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Abstract: The most important plastic resins used for wire coating are Polyvinyl Chloride (PVC), 
Nylon, Polysulfone and Low-high density polyethylene (LDPE / HDPE). In this article,the coating 
process is performed using elastic-viscous fluid as a coating material for wire coating in a pressure 
type coating die. The elastic-viscous fluid is electrically conducted in the presence of an applied 
magnetic field. The governing non-linear equations are modeled and then solved analytically by 
utilizing an Adomian decomposition method (ADM). The convergence of the series solution is 
established. The results are also verified by Optimal Homotopy Asymptotic Method (OHAM). The 
effect of different emerging parameters such as non-Newtonian parameters α and β, magnetic 
parameter M and the Brinkman number Br on solutions (velocity and temperature profiles) are 
discussed through several graphs. Additionally, the current result also compares with the published 
work already available in the literature. 
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1. Introduction 

Studying the boundary layer behavior of a viscoelastic fluid on a continuous stretching surface, 
it is important for the analysis of the extrusion of the polymer, stretching of plastic films, optical fibers 
and cables. The importance in industrial process applications has raised significant interest from 
researchers for the study of viscoelastic fluid flow and heat transfer in fiber or wire coating process. 
The metal coating is an industrial process for the supply of insulation, environmental safety, 
mechanical damage and protect against signal attenuation. The simple and appropriate process for 
wire coating is the coaxial extrusion process that operates at the maximum speed of pressure, 
temperature and wire drawing. This produces higher pressure in the particular region resulting into 
strong bond and rapid coating. Several studies like, Han and Rao [1], Nayal [2], Caswell [3] and Ticker 
[4] have focused on the co-extrusion process in which the fibers or wires are drawn inside the molten 
polymer filled in a die. 

Wire coating provides protection against mechanical damage and penetration of moisture in 
microscopic defects on the surface of the wire. In coating of the wire, the rate of wire drawing, 
temperature and the quality of materials are important parameters to be considered in the wire 
coating process. Different types of fluids are used for wire and fiber optic coating which depends 
upon the geometry of die, fluid viscosity, temperature of the wire and that of molten polymer. Wire 
coating analysis has a rich literature. For instance, the power law fluid model was used by Akter et 
al. [5,6] for wire coating. Third grade fluid was used for wire-coating by Siddiqui et al. [7]. Fenner et 
al. [8] investigated the wire coating in a pressure type coating die. Unsteady second grade fluid with 
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the oscillating boundary condition was investigated by Shah et al. [9, 10] for wire coating. The same 
author discussed the third grade fluid for wire coating. 

Interest in heat transfer in non-Newtonian fluids have significantly increased the use of non-
Newtonian fluids perpetuated through various industries, including processing of polymers and 
electronics packaging. The heat transfer analysis is significant for the technology and advancement 
of science and up to date instruments such as compact heat exchangers, laser coolant lines and micro-
electro-mechanical systems (MEMS). A comprehensive survey of the literature is thus impractical. 

However, some studies are listed here to provide a starting point for wider research literature. 
Shah et al. [12] studied wire-coating with a temperature varying linearly. Mitsoulis [13] has studied 
the flow of wire-coating with heat transfer. The heat transfer problem corresponding fully developed 
pipe and PTT fluid flow channels was also studied by Oliveira and Pinho [14].  

The post-treatment of wire coating analysis also studied by many researchers [16]. Wagner et al. 
[17] investigated the wire coating with the effect of die design. Numerical solution for wire coating 
analysis using a Newtonian fluid was investigated by Bagley and Storey [18]. Oliveira et al. [19] 
investigated PTT fluid flow in a pipe and fully developed channel and gave an analytical results for 
velocity and stress components. Shah et al. [20] studied the elastic-viscous fluid for wire analysis in 
a pressure type coating die. 

