
Microcontrollers in Music HCI Instruction

Reflections on our Switch to the Atmel AVR Platform

Scott Wilson
CCRMA, Department of Music

Stanford University
Stanford, California USA

rswilson@ccrma.stanford.edu

Michael Gurevich
CCRMA, Department of Music

Stanford University
Stanford, California USA

gurevich@ccrma.stanford.edu

Bill Verplank
CCRMA, Department of Music

Stanford University
Stanford, California USA

verplank@ccrma.stanford.edu

Pascal Stang
Department of Electrical Engineering

Stanford University
Stanford, California USA
pstang@stanford.edu

ABSTRACT
Over the past year the instructors of the Human Computer
Interaction courses at CCRMA have undertaken a technol-
ogy shift to a much more powerful teaching platform. We
describe the technical features of the new Atmel AVR based
platform, contrasting it with the Parallax BASIC Stamp
platform used in the past. The successes and failures of
the new platform are considered, and some student project
success stories described.

Keywords
Microcontrollers, Music Controllers, Pedagogy, Atmel AVR,
BASIC Stamp

1. INTRODUCTION
Every year since 1996, CCRMA has offered a course fo-

cusing on human-computer interaction. After the early ver-
sions of the course which involved teleconferencing with San
Jose State and Princeton, it became Stanford’s ”course on
controllers”, offering a hands-on approach to interaction de-
sign for musical applications. Until this past year, the core
technology was Parallax’s BASIC Stamp BS2SX[6] in con-
junction with an analog-to-digital converter (ADC) such as
Maxim’s Max1270[4] and a variety of sensors[11]. In the
summer of 2002 CCRMA introduced a new workshop: Phys-
ical Interaction Design for Music (PIDM), a two-week sum-
mer course using a new technology platform based on the
Atmel AVR microcontroller[1]. That platform was subse-
quently upgraded and further developed for the controllers
course in the fall. The switch has proved largely successful,
providing many advantages over the previous platform, and
resulting greatly improved student work. It is the authors’
hope that this paper will facilitate a dialogue among educa-
tors to discuss and assess the merits of different technologies
being used for teaching in this field. Furthermore, we hope
that this paper will provide motivation for others to frankly
evaluate current technologies and make appropriate changes
where they are needed.

In both the PIDM and HCI courses, a series of simple

exercises are done to introduce sensors, signal-conditioning,
microcontroller programming, communication, music pro-
gramming. In addition, they are all done in the context
of measuring human performance: latency, repetition-rate,
logarithmic thresholds. Finally, a framework is presented
for organizing a user-interface design project. All of these
are reported in our first NIME paper[11].

2. OVERVIEW OF MICROCONTROLLERS
The AVR series of microcontrollers is a recent addition

to the field of 8-bit microcontrollers. Table 1 compares sev-
eral of the most commonly used microprocessor technologies.
The Intel 8051- and Motorola HC11-based processors have
long histories, numerous derivatives in the case of the 8051,
and are widely used in embedded systems. The PIC and
AVR series are more recent technologies that have also be-
come firmly established in embedded systems. The AVR line
has several key advantages over the PIC line with which it
is clearly designed to compete. Most importantly, the AVR
core is 4 time faster than the PIC due to its remarkable sin-
gle clock cycle instruction execution speed. The AVR core
was also designed with attention to the requirements of C
compilers. As a result, it has strong compiler support from
Atmel and the maturation of its open source compiler and
tool chain has been much faster and has far surpassed that
of PIC. The AVR’s ISP (In System Programming) support
saves time and reduces damage to chips by minimizing the
number of times they are inserted and removed from a cir-
cuit.

All of the processors in Table 1 belong to large families of
chips with varying features built into each of them. All have
variants with on-board A/D conversion, SPI, I2C and UART
support. The HC11 is notably supported as a compile target
in Metrowerks CodeWarrior, a widely used cross-platform
compiler for embedded systems and main-stream operating
systems.

