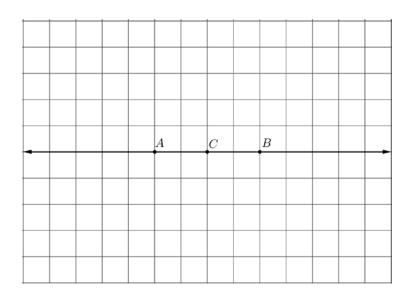
MFAS Geometry CPALMS Review Packet Circles, Geometric Measurement, and **Geometric Properties**

Table of Contents	
MAFS.912.G-C.1.1	4
Dilation of a Line: Center on the Line	4
Dilation of a Line: Factor of Two.	5
Dilation of a Line: Factor of One Half	6
Dilation of a Line Segment	7
MAFS.912.G-C.1.2	8
Central and Inscribed Angles	8
Circles with Angles	9
Inscribed Angle on Diameter	9
Tangent Line and Radius	
MAFS.912.G-C.1.3	11
Inscribed Circle Construction	11
Circumscribed Circle Construction	
Inscribed Quadrilaterals	13
MAFS.912.G-C.2.5	14
Arc Length	14
Sector Area	15
Arc Length and Radians	16
Deriving the Sector Area Formula	16
MAFS.912.G-GMD.1.1	17
Area and Circumference – 1	17
Area and Circumference – 2	
Area and Circumference – 3	19
Volume of a Cylinder	19
Volume of a Cone	20
MAFS.912.G-GMD.1.3	21
Volume of a Cylinder	21
Snow Cones	22
Do Not Spill the Water!	22
The Great Pyramid	23
MAFS.912.G-GMD.2.4	24
2D Rotations of Triangles	24
2D Rotations of Rectangles	25
Working Backwards – 2D Rotations	26
Slice It	27
Slice of a Cone	27
Circles, Geometric Measurement, and Geometric Properties with Equations – Student Packet	2

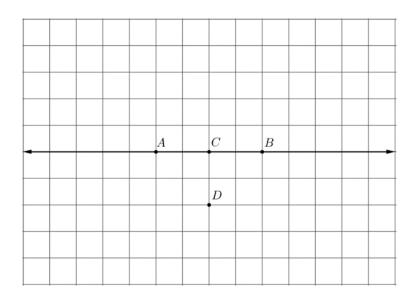

Inside the Box	
MAFS.912.G-GPE.1.1	29
Derive the Circle – Specific Points	29
Derive the Circle – General Points	
Complete the Square for Center-Radius	
Complete the Square for Center-Radius 2	
MAFS.912.G-GPE.2.4	
Describe the Quadrilateral	
Type of Triangle	
Diagonals of a Rectangle	
Midpoints of Sides of a Quadrilateral	
MAFS.912.G-GPE.2.5	34
Writing Equations for Parallel Lines	34
Writing Equations for Perpendicular Lines	35
Proving Slope Criterion for Parallel Lines – One	
Proving Slope Criterion for Parallel Lines – Two	
Proving Slope Criterion for Perpendicular Lines – One	
Proving Slope Criterion for Perpendicular Lines – Two	
MAFS.912.G-GPE.2.6	
Partitioning a Segment	
Centroid Coordinates	
MAFS.912.G-GPE.2.7	
Pentagon's Perimeter	
Perimeter and Area of a Rectangle	40
Perimeter and Area of a Right Triangle	40
Perimeter and Area of an Obtuse Triangle	41

MAFS.912.G-C.1.1			
Level 2	Level 3	Level 4	Level 5
identifies that all circles are similar	uses a sequence of no more than two transformations to prove that two circles are similar	uses the measures of different parts of a circle to determine similarity	explains why all circles are similar

Dilation of a Line: Center on the Line

In the figure, points A, B, and C are collinear.

1. Graph the images of points *A*, *B*, and *C* as a result of a dilation with center at point *C* and scale factor of 1.5. Label the images of *A*, *B*, and *C* as *A'*, *B'*, and *C'*, respectively.

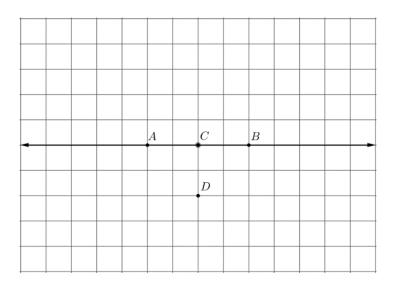


2. Describe the image of \overrightarrow{AB} as a result of this dilation. In general, what is the relationship between a line and its image after dilating about a center on the line?

Dilation of a Line: Factor of Two.

In the figure, the points A, B, and C are collinear.

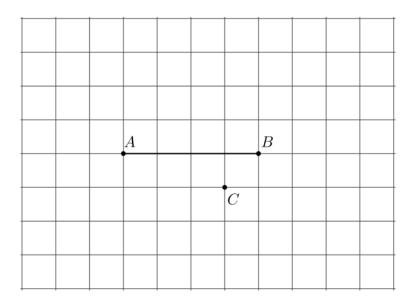
1. Graph the images of points *A*, *B*, and *C* as a result of dilation with center at point *D* and scale factor equal to 2. Label the images of *A*, *B*, and *C* as *A*', *B*', and *C*', respectively.



2. Describe the image of \overrightarrow{AB} as a result of the same dilation. In general, what is the relationship between a line and its image after dilating about a center not on the line?