The technological and industrial applications of non-Newtonian fluids, recent researchers give 
more attention to these fluids such as blood, soap solutions, cosmetics, paint thinners, crude oils, 
sludge, etc. Magneto-hydrodynamic (MHD) addresses the electrically conductive fluid flows in the 
existence of a magnetic field. Researchers have devoted considerable attention to the study of MHD 
flow problems focusing on non-Newtonian fluids because of its broad applications in the fields of 
engineering and industrial manufacturing. Some examples of these areas are energy generators 
MHD, melting of metals by the application of a magnetic field in an electric furnace, the cooling 
nuclear reactors, plasma studies, the use of non-metallic inclusions to the purification of molten 
metals, extractions of geothermal energy, etc. Abel et al. [21] studied the variation of MHD on a 
viscoelastic fluid on a stretching area. Sarpakaya [22] was the pioneer who at first investigated non-
Newtonian fluid in the presence of a magnetic field. Subhas et al. [23] investigated the MHD fluid 
and heat transfer analysis to the Upper Convected Maxwell fluid examined the 
magnetohydrodynamic (MHD) effects. Chen [24] studied an analytical solution of MHD flow of a 
viscous fluid with thermal effect. Akbar et al. [25] studied Eyring-Power fluid using a stretching sheet 
and examined that the elastic-viscous parameter and MHD have decelerated effect on velocity field. 
Mabood et al . [26] investigated the nano fluid using a non-linear stretching sheet in the presence of 
MHD effect. Vijendra et al . [27] investigated the MHD Maxwell fluid and heat transfer analysis with 
variable thermal conductivity. Analytical solution was obtained for MHD flow of Upper Conveted-
Maxwell fluid by Hayat et al. [28]. The same author also studied two-diemensional flow of Maxwell 
fluid on a permeable plat in [29]. More considerable work on MHD can also be seen in literature [30-
32].  

A survey of literature indicates that much attention is given to elastic-viscous, especially from 
polymer industry (polymer melts), particular used for wires and optical fiber coating. Being inspired 
from such practical applications, several authors discussed the elastic-viscous fluid flow. Hayat et al. 
[33] investigated fluid flow of an elastic-viscous. Ellahi et al. [34] gave the exact solution of such fluid 
with the conditions of non-linear slip. Bari et al [35] elastic-viscous fluid in convergent channel. Ellahi 
et al. [36] gave an analytical solution of elastic-viscous fluid. Recently heat transfer and fluid-structure 
interactions at microscales are being actively studied theoretically and numerically [37-38]. 

In present article, the work of Shah et al. [20] is extended by utilizing the additional effects of 
MHD and heat transfer. To the best of our knowledge, no one has considered the magneto-
hydrodynamic flow and heat transfer in wire coating analysis using elastic-viscous fluid as a coating 
material in a pressure-type coating die. Analytical solution of the resulting nonlinear Ordinary 
Differential Equation is obtained through ADM [38-42] and a comparison is made with OHAM [43-
46] for various values of the parameters. Effect of the physical parameters on the solution is shown 
and discussed by using graphs of numerical values of different quantities of interest. 
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2. Modeling of the Problem 

The principle of the flow geometry is schematically shown in figure 1. As shown in figure 1 the 
wire of radius  is dragged with velocity  through a pressure-type coating die of length  and 
radius . The coordinate system is taken at the center of the wire, in which  is taken perpendicular 
to the flow direction and − axis is along the flow. Here and  represents the wire and die 
temperature respectively. A constant pressure gradient is acted upon the fluid direction and magnetic 
field of strength transversely along the axial direction. Due to small magnetic Reynold number the 
induced magnetic field is negligible, which is also a valid assumption on a laboratory scale. 

The design of the coating die is more important because it affects the final product quality. In 
the current study, a pressurized coating die is considered. The impact of surrounding temperature is 
considered for optimal performance. 

The coating die is filled with an elastic-viscous fluid. The flow is considered incompressible, 
laminar, axisymmetric and steady. 

 
Figure 1. Pressure type coating die for wire coating analysis. 

