
MICROBIOLOGY

AN INTRODUCTION

Ch 24 Microbial Diseases of the Respiratory **System**

LEARNING OBJECTIVES

- Describe how microorganisms are prevented from entering the respiratory system
- Characterize the normal microbiota of the upper and lower respiratory systems
- Differentiate among pharyngitis, laryngitis, tonsillitis, and sinusitis
- List the causative agent, symptoms, prevention, preferred treatment, and laboratory identification tests for streptococcal pharyngitis, diphtheria, and otitis media.
- List the causative agents and treatments for the common cold.
- List the causative agent, symptoms, prevention, preferred treatment, and laboratory identification tests for pertussis and tuberculosis.
- Compare and contrast the seven bacterial pneumonias discussed in this chapter.
- List the causative agent, symptoms, prevention, and preferred treatment for viral pneumonia and influenza.
- List causative agent, mode of transmission, preferred treatment, and laboratory identification tests for two fungal respiratory system diseases.

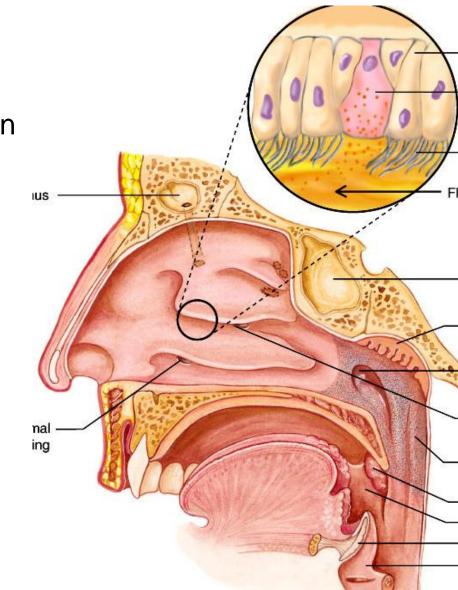
Normal Respiratory Tract Flora

- can include pathogens.
- Lower respiratory system is usually sterile because of muco-ciliary escalator action.

Genus	Characteristics
Staphylococcus	Gram-positive cocci in clusters
Corynebacterium	Pleomorphic, Gram-positive rods; nonmotile; non-spore-forming genera
Moraxella	Gram-negative diplococci and diplobacilli
Haemophilus	Small, Gram-negative rods
Bacteroides	Small, pleomorphic, Gram-negative rods
Streptococcus	Gram-positive cocci in chains

Microbial Diseases of the Upper Respiratory System

- Specific areas of the upper respiratory system can become infected
- The infections may be caused by several bacteria and viruses, often in combination
- Most respiratory tract infections are self-limiting

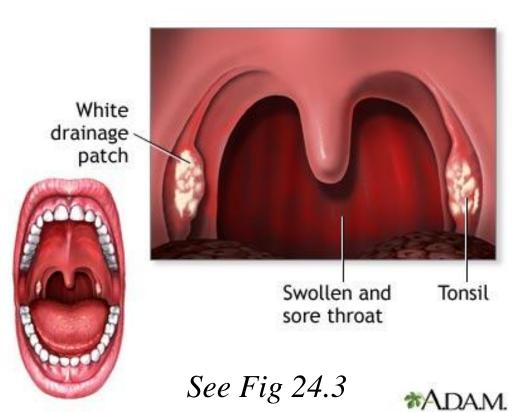

Laryngitis:

- S. pneumoniae
- S. pyogenes
- viruses

Tonsillitis:

- S. pneumoniae
- S. pyogenes
- viruses

Sinusitis: Bacteria

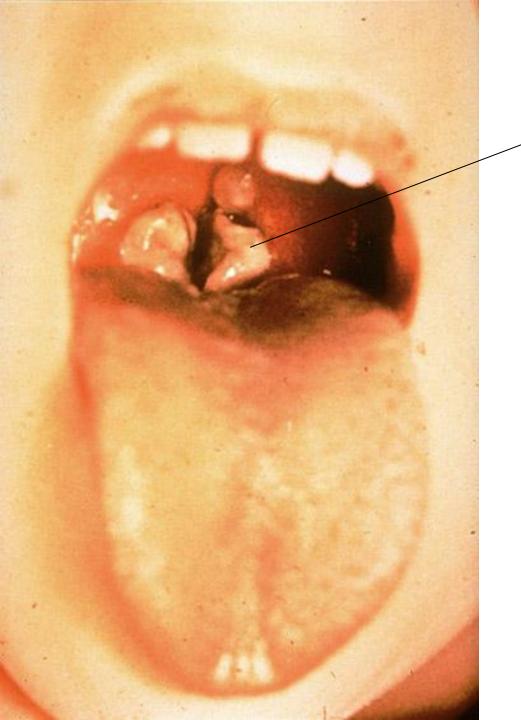

Strep throat

β - hemolytic - Group A (GAS) streptococci: *S. pyogenes* Droplet Transmission

Symptoms: Sore throat, high fever, coughing, swollen LN, otitismedia may also occur

The **Rapid Strep Test** detects presence of a unique Group A Streptococcus ag.

Penicillin is used to treat streptococcal pharyngitis.

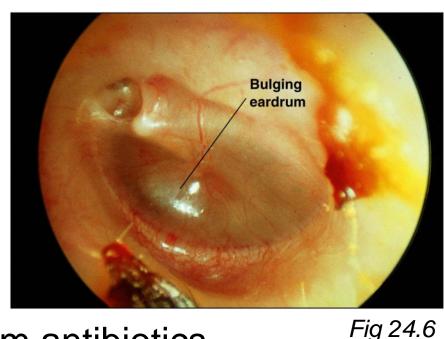

Complications of Strep Throat

- S. pyogenes causes two major nonsuppurative autoimmune complications (antibodies cross-react)
- Acute rheumatic fever (read page 676): Short period of arthritis and fever followed in ~ 50% of affected by rheumatic heart disease ⇒ heart valve damage ⇒ chronic valvular disease (stenosis and/or incompetence) ⇒ heart failure and/or subacute bacterial endocarditis
- 2. Acute poststreptococcal glomerulonephritis

Diphtheria

- Corynebacterium diphtheriae
- Pseudomembrane formation (fibrin, dead tissue and bacteria)
- Not very invasive, but prophage encoded exotoxin inhibits protein synthesis ⇒ absorbed into blood ⇒ heart, nerve and kidney damage
- DTaP
- Boosters every 10 years

Pseudomembrane on tonsils


can lead to respiratory blockage.

See Fig 24.5

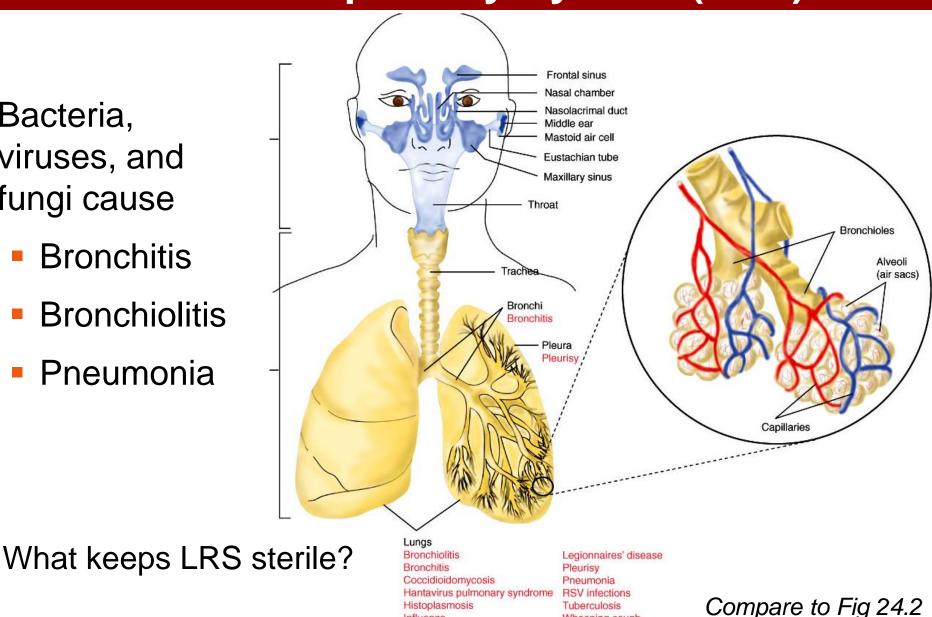
Otitis Media

- Complication of nose and throat infections
- Pus accumulation causes pressure on the eardrum
- Bacterial causes include
- S. pneumoniae (35%)
- *H. influenzae* (20-30%)
- M. catarrhalis (10-15%)
- S. pyogenes (8-10%)
- S. aureus (1-2%)