Dilation of a Line: Factor of One Half

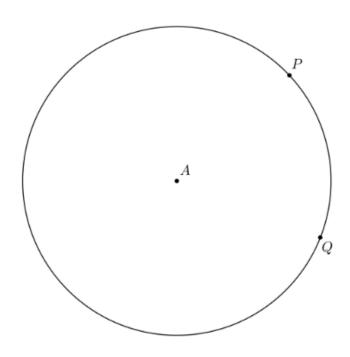
In the figure, the points A, B, C are collinear.


1. Graph the images of points *A*, *B*, *C* as a result of dilation with center at point *D* and scale factor equal to 0.5. Label the images of *A*, *B*, and *C* as *A*', *B*', and *C*', respectively.

2. Describe the image of \overrightarrow{AB} as a result of the same dilation. In general, what is the relationship between a line and its image after dilating about a center not on the line?

Dilation of a Line Segment

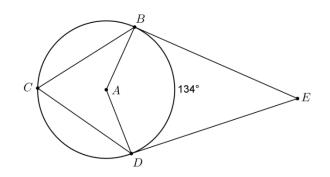
1. Given \overline{AB} , draw the image of \overline{AB} as a result of the dilation with center at point C and scale factor equal to 2.


2. Describe the relationship between \overline{AB} and its image.

MAFS.912.G-C.1.2

MA 3.312.3 C.1.2			
Level 2	Level 3	Level 4	Level 5
solves problems	solves problems that use no	solves problems that	solves problems using at least
using the properties	more than two properties	use no more than two	three properties of central
of central angles,	including using the properties of	properties, including	angles, diameters, radii,
diameters, and radii	inscribed angles, circumscribed	using the properties of	inscribed angles, circumscribed
	angles, and chords	tangents	angles, chords, and tangents

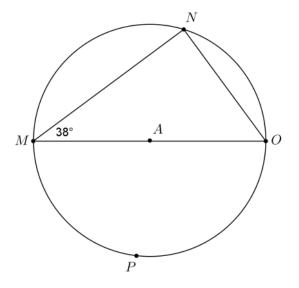
Central and Inscribed Angles


Describe the relationship between an inscribed angle and a central angle that intersect the same arc. Use the circle below to illustrate your reasoning.

Circles with Angles

Use circle A below to answer the following questions. Assume points B, C, and D lie on the circle, segments \overline{BE} and \overline{DE} are tangent to circle A at points B and D, respectively, and the measure of \widehat{BD} is 134°.

- 1. Identify the type of angle represented by $\angle BAD$, $\angle BCD$, and $\angle BED$ in the diagram and then determine each angle measure. Justify your calculations by showing your work.
 - a. $\angle BAD$: $m \angle BAD =$
 - b. $\angle BCD$: $m \angle BCD =$
 - c. $\angle BED$: $m \angle BED =$

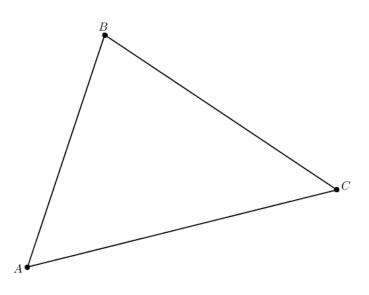


- 2. Describe, in general, the relationship between:
 - a. $\angle BAD$ and $\angle BCD$:
 - b. $\angle BAD$ and $\angle BED$:

Inscribed Angle on Diameter

1. If point A is the center of the circle, what must be true of $m \angle MNO$? Justify your answer.

2. Explain how to find the $m \angle NOM$.

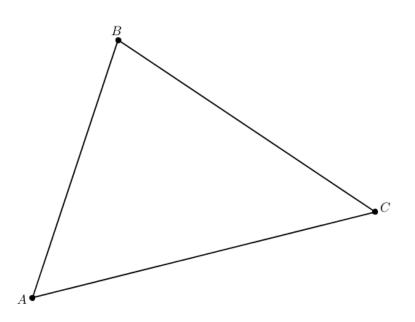

Tangent Line and Radius

1. Line *t* is tangent to circle *O* at point *P*. Draw circle *O*, line *t*, and radius \overline{OP} . Describe the relationship between \overline{OP} and line *t*.

MAFS.912.G-C.1.3	3		
Level 2	Level 3	Level 4	Level 5
identifies	creates or provides steps for the	solves problems that use the	proves the unique
inscribed and	construction of the inscribed and	incenter and circumcenter of a	relationships
circumscribed	circumscribed circles of a triangle; uses	triangle; justifies properties of	between the
circles of a	properties of angles for a quadrilateral	angles of a quadrilateral that is	angles of a triangle
triangle	inscribed in a circle; chooses a property	inscribed in a circle; proves	or quadrilateral
	of angles for a quadrilateral inscribed in	properties of angles for a	inscribed in a circle
	a circle within an informal argument	quadrilateral inscribed in a circle	

Inscribed Circle Construction

Use a compass and straightedge to construct a circle inscribed in the triangle.