With the assumptions mentioned above, the velocity of the fluid, stress tensor and temperature 
field are taken as 

( ) ( )0,0, , , ( )u w r r r = = Θ = Θ  S S  (1) 

Subject to the boundary conditions 

 at  and 0 at w dw V r R w r R= = = = at r = Rw (2) 

 at  and  at .w w d dr R r RΘ = Θ = Θ = Θ =  (3) 

For an elastic-viscous fluid, the stress tensor is: 

( ) ( ) ( )3 5 6
1 1 1 1 12 2 2

D
tr tr

Dt

γ γ γ+ γ + + + +SS A S SA S A SA I

( )2 271
1 2 4 1 1 ,

2

D
tr

Dt
η γ = + γ + γ + 
 

AA A A I  
(4) 

In the above η  is the viscosity of the fluid, 
D

Dt
 the material derivative, S the extra stress tensor, 

1A the Rivlin-Ericksen tensor and ( )1 7i iγ = − are the material constants. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2017                   doi:10.20944/preprints201701.0052.v1

Peer-reviewed version available at Coatings 2017, 7, 15; doi:10.3390/coatings7010015

http://dx.doi.org/10.20944/preprints201701.0052.v1
http://dx.doi.org/10.3390/coatings7010015


 4 of 16 

1 ,TA L L L u= + = ∇
 

(5) 

1
1 1 , 2,3,...T n

n n n

DA
A A L LA n

Dt
−

− −= + + =
 

 (6) 

In the above equation denotes the transpose of the matrix. 
It should be noted that the model (4) contains several other models as: 

• For Newtonian fluid model all 1 7 0γ − γ = . 

• For second grade fluid model all 1 3 5 6 7 0= = =γ γ =γ γ =γ . 

• For Oldroyd-B model all 3 7 0.γ − γ =  

• For Maxwell model all 2 7 0γ − γ = . 

• For Johnson-Segalman model all 5 6 7 0.= = γ =γ γ  

• For Oldroyd 6-model all 6 7 0.γ = γ =  
The basic governing equations for incompressible flow are the continuity, momentum and 

energy equations are given by: 

. 0,u∇ =   (7) 

.T J B,
Du

Dt
ρ = ∇ + ×  (8) 

2 T.L,p

D
c k

Dt
ρ ∇ ΘΘ = +

 (9) 

In the above equationsu , ρ , T , pc , /D Dt , k , Θ , are the velocity of the fluid, density of 

the fluid, shear stress,specific heat, material derivative, thermal conductivity, temperature and 
velocity gradient respectively. 

The interaction of current and magnetic field produces a body force J B× as given in Eq. (8). The 
electrostatic force produced due to charge density is negligible and we only consider the applied 
magnetic field 0B  normal to the flow direction. 

In the above frame of reference the body force becomes. 

2
0 .J  B wBσ= −  (10) 

From Eqs. (1) and (8-10)the velocity and temperature fields are become:  

( )
3 2 4 22 2 2 2

2 2 2 2
3

d w dw dw dw d w dw d w dw d w
r r r r

dr dr dr dr dr dr dr dr dr
α β β αβ α       + + + − + + +       

       

25 22
0 1 0,

Bdw dw
w

dr dr

σαβ β
η

    − + =         
 

(11) 

1
0,rz

d d dw
k r S

r dr dr dr

 Θ   + =    
    

  (12) 
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where 

( ) ( )( ) 5 7
1 4 7 3 5 4 7 2 ,

2
α γ γγ γ γ γ γ γ= + − + + γ γ− − ( ) ( ) ( ) 5 6

1 3 6 3 5 1 3 6 1 .
2

β γ γγ γ γ γ γ γ γ γ γ= + − + + − −
 

Introducing the dimensionless parameters 

22 2 2
* * * * 2 0

2 2

2

, , , , , 1, , .
( )

d w

w w w w d w d w

w

V

B Rr w V V V
r w M Br

R R R R k
R

σα β ηα β δ
η

Θ − Θ= = = = = = > Θ = =
Θ − Θ Θ − Θ 

 
 

 
(13) 

In the above equationα , β  are the material parameters, M the magnetic parameter, δ and 
the radii ratio and Br is the Brinkman number. 