The BASIC Stamp is fundamentally different from these
processors in that it embeds a microprocessor and its in-
struction set is entirely emulated. Therefore, it has been
omitted from the table, but it will be discussed in detail in



AVR PIC Intel 8051 Motorola HC11
Architecture Harvard Harvard Harvard Von Neumann
Instruction Set RISC RISC CISC CISC
Avg. Clock Cycles 1 4 24 16
per Instruction
Std. Clock Speeds 8,16Mhz 10,20,40Mhz 12Mhz 8Mhz
MIPS 8,16 2.5,5,10 0.5 0.5
Memory flash flash,OTP flash,OTP flash,OTP
Technologies EEPROM,ROMless EEPROM,ROMless
Typ. Program ROM 16KB 4KB 4KB 8KB
Accumulator No Yes Yes Yes
gcc support Yes No No Yes

Table 1: Comparison of commonly used microprocessors.

the following section.

3. PREVIOUS PLATFORM
- PARALLAX BASIC STAMP

The BASIC Stamp[6] is an excellent teaching tool and is
certainly the most self-contained microcontroller platform
on the market. The typical BASIC Stamp1 comes in a 20-
pin DIP package with 16 general purpose digital I/O pins.
The user programs the chip in BASIC on a Windows PC us-
ing Parallax’s compiler and monitor software. The Stamp’s
EEPROM program memory is then programmed via an RS-
232 serial connection. The serial connection also serves to
transmit run-time data and debug messages back to the
monitor software on the PC.

The Stamp BASIC interpreter provides a set of special
purpose commands in addition to a minimal BASIC lan-
guage implementation. Notable feature examples include
serial input and output on any pin, X10 lighting device con-
trol, pulse width modulation output and RC filter time con-
stant measurement.

Two critical weaknesses of Stamp BASIC are the inability
of the multiplication and division operators to handle nega-
tive numbers, and the lack of floating point support. Fixed
point operations which are fundamental to C and assembly
programs are also costly to implement in Stamp BASIC.2

The processor executes at a slow rate of approximately
4,000 instructions per second. This slow execution time is
the most evident result of the overhead involved in provid-
ing such a friendly onboard interpreter. For many appli-
cations such as traditional buttons and display interfaces,
simple robotics, and low-rate data acquisition and reporting
this execution rate is not a problem. However, as students
refined and attempted to scale their projects or strove for

1Our most recent teaching experience with the BASIC
Stamp was with the BS2SX. Parallax has since released two
relevant chips, the BS2P and the Javelin stamp. The BS2P
is reported to be 20% faster, has an optional 40-pin package
doubling the number of available I/O pins, interfaces di-
rectly to parallel LCD modules, I2C chips, One Wire chips,
and supports interrupt-driven programming. The Javelin
stamp is programmed in a subset of the Java programming
language and has significantly larger RAM and program
EEPROM, both essential to support the higher level lan-
guage.
2These problems have been partially addressed in the
BS2SX and BS2P series.

optimized low-latency performance, the speed of the Stamp
became a barrier to further progress. Unfortunately, there
is no easy way to upgrade, no incremental step up to a more
powerful or better suited processor in the Stamp line with-
out significantly revising a student’s initial work investment.

We encountered several problems in using the Stamp as
the platform for our courses. Particularly in our academic
courses, fewer and fewer students have previous experience
with BASIC. Many of them come in with existing knowledge
of C and / or a higher level language such as Java. For these
students learning BASIC is frustrating because it is very
limited, has a more confusing syntax, and violates many of
the stylistic rules they have already learned.

The lack of flexible encapsulation mechanisms in BASIC
affects our ability to provide and refine program building
blocks for the students. BASIC encourages monolithic pro-
grams and cut and paste coding whereas the C paradigm is
functional and more structured.

The extremely small RAM and ROM memory space avail-
able on Stamp processors is also a limiting factor. Even sim-
ple applications can exceed the available memory resources
of RAM and ROM.

Another significant downside to the Stamp is in the cost
per chip. At approximately 60$ US per unit, costs mounted
quickly given that chips were getting accidentally burned out
at a rate of about one a week. The final serious drawback to
the Stamp platform was the lack of a Linux version of the
programming software. In our primarily Linux-equipped lab
this was a serious bottleneck during lab sessions3.

4. CURRENT PLATFORM - ATMEL AVR

4.1 Hardware
Our current hardware platform is based on the Atmel

AVR ATmega163 8-bit RISC microcontroller4. We use the
AVR on a custom-designed small-footprint board[10] and
program it from Linux and Windows platforms, with Mac-
intosh OS X programming also possible. The AVR series has
a large active user base ranging from professional embedded-

3At the time of writing, Parallax has finally released a Linux
and Macintosh-supported development library for creating
IDEs on those platforms.
4At the time of writing the ATmega163 has been replaced by
the pin-compatible ATmega16 which supports clock speeds
of up to 16MHz, the low power ATmega16L now has a max-
imum speed of 8MHz.