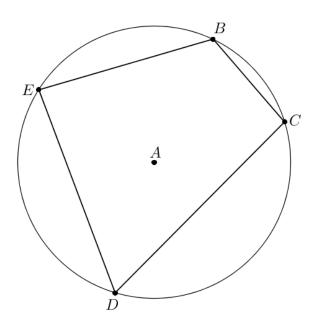


1. What did you construct to locate the center of your inscribed circle?

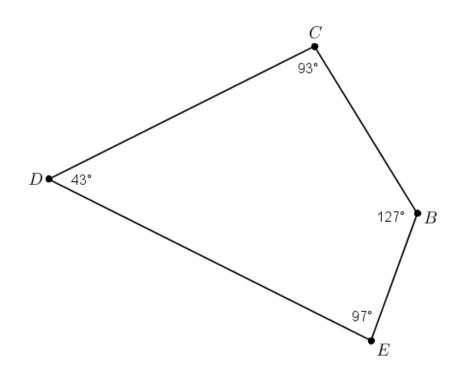
2. What is the name of the point of concurrency that serves as the center of your inscribed circle?

Circumscribed Circle Construction

Use a compass and straightedge to construct a circle circumscribed about the triangle.



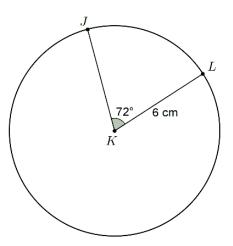
3. What did you construct to locate the center of your circumscribed circle?


4. What is the name of the point of concurrency that serves as the center of your circumscribed circle?

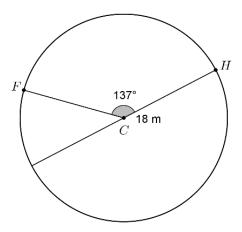
Inscribed Quadrilaterals

1. Quadrilateral *BCDE* is inscribed in circle *A*. Prove that $\angle EDC$ and $\angle CBE$ are supplementary.

2. Can the quadrilateral below be inscribed in a circle? Explain why or why not.

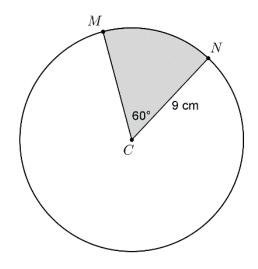


MAFS.912.G-C.2.5

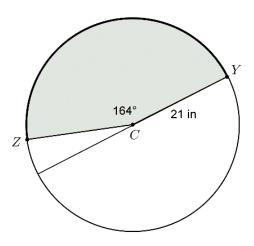

WAI 5.512.0-C.2.3			
Level 2	Level 3	Level 4	Level 5
identifies a	applies similarity to solve	derives the formula for the area	proves that the length of the
sector area of a	problems that involve the length	of a sector and uses the formula	arc intercepted by an angle is
circle as a	of the arc intercepted by an	to solve problems; derives, using	proportional to the radius,
proportion of	angle and the radius of a circle;	similarity, the fact that the length	with the radian measure of
the entire circle	defines radian measure as the	of the arc intercepted by an angle	the angle being the constant
	constant of proportionality	is proportional to the radius	of proportionality

Arc Length

1. Find the length of \hat{JL} of circle K in terms of π . Show all of your work carefully and completely.



2. Find the length of \widehat{FH} of circle *C*. Round your answer to the nearest hundredth. Show all of your work carefully and completely.



Sector Area

1. Find the area of the shaded sector in terms of π . Show all of your work carefully and completely.

2. Find the area of the shaded sector. Round your answer to the nearest hundredth. Show all of your work carefully and completely.

Arc Length and Radians

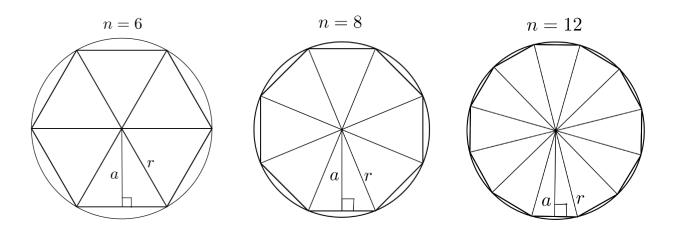
Use the similarity of circles to explain why the length of an arc intercepted by an angle is proportional to the radius. That is, given the following diagram:

1. Explain why
$$\frac{L}{l} = \frac{R}{r}$$
.

2. Explain how the fact that arc length is proportional to radius leads to a definition of the radian measure of an angle.

Deriving the Sector Area Formula

1. Write a formula that can be used to find the area of a sector of a circle. Be sure to explain what each variable represents. You may include a diagram in your description.

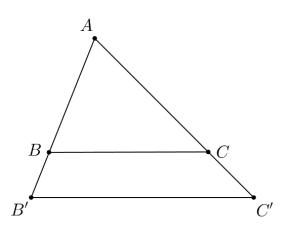

2. Explain and justify the formula you wrote.

MAFS.912.G-GMD.1.1

Level 2	Level 3	Level 4	Level 5
gives an informal	uses dissection arguments	sequences an informal limit	explains how to
argument for the formulas	and Cavalier's principle for	argument for the circumference of	derive a formula using
for the circumference of a	volume of a cylinder,	a circle, area of a circle, volume of a	an informal argument
circle and area of a circle	pyramid, and cone	cylinder, pyramid, and cone	

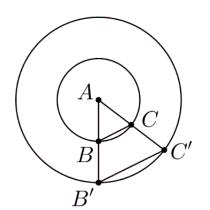
Area and Circumference – 1

Suppose a regular *n*-gon is inscribed in a circle of radius *r*. Diagrams are shown for n = 6, n = 8, and n = 12.