The system of Eq. (2), (3), (11) and (12) in dimensionless form are become 

( )
3 2 4 22 2 2

2 2 2
3

d w dw dw dw d w dw d w dw
r r r r

dr dr dr dr dr dr dr dr
α β β αβ α       + + + − + +       

       

5 4 2
2 1 2 0,

dw dw dw
M

dr dr dr
αβ β β

      − + + =      
       

 

(14) 

( )1 1w = , ( ) 0,w δ =  (15) 

2 2 2
1

1 1 ,
d d du du du

r Br
r dr dr dr dr dr

   Θ       + β + + α                       
 (16) 

( ) ( ) 11 0, .δΘ = Θ =  (17) 

5. Solution of the Modeled Problem 

To solve Equations (14)–(17), we apply the Adomian decomposition method [38–42]. The detail 
of the method is given in appendix, while the zero and first order solutions for the velocity field and 
temperature distributions are: 

0 ,
1

r
w

δ
δ

− +=
− +

 (18) 

0

1
,

1

r

δ
+Θ −=

− +
 (19) 

( )

2 2 3 2 2 2 2 2 2

2 2 2 2 2 3 2 2

2 2 2 2 2 2 2 2

2 2 2 2 3 2 2 2 2 2
1 5

3 3 3 9 3 9 3 3

6 3 4 3 3 6 3 9

3 6 6 15 3 3 6 12
1

12 6 6 3 3 6
6 1

M r M r r r r M r r M r r r

M M r M r M r r r M

r M r r M r r M M r

w M r M r r r

α α β β β β αβ αβ
δ δ δ δ αδ αδ αδ βδ βδ

βδ βδ βδ βδ αβδ αβδ δ δ
δ δ αδ αδ αδ β

δ

− + + − + − − + − + +
+ − − − − + − + −
+ + − + − − − +

= + + − − +
− +

2 2 2 2

2 2 2 2 2 2 2 2 3 2 3 2 2 3 2 3 3

3 3 3 2 3 3 2 3 2 4 2 4

2 2 4 2 3 4 2 5 2 5 2 2 5 2 6 2 6

15 3 ,

9 3 6 14 8 18 4

3 3 3 6 3 6 16 3

12 9 6 3 2 2

M r

M r r M r M M r M r M r

r M r M r M M r

M r M r M M r M r M M r

δ βδ βδ
βδ βδ βδ δ δ δ δ

αδ αδ βδ βδ βδ βδ δ δ
δ δ δ δ δ δ δ

 
 
 
 
 
 − − +
 

− + + + − − 
 − + − + + − − + + 
 + + − − − + 

 
(20) 
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( )

2 2 2 2 2

2 2 3 3

1 4 2 3

2 2 3 3

2 2

2 ln 2 ln 6 ln 2 ln1
.

6 ln 2 ln 2 ln 2 ln 2 ln2 1

2 ln 4 ln 4 ln 2 ln 2 ln

rR r R rR r R R rR r R R rR R rR

r R R rR r r r r r r r r

r r r r r

r r r

α α δ δ δ αδ αδ δ δ
δ δ δ β δ βδ

δ δ δ δ δ δ βδ δδ
βδ δ δ δ δ δ δ δ δ δ

 − + − + + + − + − − +
 

+ + − − − + + − =  + + − + −− + 
Θ


 − + + −    

 
(21) 

The second component is too large, so we only give the graphical representation upto the second 
order approximation. 

Collecting the results, we have the velocity field and temperature distribution up to a first 
order approximation obtained by ADM as follows: 

( )

2 2 3 2 2 2 2 2 2

2 2 2 2 2 3 2 2

2 2 2 2 2 2 2 2

2 2 2 2 3 2 2 2
5

3 3 3 9 3 9 3 3

6 3 4 3 3 6 3 9

3 6 6 15 3 3 6 12
1

12 6 6 3 3
1 6 1

M r M r r r r M r r M r r r

M M r M r M r r r M

r M r r M r r M M r
r

w M r M r r

α α β β β β αβ αβ
δ δ δ δ αδ αδ αδ βδ βδ

βδ βδ βδ βδ αβδ αβδ δ δ
δ δ δ αδ αδ
δ δ

− + + − + − − + − + +

+ − − − − + − + −
+ + − + − − − +

− += + + + − −
− + − +

2 2 2 2 2 2

2 2 2 2 2 2 2 2 3 2 3 2 2 3 2 3 3

3 3 3 2 3 3 2 3 2 4 2 4

2 2 4 2 3 4 2 5 2 5 2 2 5 2 6 2 6

6 15 3

9 3 6 14 8 18 4

3 3 3 6 3 6 16 3

12 9 6 3 2 2

r M r

M r r M r M M r M r M r

r M r M r M M r

M r M r M M r M r M M r

αδ βδ βδ βδ
βδ βδ βδ δ δ δ δ

αδ αδ βδ βδ βδ βδ δ δ
δ δ δ δ δ δ δ

 
 