- Treated with broad-spectrum antibiotics
- Incidence of S. pneumoniae reduced by vaccine

Common Cold

About 200 different viruses can cause the common cold:


- ✤ ~ 50% of cases caused by **rhinoviruses** (>100 types)
- ~ 15-20% caused by coronaviruses
- Many additional cold viuses (Parainfluenza *Paramyxoviridae* Corona-, Coxsackie-, Echo-, Reovirus)
- Symptoms: Sneezing, nasal secretions and congestion
- Possible complications: Sinus infections, lower respiratory tract infections, laryngitis, otitis media
- In some children: **Croup** (breathing difficulty accompanied by a "barking" cough)
- Why no Vaccine for common cold?
- Incidence of colds 1 during cold weather, due to increased interpersonal indoor contact and/or physiological changes
- Antibodies are produced against the specific viruses

Bacterial Diseases of the Lower Respiratory System (LRS)

Influenza

Bacteria, viruses, and fungi cause

- Bronchitis
- Bronchiolitis
- Pneumonia

Whooping cough

Bacterial Diseases of the LRS

- Pertussis (Bordetella pertussis)
- Tuberculosis (Mycobacterium tuberculosis)
- Common Bacterial pneumonias:
 S. pneumoniae, typical pneumonia
 - ≻H. influenza
 - > Mycoplasma pneumoniae
 - > Legionella pneumophila

Chlamydophila psittaci

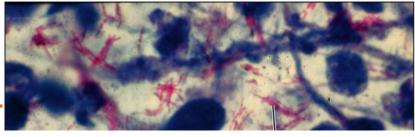
Atypical pneumoniae

Gram -, coccobacillus

Whooping Cough

Bordetella pertussis, highly contagious Various toxins:

- Tracheal cytotoxin damaged ciliated cells
- Pertussis toxin enters blood → systemic symptoms
- Three stages of disease
- 1. Catarrhal stage resembles a cold
- Paroxysmal stage due to accumulation of mucus in trachea and bronchi ⇒ deep paroxysmal coughs (brain and eye hemorrhage)


3. Convalescence stage can last for months

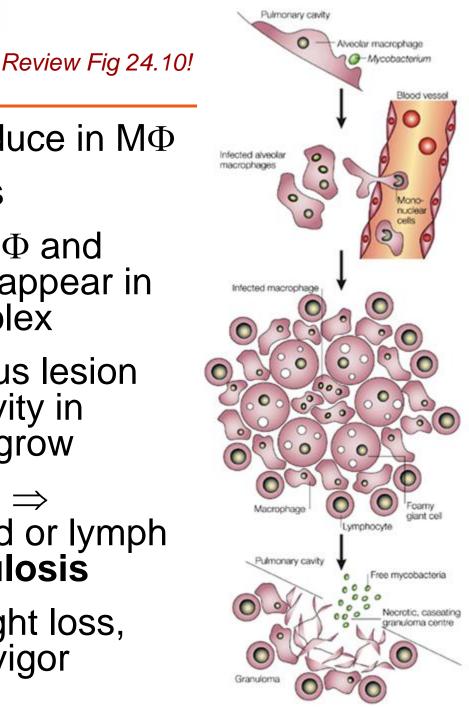
Laboratory diagnosis based on isolation of bacteria on enrichment and selective media, followed by serological tests

Vaccination available: DPT and new acellular DTaP

Tuberculosis (Consumption)

- Mycobacterium tuberculosis: transmitted from human to human via aerosol
- M. bovis: <1% U.S. cases, usually extrapulmonary, affecting bones or lymphatic system (Pott disease)
- M. avium-intracellulare complex infects people with late stage HIV
- Mycobacteria \rightarrow resistant to drying and disinfectants
- BCG vaccine: live, avirulent *M. bovis*
- Tuberculin (Mantoux) test: inject PPD and wait for delayed hypersensitivity reaction (problem: BCG vaccination!)