Imagine how the relationship between the *n*-gon and the circle changes as *n* increases.

- 1. Describe the relationship between the area of the *n*-gon and the area of the circle as *n* increases.
- 2. Describe the relationship between the perimeter of the *n*-gon and the circumference of the circle as *n* increases.
- 3. Recall that the area of a regular polygon, A_P , can be found using the formula $A_P = \frac{1}{2}ap$ where a is the apothem and p is the perimeter of the polygon, as shown in the diagram. Consider what happens to a and p in the formula $A_P = \frac{1}{2}ap$ as n increases and derive an equation that describes the relationship between the area of a circle, A, and the circumference of the circle, C.

Area and Circumference – 2


The objective of this exercise is to show that for any circle of radius r, the area of the circle, A(r), can be found in terms of the area of the unit circle, A(1). In other words, show that $A(r) = r^2 \cdot A(1)$.

1. Given $\triangle ABC$ and $\triangle AB'C'$ such that $AB' = r \cdot AB$ and $AC' = r \cdot AC$, show or explain why the Area of $\triangle AB'C' = r^2 \cdot Area$ of $\triangle ABC$.

2. Given two concentric circles with center at A, one of radius 1 (that is, AB = 1) and the other of radius r with r > 1 (that is, AB' = r), so that $AB' = r \cdot AB$ and $AC' = r \cdot AC$.

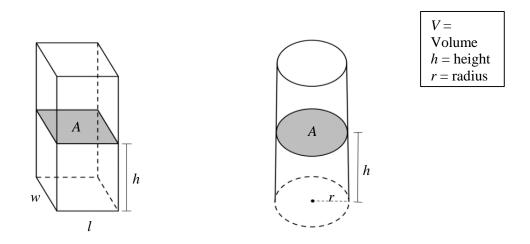
Let \overline{BC} be one side of regular *n*-gon P_n inscribed in circle *A* of radius 1 and let $\overline{B'C'}$ be one side of regular *n*-gon P'_n inscribed in circle *A* of radius *r*. Using the result from (1), show or explain why Area of $P'_n = r^2 \cdot \text{Area of } P_n$.

3. Finally, show or explain why $A(r) = r^2 \cdot A(1)$.

Area and Circumference – 3

The unit circle is a circle of radius 1. Define π to be the area, A(1), of the unit circle, that is, $\pi = A(1)$.

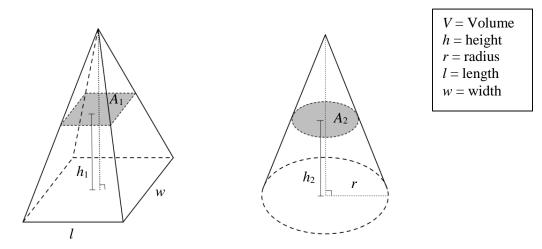
Let A represent the area and C represent the circumference of a circle of radius r. Assume each of the following is true:


- The area of a circle is equal to half of the product of the circumference and the radius, that is $A = \frac{1}{2} Cr$.
- The area of a circle is equal to r^2 times the area of the unit circle, that is, $A = r^2 \cdot A(1)$.

Use these two assumptions and the above definition of π to derive:

- 1. The formula for the area, *A*, of a circle.
- 2. The formula for the circumference, *C*, of a circle.
- 3. The formula for π in terms of *C* and *d*, the diameter of a circle.

Volume of a Cylinder


The rectangular prism and the cylinder below have the same height and the same cross-sectional area at any given height above the base. This means that the area of the shaded rectangle, A_1 , is the same as the area of the shaded circle, A_2 when $h_1 = h_2$.

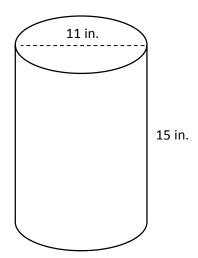
1. Use the formula for the volume of a prism ($V = l \cdot w \cdot h$) to derive and explain the formula for the volume of a cylinder.

Volume of a Cone

The rectangular pyramid and the cone below have the same height and the same cross-sectional area at any given height above the base. This means that the area of the shaded square, A_1 , is the same as the area of the shaded circle, A_2 when $h_1 = h_2$.

1. Use the formula for the volume of a rectangular pyramid ($V = \frac{1}{3} \cdot lwh$) to derive and explain the formula for the volume of a cone.

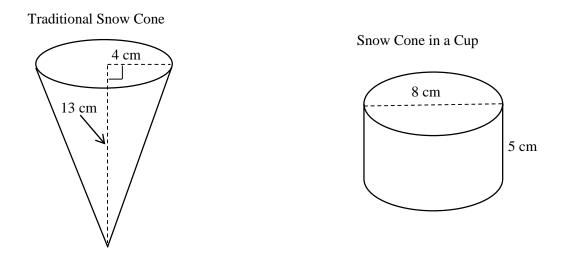
MAFS.912.G-GMD.1.3			
Level 2	Level 3	Level 4	Level 5
substitutes given dimensions	finds a dimension,	solves problems involving the volume	finds the volume of
into the formulas for the	when given a graphic	of composite figures that include a	composite figures
volume of cylinders,	and the volume for	cube or prism, and a cylinder, pyramid,	with no graphic;
pyramids, cones, and	cylinders, pyramids,	cone, or sphere (a graphic would be	finds a dimension
spheres, given a graphic, in a	cones, or spheres	given); finds the volume when one or	when the volume
real-world context		more dimensions are changed	is changed


Volume of a Cylinder

The coach at Coastal High School is concerned about keeping her athletes hydrated during practice. She can either buy a case of 24 quart-sized drinks or fill a cylindrical cooler with water and a powder mix. The dimensions of the cylindrical cooler are given below and one quart is equal to 57.75 cubic inches. Which option provides the most drink for her athletes?