 
 
 
 + − − +
 

− + + + − −
 − + − + + − − + +
 + + − − − + 






(22) 

( )

2 2 2 2 2

2 2 3 3

4 2 3

2 2 3 3

2 2

2 ln 2 ln 6 ln 2 ln1
.

1 6 ln 2 ln 2 ln 2 ln 2 ln2 1

2 ln 4 ln 4 ln 2 ln 2 ln

rR r R rR r R R rR r R R rR R rR

r R R rR r r r r r r r rr

r r r r r

r r r

α α δ δ δ αδ αδ δ δ
δ δ δ β δ βδδ

δ δ δ δ δ δ δ βδ δδ
βδ δ δ δ δ δ δ δ δ δ

 − + − + + + − + − − +
 

+ + − − − + + −− +  = +  − + + + − + −− +  
 − + + − 

Θ

 
(23) 

6. Analysis of the Results 

The subject of this section is to explore the effect of different emerging parameters such as non-

Newtonian parameters α and β
, magnetic parameter M and the Brinkman number Br on solutions 

(velocity and temperature profiles) are discussed through several graphs. The convergence of the 
method and comparison with published results is also established in this section. 

The convergence of the method is also necessary to check the reliability of the methodology. The 
convergence of the method is given in Tables 1–3 by assigning numerical values to the physical 
parameters of interest given in the appendix-D. From this we concluded that for different values of 
material parameters we get the convergence of the series solutions. The convergence of method can 
also be observed from the relative error of OHAM and ADM as given in the appendix-D in Table 4. 
Further, Table 5 in appendix-D also shows the comparison of present and published work by taking 
the magnetic parameter tends to zero and good agreement is found between the present and 
published work. 

To give a clear overview of the physical problem, Figures 2–8 are sketched. 
The impact of magnetic parameter M on the velocity profile is displayed in Figure 2. It is 

observed that the velocity profile decreases via larger M . Physically by increasing the magnetic 
parameter the Lorentz force increases. Much resistance is occurring in the motion of the fluid which 
reduces the velocity of the fluid. The effect of magnetic parameters M and the material parameter
β  on the velocity profile is shown in figure 3. Larger values of the magnetic parameter increase the 
Lorentz force which resists the motion of the fluid and thus velocity of the fluid reduce. Figure 4 
depicts the impact of of α on the velocity profile. It is remarkable to note that the parameter α  has 
accelerated effect on the velocity profiles. Physically by increasing α  would lead to reduce the 
friction forces and thus fluid moves with greater velocity.  
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Figure2. Velocity profile for various values of M when 0.3, 0.2, 2.α β δ= = =  

 

Figure 3. Velocity profile for various values of β  when 0.3, 2, 0.1.Mα δ= = =  

 
Figure 4. Velocity profile for various values of  when 0.3, 2, 0.1.Mβ δ= = =  

Thus, it is concluded that the magnetic field and the material parameter helps to slow down the 
speed of the fluid at any point of the flow domain while the non-Newtonian parameter β accelerates. 
Thus, these parameters can be applied as a controlling device for the required quality. The behavior 
of M on the temperature profile is visualized in Figure 5. From this Figure it is clear that the 
temperature profile increases with increasing values of M . Physically by increasing the magnetic 
parameter the Lorentz force increases with resisting the flow and consequently the temperature 
profile increases. It is also interesting to note that the thermal boundary thickness is an increasing 
function of magnetic parameter. The effect of Brinkman number Br in the presence and absence of 
magnetic parameter on the temperature profile is sketched in Figure 6. It is clear that the temperature 
profile increases as the Brinkman number increases. It is due to the increases of Lorentz force which 
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is a resistive force and consequently enhance the temperature profile in the middle of the annular 
zone. 