Figure 1: Prototyping Kit

systems designers to hobbyists. One of the most important
products of that community has been the AVR’s inclusion as
a standard build target in the open source Gnu gcc compiler.

4.1.1 The Processor
The AVR ATmega163 microcontroller has a maximum

clock speed of 8MHz and the majority of its instructions
complete in a single cycle thus providing assembly code per-
formance near 8 MIPS. Translated into C instructions, we
can estimate the execution at a factor of ten slower, still
significantly faster than the speed of the Stamp.

The ATmega163 has 16KB of flash program memory, 1KB
of data SRAM, and 512 bytes of EEPROM memory5. The
processor has several interrupt sources so the program may
respond to a number of internally and externally-generated
events such as timer overflows and the completion of ADC
or serial communication operations. The AVRlib[9] function
library allows us to package the handling of these interrupts
in a straightforward manner which the students quickly learn
to use.

Standard microcontroller features found on most of the
ATmega series of AVR microcontrollers include an interrupt-
controlled UART for serial communication and three inde-
pendant hardware timers, one of which can be synchronized
to an external Real Time Clock (RTC) oscillator. The RTC
clock facilitates developing programs that deal in minutes,
seconds, and fractions of seconds, useful in many music ap-
plications. The processor also supports up to three channels
of Pulse Width Modulation (PWM) output. The ATmega
processors support the I2C and SPI communication proto-
cols facilitating the addition of external peripheral ICs such
as EEPROMs, programmable logic devices (PLDs) and dig-
ital to analog converters (DACs).

We chose the AVR series of processors for the cost, mem-
ory size, speed, and availability of linux supported develop-
ment tools. Specifically, we selected the ATmega163 for its
eight channels of integrated 10-bit analog to digital conver-
sion (ADC). Having integrated ADCs simplifies the task of
reading continuous sensor circuits. The processor provides

5The flash memory stores the compiled program code, the
SRAM holds run-time data, and the EEPROM is intended
for storing calibration information or other data that must
persist over power interruptions.

Figure 2: The AVRmini Development Board (top)

Figure 3: AVRmini (bottom)

several choices of analog voltage reference for the ADC in-
cluding an external reference, simplifying the task of scaling
the sensor signals. The conversions complete in as little as
65µs, amply fast for the design of low latency physical inter-
faces. The ADC support was the most heavily used feature
in many student projects.

4.1.2 The Development Board - AVRmini
We use a development board designed by Pascal Stang

called the AVRmini[10] to hold the ATmega163 micropro-
cessor. The AVRmini provides convenient access to the I/O
ports of the processor via blocks of headers. The headers en-
able individual pins or entire I/O ports to be connected to a
wireless prototyping board using jumper cables. Sensors are
also easily connected directly to the pins of the AVRmini
using jumpers. The board has resistor packs protecting all
of the I/O pins by default which can be selectively disabled
by installing bypass jumpers. This simple addition protects
the microprocessor from damage caused by incorrect wiring
of the I/O pins. We haven’t had any processors ruined this
way yet, a much better record than we had using Stamp
chips.

The AVRmini provides a header to connect an industry-
standard character LCD module using four or eight I/O
lines. The LCD modules are ubiquitous and inexpensive
when purchased from surplus electronics shops. They are a
valuable tool for displaying debugging information and for
projects requiring state display. The AVRlib[9] library pro-
vides several convenient options for output to the LCD. The
built-in set of four LEDs and four pushbuttons on the AVR-
mini may be connected via jumper cables to any of the I/O
ports. This functionality has proven useful especially in the
early stages of learning about the processor, the board and



basic pushbutton and light circuits. The board provides an
RTC clock crystal for clocking the third timer which can be
enabled via jumpers.

Compiled code is downloaded to the microprocessor from
a computer using an RS-232 serial connection. The AVR-
mini provides two RS-232 connectors. Either one can be
patched to the UART so that the programming interface
and a serial communications link may be kept connected
simultaneously.

The AVRmini supports all 40-pin DIP and 64-pin QFP
processors in the AVR series providing flexibility in choosing
a processor with features suited to the specific application.
Provision is also made for a bank of external SRAM of up
to 512KB. An efficient switching voltage regulator prolongs
battery life for autonomous applications and a separate ana-
log voltage reference regulator may also be installed on the
board.