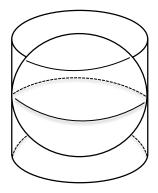
1. Look up any formulas you need in your book. Justify your response by showing and/or explaining your work.

Individual Drinks


Cylindrical Cooler

Snow Cones

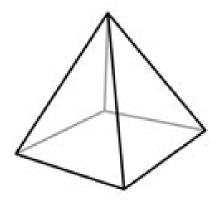
Jennifer loves snow cones and wants to get the most for her money. There are two vendors at the fair selling snow cones for the same price. If the two containers are completely filled and then leveled off across their tops, which will hold the most? If necessary, round off to the nearest cubic centimeter.


1. Look up any formulas you need in your book. Justify your response by showing and/or explaining your work.

Do Not Spill the Water!

Suppose a ball is completely submerged inside a cylinder filled with water displacing some of the water in the cylinder. Assume the ball and the cylinder both have a diameter of 10 centimeters, and the diameter of the ball is the same as the height of the cylinder.

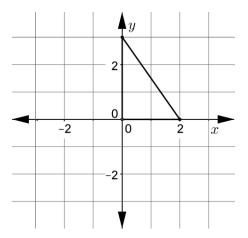
Determine the volume of water that can remain in the cylinder after the ball is inserted so that the water rises to the top edge of the cylinder without spilling. Look up any formulas you need in your book or notes. Justify your response by showing and/or explaining your work.

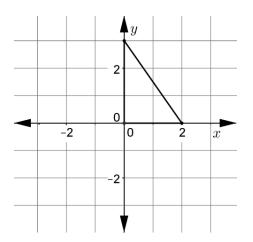


The Great Pyramid

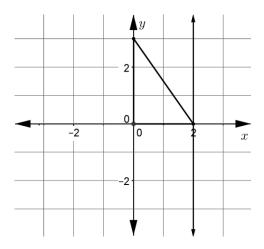
The Great Pyramid of Giza is an example of a square pyramid and is the last surviving structure considered a wonder of the ancient world. The builders of the pyramid used a measure called a cubit, which represents the length of the forearm from the elbow to the tip of the middle finger. One cubit is about 20 inches in length.

Find the height of the Great Pyramid (in cubits) if each base edge is 440 cubits long and the volume of the pyramid is 18,069,330 cubic cubits.

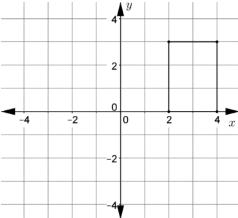

Look up any formulas you need in your book. Justify your response by showing and/or explaining your work.


MAFS.912.G-GMD.	2.4		
Level 2	Level 3	Level 4	Level 5
identifies the	identifies a three-dimensional	identifies a three-dimensional object	identifies a three-
shapes of two-	object generated by rotations	generated by rotations of a closed	dimensional object
dimensional	of a triangular and rectangular	two-dimensional object about a line	generated by rotations,
cross- sections	object about a line of	of symmetry of the object; identifies	about a line of
formed by a	symmetry of the object;	the location of a nonhorizontal or	symmetry, of an open
vertical or	identifies the location of a	nonvertical slice that would give a	two-dimensional object
horizontal plane	horizontal or vertical slice that	particular cross-section; draws the	or a closed two-
	would give a particular cross-	shape of a particular two-	dimensional object with
	section; draws the shape of a	dimensional cross-section that is the	empty space between
	particular two-dimensional	result of a nonhorizontal or	the object and the line of
	cross-section that is the result	nonvertical slice of a three-	symmetry; compares and
	of horizontal or vertical slice of	dimensional shape; compares and	contrasts different types
	a three-dimensional shape	contrasts different types of slices	of rotations

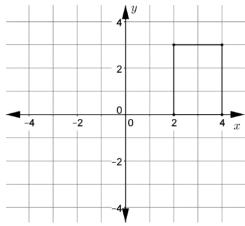
2D Rotations of Triangles


1. Describe in detail the solid formed by rotating a right triangle with vertices at (0, 0), (2, 0), and (0, 3) about the vertical axis. Include the dimensions of the solid in your description.

2. Describe in detail the solid formed by rotating a right triangle with vertices at (0, 0), (2, 0), and (0, 3) about the horizontal axis. Include the dimensions of the solid in your description.

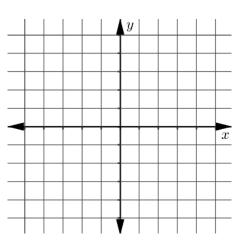


3. Imagine the solid formed by rotating the same right triangle about the line x = 2. Describe this solid in detail

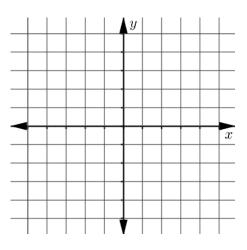


2D Rotations of Rectangles

1. Describe in detail the solid formed by rotating a 2 x 3 rectangle with vertices (2, 0), (4, 0), (2, 3) and (4, 3) about the *x*-axis. Include the dimensions of the solid in your description.