The effect of material parameter α and the non-Newtonian parameter β on the temperature 
profiles is shown in Figure 7 and 8 in the presence and absence of magnetic field, respectively. It is 
observed that the material parameter α decreases the temperature profile while the non-Newtonian 
parameter β  accelerates the temperature profile significantly, both in the presence and absence of 
magnetic field, at all the points of the melt polymer so as to make the process faster.  

 

Figure 5. Temperature profile for various of M  when 0.3, 0.2, 2.α β δ= = =  

 

Figure 6. Temperature profile for various of Br when 0.4, 0.2, 0.2, 2.Mβ δα = = = =  

 

Figure 7. Temperature profile for various of α  when 0.2, 0.2, 2.Mβ δ= = =  
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Figure 8. Temperature profile for various of β  when 0.3, 0.2, 2.M δα = = =  

5. Conclusion 

In this work, the wire coating analysis and the heat transport phenomena corresponding to the 
steady flow has been studied. The fluid is electrically conducted in the presence of applied magnetic 
field. The problem is first modeled and then solved by utilizing ADM. The result is also verified by 
OHAM. Additionally, the convergence of the method is also verified. The effect of different emerging 
parameters on the solution is discussed. The material parameter α and the magnetic parameter M
have decelerated effect on the velocity profile. The velocity profile increases with increasing β . The 
temperature profile increases with increases magnetic parameter M , Brinkman number Br  and 
the material parameter β and decreases with increasingα . At the end, the present is also compare 
with published results already available in the literature and good agreement is found. 
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Appendix A 

Analysis of Adomian Decomposition Method (ADM) 

The ADM is a steadfast method mainly used for the solution of nonlinear problems. One special 
area of application of this method is to solve equations arising when non-Newtonian fluids are 
studied. For better understanding we consider the following [38–41]: 

( ) ( )
0

,n
n

r w rw
∞

=

=  (24) 

To find the components 0, 1, 2 ,, ,..., nw w w w separately, decomposition method is used.  

For this purpose we consider the following equation: 

( ) ( ) ( ) ( ) ( ) ,t rL r L r R r Nw w w w r g r+ + + =  (25)

( ) ( ) ( ) ( ) ( ).r tL w r g r L w r Rw r Nw r= − − −  (26)
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Here 
2

2rL
r

∂=
∂

is linear operators, ( )g r is the source term, ( )Rw r is the remainder linear 

operator and ( ) is a nonlinear term. 
Applying 1

rL− on Eq. (26) to both sides, we have 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 ,r r r r t r rL L r L g r L L r L R r L rwNw w w− − − − −= − − −   (27) 

( ) ( ) ( ) ( ) ( )1 1 1
r t r rr f r L L r L R rw w L Nw rw− − −= − − − ,  (28) 

The function ( ) ,f r  arising from ( )1 ,rL g r−  after using the given boundary conditions. The 

operator ( )1 . drdrrL− =∬  is used for second order differential equations.  

The series solution of ( )w r  using ADM we have, 

( ) ( ) ( ) ( ) ( )1 1
n

0 0 0

,n r n ri
n n n

w r f r L R w r L N w r
∞ ∞ ∞

− −

= = =

= − −    (29) 

In view of Adomian Polynomials the nonlinear term ( )n
0n

N w r
∞

=
  in Eq. (29) can be expanded 

as 

( ) n
0 0

,n
n n

N w r
∞ ∞

= =

= A  (30) 

In view of Eq. (29), Eq. (30) can expand as 

( ) ( ) ( )1 1
0 1 2 3 4 0 1 2 3 0 1r rw ww w w w f r L R w w w L N− −+ + + + ……= − + + + … − + +…A A

 

(31) 

To determine the series components 0 1 2 3, , ,w w w w … , it should be noted that ADM suggest that

( )f r  in fact describe the zeroth component 0w . 