Tuberculin test Diagnostic tool for pre-symptomatic Tuberclosis


PPD (taken from dead TB bacteria) is injected into the area

Purified protein derivative

ADAM

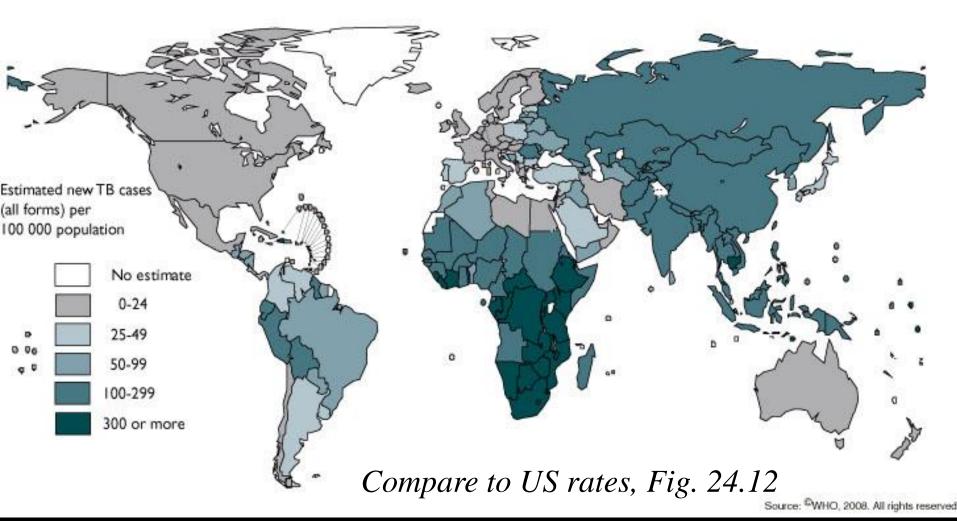
TB Pathogenesis

- *M. tuberculosis* may reproduce in $M\Phi$ Lesions formed = tubercles
- Liquefaction of the caseous lesion results in a tuberculous cavity in which *M. tuberculosis* can grow
- ruptures of caseous lesion ⇒ bacteria released into blood or lymph vessels ⇒ miliary tuberculosis
- Miliary tuberculosis ⇒ weight loss, coughing of blood, loss of vigor

Granulomas from Mycobacterium tuberculosis

Miliary Tuberculosis

Chemotherapy


- 3 or 4 drugs taken for at least 6 months
- MDR-TB becoming prevalent!

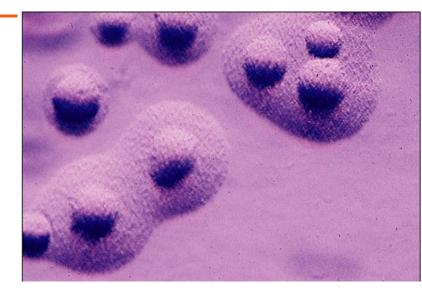
DOTS has FIVE key components:

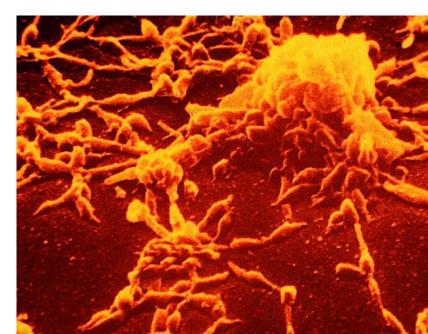
- **1.** Political commitment
- 2. Good quality diagnosis (sputum-smear microscopy)
- 3. Good quality drugs (2 most powerful:rifampin, isoniazide)
- 4. 6-8 month chemotherapy given under direct observation
- **5.** Systematic monitoring and accountability

Tuberculosis, 2005

Each year, 1% of the global population is infected. 5-10% of infected get sick or infectious. 1.6 Mio died in 2005 Populations infected:

Africa: 35%; Americas: 18%; Europe: 15%; South-east Asia: 44%


Typical pneumonia: Pneumococcal Pneumonia



- Encapsulated S. pneumoniae
- Can be identified by production of alpha-hemolysins, inhibition by optochin, bile solubility, and through serological tests
- Aerosol inhalation from asymptomatic carriers → illness due to immune suppression, smoking, viral infection *etc.*
- Symptoms: fever, breathing difficulty, chest pain, rustcolored sputum
- 80% of bacterial pneumoniae (esp. elderly)
- Penicillin, but multi drug resistance increasing
- Vaccine for 23 most common (of > 90) strains

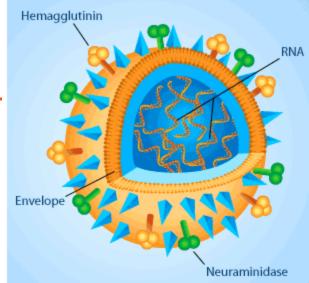
Mycoplasmal Pneumonia – also known as Primary Atypical Pneumonia or Walking Pneumonia

- Mycoplasma pneumoniae, pleomorphic, wall-less
- Mycoplasma produce small "fried-egg" colonies after two weeks' incubation on enriched media containing horse serum and yeast extract
- Common in children and young adults – often mild enough to go undiagnosed for long periods of time
- Diagnosis: PCR or serological tests (IgM antibodies)

Legionellosis or Legionnaires' disease

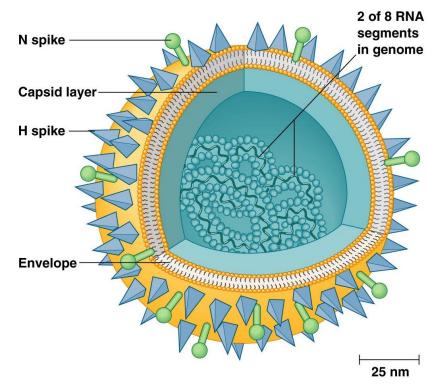
- Legionella pneumophila, Gram– rod
- First discovered in 1976 among a group of elderly men attending an American Legion Convention in Philadelphia
- The bacteria grow in water (pools, lakes, water systems of buildings, air conditioning units, etc.) then disseminated in the air
- Transmission by inhaling aerosols; no person to person transmission
- Diagnosis: Bacterial culture, FA tests, DNA probes
- Pneumonia and pleurisy (15 20% mortality rate when hospitalized)
- Treatment: Erythromycin

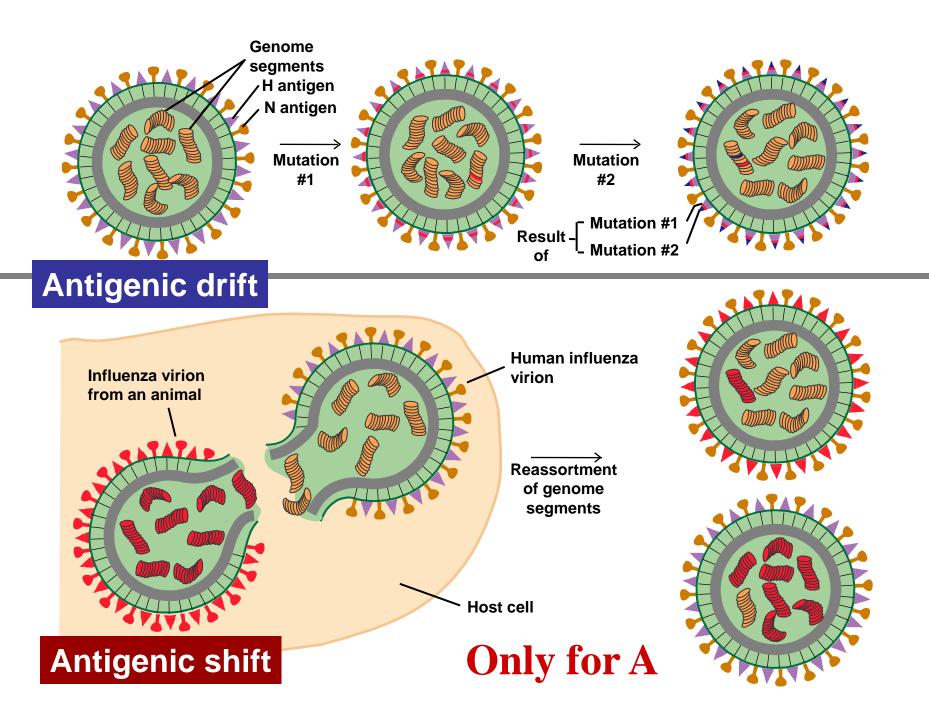
Viral Diseases of the Lower Respiratory System (LRS)