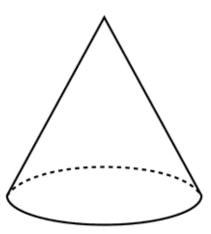
2. Describe in detail the solid formed by rotating a 2 x 3 rectangle with vertices (2, 0), (4, 0), (2, 3), and (4, 3) about the *y*-axis. Include the dimensions of the solid in your description.



Working Backwards – 2D Rotations

1. Identify and draw a figure that can be rotated around the *y*-axis to generate a sphere.

2. Draw a figure that can be rotated about the *y*-axis to generate the following solid (a hemisphere atop a cone).

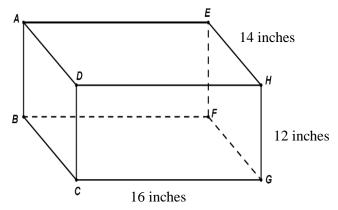

Slice It.

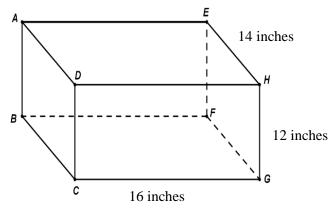
1. Draw and describe the shape of a two-dimensional cross-section that would be visible if you vertically slice the object, perpendicular to the base.

2. Draw and describe the shape of a two-dimensional cross-section that would be visible if you horizontally slice the object, parallel to the base.

Slice of a Cone

1. Draw three different horizontal cross-sections of the cone that occur at different heights. How are these three cross-sections related?





Inside the Box

1. In the space provided, sketch both a horizontal and vertical cross section of the box. Label the dimensions on your sketch.

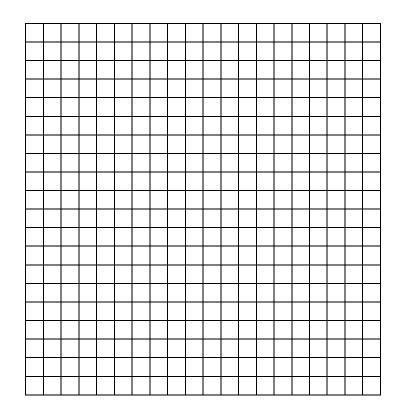
2. Imagine a cross-section defined by plane *EBCH*. Sketch the cross-section and label the dimensions that you know or can find.

MAFS.912.G-GPE.1.1

MA 5.512.0 01 L.1.			
Level 2	Level 3	Level 4	Level 5
determines the	completes the square to find the	derives the equation of the	derives the equation of a
center and radius	center and radius of a circle given by	circle using the	circle using the Pythagorean
of a circle given	its equation; derives the equation of	Pythagorean theorem	theorem when given
its equation in	a circle using the Pythagorean	when given coordinates of	coordinates of a circle's
general form	theorem, the coordinates of a circle's	a circle's center and a point	center as variables and the
	center, and the circle's radius	on the circle	circle's radius as a variable

Derive the Circle – Specific Points

1. The center of a circle is at (-5, 7) and its radius is 6 units. Derive the equation of the circle using the Pythagorean Theorem. You may use the coordinate plane to illustrate your reasoning.


-										
<u> </u>		 								

Derive the Circle – General Points

The standard form of the equation of a circle with center (h, k) and radius r is written as:

$$(x-h)^2 + (y-k)^2 = r^2$$

Show how this equation can be derived from the Pythagorean Theorem. Use the coordinate plane to illustrate your reasoning.

Complete the Square for Center-Radius

The equation of a circle in general form is:

$$x^2 + 6x + y^2 + 5 = 0$$

1. Find the center and radius of the circle. Show all work neatly and completely.

Complete the Square for Center-Radius 2

The equation of a circle in general form is:

 $4x^2 - 16x + 4y^2 - 24y + 16 = 0$

1. Find the center and radius of the circle. Show all work neatly and completely.

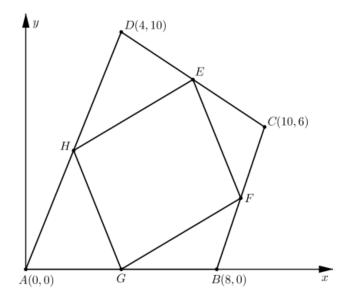
MAFS.912.G-GPE.2.	4		
Level 2	Level 3	Level 4	Level 5
uses coordinates to prove or disprove that a figure is a parallelogram	uses coordinates to prove or disprove that a figure is a square, right triangle, or rectangle; uses coordinates to prove or disprove properties of triangles, properties of circles, properties of quadrilaterals when given a graph	uses coordinates to prove or disprove properties of triangles, properties of circles, properties of quadrilaterals without a graph; provide an informal argument to prove or disprove properties of triangles, properties of circles, properties of quadrilaterals; uses coordinates to prove or disprove properties of regular polygons when given a graph	completes an algebraic proof or writes an explanation to prove or disprove simple geometric theorems

Describe the Quadrilateral

1. A quadrilateral has vertices at A(-3, 2), B(-2, 6), C(2, 7) and D(1, 3). Which, if any, of the following describe quadrilateral *ABCD*: parallelogram, rhombus, rectangle, square, or trapezoid? Justify your reasoning.