The recursive relation is defined as:  

( ) ( )0 ,w r f r=  (32) 

( ) ( ) ( )1 1
1 0 0r rr L R rw w L− − = − −  A , (33) 

( ) ( ) ( )1 1
2 1 1 ,r rr L R r Lw w− − = − −  A (34) 

( ) ( ) ( )1 1
3 2 2r rr L R rw w L− − = − −  A . (35) 

And so on. 
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Appendix B 

Analysis of Optimal Homotopy Asymptotic Method (OHAM) 

The OHAM method is widely used by a number of researchers [42-45] for getting the 
approximate solution in series form. For better understanding consider the following equation in 
nonlinear form: 

( ( ) ( )) ( ) 0, ( , ),
dw

L w r Nw r g r B w
dr

+ + =  (36) 

Where L  is a linear operator, N  is nonlinear term, r R∈  is independent variable, B  is 
boundary operator and g  is the source term. Similar to the analysis presented in [42-45] we 
construct the following set of equations for OHAM. 

[ ] ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ( ) ( )
,0

,
,,,,,,1 =








∂
∂++−+−

r

pr
prB prNrgprLpHrgprL p

ϕϕϕϕϕ
 

(37) 

Here ( )H p  is the non-zero auxiliary function and ( , )r pϕ  is a unknown function. Taking 0p =
, the homotopy in Eq. (37) gives the zero component solution i.e. 

( ) ( )  ,
r
w

wB  ,rgrL 0,0)0,( 0
0 =








∂
∂=+ϕ

 
(38) 

where the auxiliary function ( )pH  is taken as 

( ) ., CpCpCppH ...3
3

2
2

1 ++=  (39) 

CCC 321 ,, are auxiliary constants. 
For estimated solution, ( , )r pϕ is expanding with respect to p  by using Taylor series. 

0
1

( , , ) ( ) ( , , ) ,  1, 2,3...k
i k i

k

r p C w r w r p C p iϕ
∞

=

= + =  (40) 

By using Eqs. (39) and (40) into Eq. (37), and equating the coefficient of like power of p , the zero 
order problem is given in Eq. (38). The first and second order problems are as follows: 

( )( ) ( ) ( )( ) ( )
 ,

dr

rwd
wB  ,rwNCrgrwL 0, 1

10011 =





=+

 
(41) 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )[ ] ( ) ( )
 ,

dx

rwd
rwB  ,rwNrwLCrwNCrwLrwL 0, 2

2111100212 =





++=−

 
(42) 

The general 

1

1 0 0 1 0 1
1

( ( )) ( ( )) ( ( )) [ ( ( )) ( ( ), ( ),...,
k

k k k i k i k
i

L w r L w r C N w r C L w r N w r w r
−

− − −
=

− = + +

B( , ) 0,  2,3,...k
k

dw
w k

dr
= =  

(43) 
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Here 1 0 1 1( ( ), ( ),..., ( ))k kN w r w r w r− − are the coefficient of ikp −  in expansion of ( )).,( prN ϕ  

( )( ) ( )( ) ( ) ( ) ( )( ) .....,,, 10
1

100
ik

ik
m

iki prwrwrwNrwNCprN −
−

∞

=
=−+=ϕ

 
 

(44) 

The convergence of Eq. (44) depends upon the auxiliary constant and order of the problem. If it 
converges at ,1=p one has: 

1 2 3 0 1 2 3
1

( , , , ,... ) ( ) ( , , , , ... ).
m

m i m
i

w r C C C C w r w r C C C C
=

= +  (45) 

In view of Eqs. (45) and Eq. (36) we have: 

( ) ( )( ) ( ) ( )( ), , ,i i iR r C L w r C g r N w r C  , i 1,2..m= + + =
 

(46) 

Many methods such as Ritz Method, Method of Least square, Collection and Galerkin’s method 
are used for the solution of auxiliary constants. 

Here we use the Least square method to find the auxiliary constant [43-45]: 

( ) ( )dr,CCCrRCCCJ m

b

a

m ,...,,,..., 21
2

21 =
 

(47) 

in the above equation  and are constant values taking from the domain of the problem. 
The auxiliary constants mCCC ,..., 21  can be obtained from the following relation: 

.0...
11

==
∂
∂=

∂
∂

C

J

C

J

 
(48) 

Finally, from the solutions of Eq. (36), the approximate solution is well-determined. 
Many researchers such as Zeeshan [37, 41] and Marinca et al. [43-45] applied this method for 

solving highly nonlinear boundary value problem.  