4.2 Software
We have used Linux almost exclusively for the program-

ming and performance of the instruments created in these
courses because CCRMA’s systems are nearly all Linux-
based. An IDE for the AVR exists for Windows, and thanks
to the open source tool chain built around gcc[2], our devel-
opment environment is programmable from all of the mod-
ern operating systems in use today.

4.2.1 Compiler and Loader
Programs are written in C with the addition of special

purpose macros for the AVR. A makefile automates the
process of compiling the AVR C code, linking it with the
standard C library and the AVRlib library, generating the
memory map and hex code files, and uploading them into
the processor. The compiled program is uploaded to the
processor using the command line utility uisp[7]. Using C
enables us to provide the students a library of functions with
a consistent interface. As a result, we are able enhance the
library and fix bugs without disrupting the students’ work
flow. While both cut-and-paste code and function libraries
are likely to contain code the student does not understand,
they can be encouraged to read the code in the library with-
out the danger of their introducing bugs into that part of
the code as often happens with monolithic programs.

This is a good example of a case where we can simplify
the process for students to make initial operation painless,
while keeping everything accessible should they decide to dig
deeper. A student can open up the makefile we provide and
begin to customize it to suit their needs. By investigating
what the makefile and compiler are doing, students can look
into the disassembled source code, the memory map, and
the hex code files that are generated from the compilation
of their C code.

4.2.2 Support Library - AVRlib
Pascal Stang’s AVRlib[9] library of C support routines is

extensive and invaluable for work on this platform. AVRlib
includes functions wrapping many of the standard features
of the AVR processors. These include support for manag-
ing the timers, using the A/D converters, the UART, SPI
and I2C interfaces, and the PWM outputs. General pur-
pose code in the library provides bit and byte oriented data
buffers, an implementation of a convenient C-style printf
function, and terminal emulation facility. There is also sup-

port for specific peripherals including character and graph-
ical LCD modules, external SRAM, GPS, ATA hard drives
and an MP3 player! This monumental library continues to
grow and improve as Pascal uses it in his own teaching and
personal projects.

4.2.3 Control Output
In an effort to provide the students a flexible set of options

for the output of their controllers we supported both MIDI
and Open Sound Control (OSC)[5]. For MIDI, the standard
MIDI output circuit was attached to the UART pin of the
processor and wrapper functions for the UART library rou-
tines were provided to give the students functions for stan-
dard MIDI message types. OSC support was achieved by
compiling the OSC message construction code and a similar
set of wrappers around the UART library functions. The
OSC messages were received on the Linux computers via
RS-232 serial rather than a midi interface. The OSC UDP
receiving object for Pd[8] was modified to create an object
called OSCSerial that receives messages from the serial port
rather than the network[13]. Here, again, students can send
MIDI or OSC messages with a single C function call, but
have access to the libraries to see exactly what is going on
behind the scenes and customize these functions if desired.

In the two courses we have taught using this platform,
Pd has been the software of choice for designing the musical
side of the projects because of its availability and popularity
at CCRMA. Several users have also used the MIDI output
functionality to communicate with Max, Pd and commercial
music gear.

4.3 Motivation for Switching
The aforementioned limitations of the Stamp platform

and the lack of Linux software were the initial motivating
factors for seeking a new teaching platform. As we consid-
ered options for the new platform we realized the benefits
of choosing a platform with a stronger more structured pro-
gramming approach, where C in particular provides a wealth
of existing free code that can be ported, modified and ap-
propriated at will. Using gcc as the compiler is also an ad-
vantage because it provides a coherent transition from pro-
gramming C in Linux and Mac OS X to programming for the
AVR. Equipment cost was another key factor in our switch
as a fully outfitted AVRmini board with an ATmega163 pro-
cessor costs roughly the same as a BS2P Stamp processor.

Pros Cons
Thorough docs Costly, easily damaged,

BASIC geared to students, slow execution speed,
Stamp self-contained platform, small memory size,

no dev. board needed, closed platform,
simple to program. Windows dependant.
Fast execution, Student must confront

Atmel low cost, large family, and understand a
AVR programmable in C, complex architecture,

gcc / linux integration, documentation sparse,
on-board A/D. written for engineers.

Table 2: Summary of platform pros and cons.