Type of Triangle

1. Triangle *PQR* has vertices at *P*(8, 2), *Q*(11, 13), and *R*(2, 6). Without graphing the vertices, determine if the triangle is scalene, isosceles, or equilateral. Show all of your work and justify your decision.


Diagonals of a Rectangle

Three of the vertices of a rectangle have coordinates D(0, 0), A(a, 0), and B(0, b).

- 1. Find the coordinates of point *C*, the fourth vertex.
- 2. Prove that the diagonals of the rectangle are congruent.

Midpoints of Sides of a Quadrilateral

Show that the quadrilateral formed by connecting the midpoints of the sides of quadrilateral *ABCD* (points *E*, *F*, *G*, and *H*) is a parallelogram.

MAFS.912.G-GPE.2.5

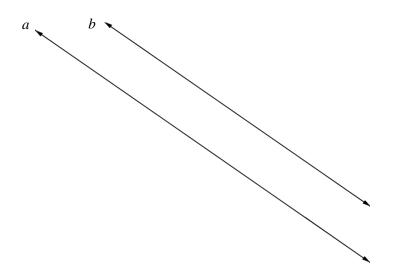
Level 2	Level 3	Level 4	Level 5
identifies that	creates the equation of a line that is	creates the equation of a line	proves the slope criteria
the slopes of	parallel given a point on the line and	that is parallel given a point on	for parallel and
parallel lines are	an equation, in slope-intercept	the line and an equation, in a	perpendicular lines; writes
equal	form, of the parallel line or given	form other than slope-	equations of parallel or
	two points (coordinates are integral)	intercept; creates the equation	perpendicular lines when
	on the line that is parallel; creates	of a line that is perpendicular	the coordinates are
	the equation of a line that is	that passes through a specific	written using variables or
	perpendicular given a point on the	point when given two points or	the slope and y-intercept
	line and an equation of a line, in	an equation in a form other	for the given line contains
	slope- intercept form	than slope-intercept	a variable

Writing Equations for Parallel Lines

- 1. In right trapezoid ABCD, $\overline{BC} \parallel \overline{AD}$ and \overline{AD} is contained in the line whose equation is $y = -\frac{1}{2}x + 10$.
 - a. What is the slope of the line containing \overline{BC} ? Briefly explain how you got your answer.

- b. Write an equation in **slope-intercept form** of the line that contains \overline{BC} if *B* is located at (-2, 7). Show your work to justify your answer.
- 2. In rectangle *EFGH*, $\overline{EH} \parallel \overline{FG}$ and \overline{EH} crosses the *y*-axis at (0, -2). If the equation of the line containing \overline{FG} is x + 3y = 12, write the equation of the line containing \overline{EH} in **slope-intercept form.** Show your work to justify your answer.

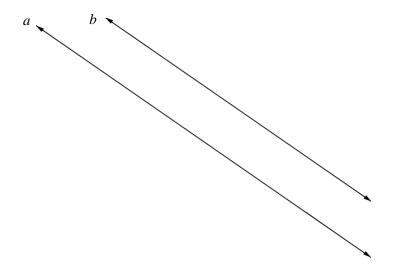
Writing Equations for Perpendicular Lines


- 1. In right trapezoid *ABCD*, $\overline{AB} \perp \overline{AD}$ and \overline{AD} is contained in the line $y = -\frac{1}{2}x + 10$.
 - a. What is the slope of the line containing \overline{AB} ? Briefly explain how you got your answer.

b. Write an equation in **slope-intercept form** of the line that contains \overline{AB} if *B* is located at (-2, 7). Show your work to justify your answer.

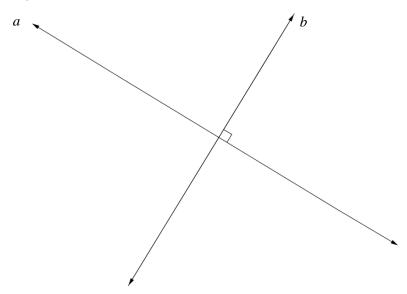
2. In rectangle *EFGH*, $\overline{EF} \perp \overline{FG}$ and \overline{EF} contains the point (0, -4). If the equation of the line containing \overline{FG} is 2x + 6y = 9, write the equation of the line containing \overline{EF} in **slope-intercept form.** Show your work to justify your answer.

Proving Slope Criterion for Parallel Lines – One


Line *a* is parallel to line *b*. Prove that the slope of line *a* equals the slope of line *b*.

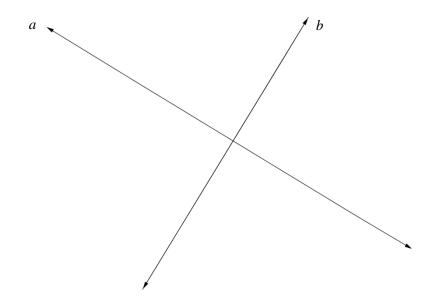
Note: You may draw axes placing the lines in the coordinate plane if you prefer.

Proving Slope Criterion for Parallel Lines – Two


The slope of line *a* equals the slope of line *b*. Prove that line *a* is parallel to line *b*.

Note: You may draw axes placing the lines in the coordinate plane if you prefer.