Appendix D 

Table A1. Convergence of the method for 0.2, 0.1, 0.01, 2.iMα β δ= = = =  

 Ist Order Second Order 
1 0 0 

1.1 3.90E − 9 2.0E-10 
1.2 8.44E − 9 3.0E-10 
1.3 3.74E − 10 9.2E-10 
1.4 6.70E − 10 1.4E-12 
1.5 8.22E −10 1.0E-12 
1.6 8.58E −11 2.0E-12 
1.7 8.22E − 11 1.2E-13 
1.8 6.70E −11 7.0E-13 
1.9 3.74E −11 2.0E-15 
2 8.44E − 14 -5.0E-17 
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Table A2. Convergence of the method for 0.3, 0.2, 0.1, 2.iMα β δ= = = =  

 Ist Order Second Order 
1 0 0 

1.1 7.51E-14 7.93E-16 
1.2 2.77E-12 2.21E-14 
1.3 1.73E-11 1.11E-13 
1.4 5.02E-11 2.46E-13 
1.5 9.34E-11 3.12E-13 
1.6 1.28E-10 2.43E-13 
1.7 1.39E-10 1.15E-13 
1.8 1.23E-10 1.40E-14 
1.9 -7.50E-11 1.97E-14 
2 1.95E-11 2.26E-13 

Table A3. Convergence of the method for 0.4, 0.3, 0.2, 2.iMα β δ= = = =  

 Ist Order Second Order 

1 0 0 
1.1 3E-11 2.64E-09 
1.2 0 5.03E-09 
1.3 -1E-10 6.92E-09 
1.4 2E-10 8.14E-09 
1.5 1.1E-09 8.55E-09 
1.6 4.4E-09 8.14E-09 
1.7 1.35E-08 6.92E-08 
1.8 3.68E-08 5.03E-10 
1.9 9.01E-08 2.64E-11 
2 2.027E-07 -9.53E-13 

Table A4. Numerical comparison of OHAM and ADM when 

1 2 3 40.3, 0.001652328, 0.00173421, 0.0010243621, 0.00018253410.2, 2, 0.1, .C C C CMβ δ= α == = − = == = −  

 OHAM ADM Absolute Error 

1 1 1 0 
1.1 0.001524394 0.001524371 0.0125× 10  
1.2 0.001352091 0.001352171 0.004× 10  
1.3 0.006210390 0.006230392 0.872× 10  
1.4 0.011607241 0.011606221 0.101× 10  
1.5 0.010442045 0.010442141 0.712× 10  
1.6 0.001520519 0.001522512 0.101× 10  
1.7 0.006014981 0.007214980 0.106× 10  
1.8 0.000304513 0.000304511 0.103× 10  
1.9 0.0000114221 0.0000114221 0.001× 10  
2.0 0.00001× 10  0.00013× 10  0.001× 10  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2017                   doi:10.20944/preprints201701.0052.v1

Peer-reviewed version available at Coatings 2017, 7, 15; doi:10.3390/coatings7010015

http://dx.doi.org/10.20944/preprints201701.0052.v1
http://dx.doi.org/10.3390/coatings7010015


 14 of 16 

Table A5. Velocity comparison of the present work with published work [20] when 
0.2, 0.1, 0.0, 2.Mα β δ= = = =  

 OHAM [20] Absolute Error 

1 1 1 0 
1.1 0.0011703 0.0011712 0.0000009 
1.2 0.0002104 0.0002125 0.0000021 
1.3 0.0300722 0.0300710 0.0000012 
1.4 0.0216071 0.0216012 0.0000059 
1.5 0.0104212 0.0104221 0.0000009 
1.6 0.0015412 0.0054533 0.0039121 
1.7 0.0071200 0.0071401 0.0000201 
1.8 0.0035020 0.0035013 0.0000007 
1.9 0.0137500 0.0137521 0.0000021 
2 0 0 0 
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