5. OUR EXPERIENCES



Figure 4: Beat Matrix

A recurring theme in our course has been ”Why Micro-
controllers?”. In other words, why not give students a black
box that does 8 channels of A/D conversion on 0-5V sig-
nals and generates MIDI messages? The short answer is
pedagogical. Using a programmable microcontroller allows
the students to learn about computer architecture, digital
logic, programming, A/D conversion and serial and paral-
lel communication protocols. In learning to program and
use a microcontroller, students develop these skills and in-
tuitions in a practical, hands-on way that would be difficult
with theory alone. Furthermore, it gives students exposure
to the technology used in actual commercial products, de-
mystifying the world of embedded systems. In this respect,
the switch to the AVR has been significant. It represents
a shift from essentially a hobbyist’s toolkit to professional,
commercial-grade technology that is much closer to the tech-
nology used in a wide variety of existing commercial devices.

Admittedly, using a microcontroller, and specifically the
AVR, creates more work for the students, though their abil-
ity to fully grasp the technology even in the context of our 2-
week summer workshop[12] was impressive. The platform’s
infrastructure, including the AVRlib support libraries, the
avr-gcc compiler, and makefiles help make the technology
accessible for the novice student, but also importantly gives
the advanced student full ”under-the-hood” access to a set
of well-established, industry standard tools to customize his
or her work.

Beyond making students’ lives difficult, microcontrollers
have enabled students to produce unique, highly successful,
innovative projects that would not otherwise be possible.
The new platform has greatly improved these facilities, as
evidenced in a number of impressive student projects. Ex-
ample uses of microcontrollers have included parallel LCD
interfaces, precise timing, interrupt programming, wireless
communication, digital filtering, interpolation, multiplexed
I/O and pulse width modulation.

5.1 Project Successes

5.1.1 Beat Matrix
The Beat Matrix, created by David Lowenfels and Gre-

gor Hanuschak, is a MIDI drum sequencer using two 4x4
keypads in conjunction with our development board. The
goal was to create a 4 beat sequencer, using one 4x4 grid
to represent the sixteenth note subdivisions of the beats.
This project’s success lies in its self-contained nature, which
was afforded by the microcontroller. The controls and dis-

Figure 5: Muggling

Figure 6: Rollerblade wheel encoder

play are completely integrated into the device, relying on
a computer or synthesizer for sound generation only. Our
platform’s LCD is integral to the device, giving the user im-
mediate visual feedback for the controls, allowing the user
to navigate through drum tracks and displaying the state
of the sequencer. David and Gregor learned to manage the
microcontroller’s internal memory to create sequences, and
used interrupts to effectively program the controls, LCD dis-
play and MIDI communication to ensure the steady timing
essential for a sequencer. The students intend to add fea-
tures including external memory to store user presets, which
should be relatively easy with the current platform and the
AVRlib’s existing I2C support.

5.1.2 Muggling
Pascal Stang, Jeff Bernstein and John McCarty developed

their ”Muggling” project using some of the important ca-
pabilities the platform provides. ”Muggling” comes from
”musical juggling”, describing their intention to instrument
3 juggling balls to send signals that could be used to control
musical parameters. The group successfully implemented
one ball as a remarkable proof of concept. The ball contains
4 two-axis accelerometers, from which linear and angular
acceleration in the x, y and z planes are calculated. Analog
acceleration values are sampled, low-pass filtered and inter-
polated to 14-bits on an AVR323, then transmitted via a
Linx wireless radio transmitter to a Linx base station re-
ceiver.[3] The portability of the AVRlib code used in class
allowed them to easily switch to a more capable microcon-
troller in the same family without any major changes. The
technology’s low cost and small package size options allowed
the accelerometers, 3-color LED’s, microcontroller and ra-
dio transmitter/receiver to be mounted inside a 3” diameter
ball.

5.1.3 Rollerblade wheel encoder
The most successful project from our 2-week Physical In-

teraction Design for Music[12] workshop was a home-made
optical encoder built by Chad Cosby. It consisted of a pair
of Rollerblade wheels covered in alternating black and white
stripes and mounted on a frame to sit on a desk. An in-



Figure 7: Rings of Light

expensive infrared LED and photodiode pair was attached
beside each wheel to act as a light sensor, detecting changes
from dark to light as the wheel spun. The LED/photodiode
pair is commonly used in robotic devices to allow them to
follow dark lines painted on the floor. By timing the transi-
tions, Chad was able to measure the velocity of each wheel,
which he encoded as a MIDI control signal and sent to a
Linux computer to control sound synthesis parameters in
Pd. The ability of the microcontroller to decode digital sig-
nals in this manner has also been used with commercial
optical shaft encoders, and Duty Cycle Modulated signals
from accelerometers.