Proving Slope Criterion for Perpendicular Lines – One

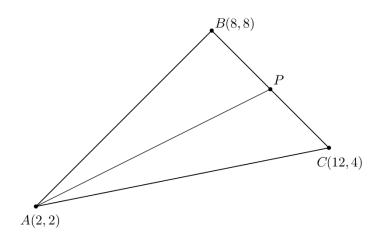

Line *a* is perpendicular to line *b*. Prove that the slopes of line *a* and line *b* are both opposite and reciprocal (or that the product of their slopes is -1).

Note: You may draw axes placing the lines in the coordinate plane if you prefer.

Proving Slope Criterion for Perpendicular Lines – Two

The slope of line *a* and the slope of line *b* are both opposite and reciprocal. Prove that line *a* is perpendicular to line *b*.

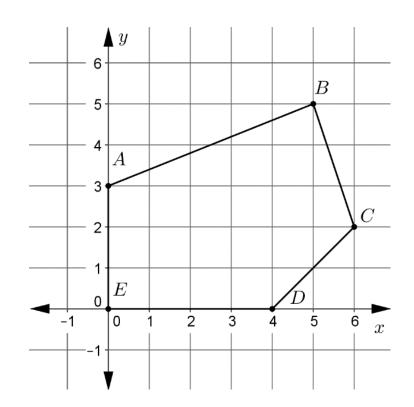
Note: You may draw axes placing the lines in the coordinate plane if you prefer.


MAFS.912.G-GPE.2.6						
Level 2	Level 3	Level 4	Level 5			
finds the point on a line	finds the point on a line	finds the endpoint on a	finds the point on a line			
segment that partitions the	segment that partitions, with	directed line segment	segment that partitions or			
segment in a given ratio of	no more than five partitions,	given the partition ratio,	finds the endpoint on a			
1 to 1, given a visual	the segment in a given ratio,	the point at the	directed line segment when			
representation of the line	given the coordinates for the	partition, and one	the coordinates contain			
segment	endpoints of the line segment	endpoint	variables			

Partitioning a Segment

Given M(-4, 7) and N(12, -1), find the coordinates of point P on \overline{MN} so that P partitions \overline{MN} in the ratio 1:7 (i.e., so that MP:PN is 1:7). Show all of your work and explain your method and reasoning.

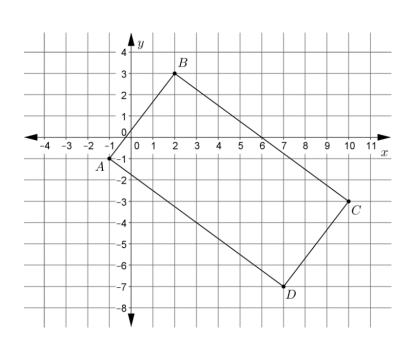
Centroid Coordinates


In $\triangle ABC$, \overline{AP} is a median. Find the exact coordinates of a point, *D*, on \overleftrightarrow{AP} so that AD: DP = 2: 1. Show all of your work and explain your method and reasoning.

MAFS.912.G-GPE.2.7			
Level 2	Level 3	Level 4	Level 5
finds areas and	when given a graphic, finds area	finds area and perimeter of	finds area and
perimeters of right	and perimeter of regular	irregular polygons that are	perimeter of shapes
triangles, rectangles, and	polygons where at least two	shown on the coordinate plane;	when coordinates
squares when given a	sides have a horizontal or	finds the area and perimeter of	are given as variables
graphic in a real-world	vertical side; finds area and	shapes when given coordinates	
context	perimeter of parallelograms		

Pentagon's Perimeter

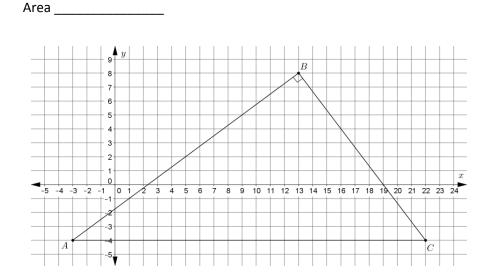
Find the perimeter of polygon *ABCDE* with vertices *A*(0, 3), *B*(5, 5), *C*(6, 2), *D*(4, 0) and *E*(0, 0). Show your work.



Perimeter and Area of a Rectangle

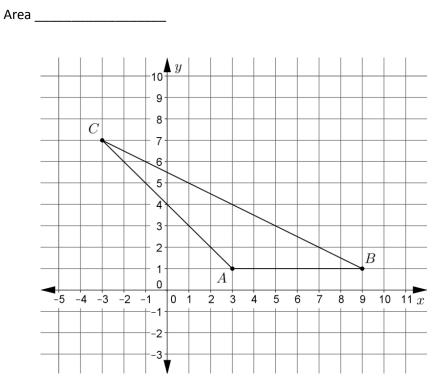
Find the perimeter and the area of rectangle ABCD with vertices A(-1, -1), B(2, 3), C(10, -3) and D(7, -7). Show your work.

Perimeter _____


Area _____

Perimeter and Area of a Right Triangle

Find the perimeter and the area of right triangle ABC with vertices A(-3, -4), B(13, 8) and C(22, -4). Show your work.


Perimeter _____

Perimeter and Area of an Obtuse Triangle

Find the perimeter and the area of $\triangle ABC$ with vertices A(3, 1), B(9, 1) and C(-3, 7). Show your work. Round to the nearest tenth if necessary.

Perimeter _____

