulator model or by decreasing the number of modes in 
C, although with a consequent reduction in the bandwidth of the model that was obtained for B. 
 The authors suspect that there may be other ways of remedying the problem of negative 
mass that have not yet been explored.  For example, one may find that the transmission simulator 
model is inaccurate and must be improved before adequate results can be obtained.  In any event, 
the metrics presented in this work should help to guide the analyst to the source of problem so an 
appropriate solution can be found. 
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