5.1.4 Rings of Light
Sara Shaughnessy and Renee Goldschmid mounted the

same LED/photodiode packages around the perimeter of
two rings to function as proximity sensors when a performer
places her hands inside the rings. Each ring contains three
sensors, each controlling the intensity and timbre of a note of
a chord. A third control ring and a series of force-sensitive
pedals adjust the tuning and voicing of the chords. This
project uses the AVR in combination with programmable
logic devices to activate arrays of LEDs that are mounted
above each sensor. These LEDs provide immediate feedback
to the performer and a compelling display for the audience.
Programmable logic and multiplexing were necessary in or-
der to activate 30 LEDs from a limited number of digital out-
put pins. Additionally, the analog inputs were multiplexed
to take 12 continuous signals from the proximity sensors and
foot pedals into the 8 A/D inputs of the AVR.

6. CONCLUSIONS
The switch to our current teaching platform has provided

the students with a more fully-featured, robust and flexible
system for lab exercises and projects. From a pedagogical
standpoint, it has allowed us to deal more directly with mi-
crocontroller architecture and embedded systems design, as
well as develop a library of functional code that is far more
practical than a monolithic, cut-and-paste approach. Ad-
vanced students have access to powerful, professional-level
tools that promote portability, scaleability, and ample sup-
port for refinement and true innovation in their projects.
The new platform has the added advantages of easy inte-
gration in CCRMA’s Linux environment and lower cost.

These improved capabilities have come at the expense of
more overhead work on the parts of both the students and
instructors. Having developed more support infrastructure

and experience in teaching with the technology, it should
be possible to use this platform for the PIDM workshop in
the future with an improved student experience. Simpli-
fied tools for novice users will allow us to better focus on
the different pedagogical objectives for a two-week work-
shop. In the controllers course, the quality of student work
has improved dramatically since the introduction of the new
platform. The system enabled students to create truly in-
novative projects employing a wide variety of sensing and
communication technologies. The range of successful stu-
dent projects has provided direct evidence to help us an-
swer the question ”Why Microcontrollers?”, and has been a
gratifying affirmation of our technology shift.

7. ACKNOWLEDGMENTS
Thanks to Max Mathews, Wendy Ju, Stefania Serafin,

Chris Chafe, Gary Scavone, Fernando Lopez-Lezcano and
the CCRMA and music department administrators. Thanks
to all of the participants in the 2002 summer workshop who
were good sports as our guinea pigs. Thanks to Chad Cosby,
David Lowenfels, Gregor Hanuschak, David Lowenfels, Sara
Shaughnessy, and Renee Goldschmid.

8. REFERENCES
[1] Atmel. http://www.atmel.com/, January 2003.

[2] Avr gcc compiler tool chain.
http://www.avrfreaks.net/, January 2003.

[3] Linx technologies.
http://www.linxtechnologies.com/, January 2003.

[4] Maxim 1270 12-bit adc. http://www.maxim-ic.com/,
January 2003.

[5] Open sound control.
http://cnmat.cnmat.berkeley.edu/OSC/, January
2003.

[6] Parallax inc. http://www.parallax.com/, January
2003.

[7] uisp - universal in system programmer.
http://savannah.gnu.org/projects/uisp/, January
2003.

[8] M. Puckette. Pure data.
http://crca.ucsd.edu/~msp/software.html,
January 2003.

[9] P. Stang. Avrlib: C function library code for atmel avr
processors.
http://www.procyonengineering.com/avr/avrlib/,
January 2003.

[10] P. Stang. Avrmini: Homepage of the diminutive atmel
avr application/development board.
http://www.procyonengineering.com/avr/avrmini/,
January 2003.

[11] B. Verplank, C. Sapp, and M. Mathews. A course on
controllers. In NIME 2001, March 2001.

[12] S. Wilson. Ccrma summer physical interaction design
workshop website. http:
//www-ccrma.stanford.edu/workshops/PIDI2002/,
December 2002.

[13] S. Wilson. Osc serial object. http:
//www-ccrma.stanford.edu/~rswilson/OSCSerial,
August 2002.