- Several viruses can cause pneumonia as a complication of infections such as influenza, measles, or chickenpox
- Etiologies are not usually identified in a clinical laboratory because of the difficulty in isolating and identifying viruses.
- Viral etiology suspected if no cause determined.

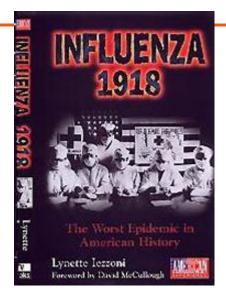
Respiratory Syncytial Virus:

- Most common cause of pneumonia in infants 4,500 deaths annually
- Causes cell fusion (syncytium) in cell culture
- Symptoms: Coughing
- Diagnosis by serologic test for viruses and antibodies
- Treatment: Ribavirin


Influenza

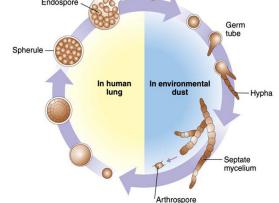

- Influenzavirus, ssRNA, 8 segments
- Symptoms: Chills, fever, headache, muscle aches (no intestinal symptoms)
- Viral strains identified by antigenic differences in the H and N spikes
- Also divided by antigenic differences in protein coats:
 - Type A → mammals and birds (most severe and extensive); currently most common antigenic variants of influenza A virus: H1N1 and H3N2
 - Types **B** and $C \rightarrow$ humans only
- Viral isolates identified by HI and IF testing with monoclonal antibodies

Hemagglutinin and Neuraminidase


- Hemagglutinin (H) spikes used for attachment to host cells
- Neuraminidase (N) spikes used to release virus from cell
- H and N are virulence factors and antigens
- Mutations in H and N leads to **antigenic shifts** (major changes only for type A) or **antigenic drifts** (minor changes for all types) ⇒ natural immunity and vaccination obsolete

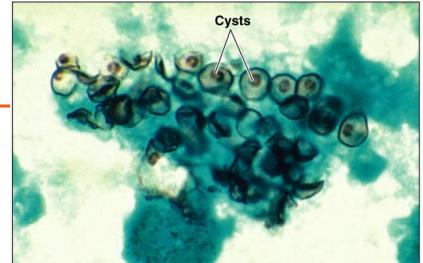
Prevention and Treatment

- Wide spread epidemics due to antigenic shifts → Pandemics
- Symptoms and Diagnosis
- Complications often due to bacterial secondary infections (??) ~ 50,000 – 70,000 deaths/year in US - also Guillain-Barré and Reye's syndrome
- Vaccine produced in chicken embryos: flu shot and nasal spray (LAIV)
- Four antiviral drugs currently approved by FDA to treat acute, uncomplicated influenza


Fungal Diseases of the Lower Respiratory System (LRS)

- Fungal spores are easily inhaled; they may germinate in the lower respiratory tract
- The incidence of fungal diseases has been increasing in recent years
- Mycoses in the sections below can be treated with amphotericin B
 - Coccidioidomycosis
 - Pneumocystis Pneumonia

Coccidioidomycosis = Valley Fever


- Coccidioides immitis,
- Airborne transmission
- Most cases are subclinical, some get respiratory infection with flu-like symptoms
- In < 1% of cases (due to predisposing factors, such as fatigue, poor nutrition, *etc.):* progressive, disseminated disease form resembling TB
- Diagnosis: serological tests
- 97% of reported cases are from California and Arizona

Pneumocystis Pneumonia (PCP)

Pneumocystis jiroveci (P. carinii), tiny fungus

Commonly found in nature, healthy human lungs and animals → Aerosol transmission

Illness and death in newly infected infants and immunosuppressed individuals

Used to be leading cause of death in AIDS patients – now preventive drug therapy

Diagnosis: detection of cysts in sputum samples