Microelectronics Failure Analysis

Desk Reference Sixth Edition

Edited by Richard J. Ross

Published by
ASM International®

Materials Park, Ohio 44073-0002

www.asminternational.org

Copyright © 2011 by ASM International[®] All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the copyright owner.

First printing, October 2011

Great care is taken in the compilation and production of this book, but it should be made clear that NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE GIVEN IN CONNECTION WITH THIS PUBLICATION. Although this information is believed to be accurate by ASM, ASM cannot guarantee that favorable results will be obtained from the use of this publication alone. This publication is intended for use by persons having technical skill, at their sole discretion and risk. Since the conditions of product or material use are outside of ASM's control, ASM assumes no liability or obligation in connection with any use of this information. No claim of any kind, whether as to products or information in this publication, and whether or not based on negligence, shall be greater in amount than the purchase price of this product or publication in respect of which damages are claimed. THE REMEDY HEREBY PROVIDED SHALL BE THE EXCLUSIVE AND SOLE REMEDY OF BUYER, AND IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES WHETHER OR NOT CAUSED BY OR RESULTING FROM THE NEGLIGENCE OF SUCH PARTY. As with any material, evaluation of the material under end-use conditions prior to specification is essential. Therefore, specific testing under actual conditions is recommended.

Nothing contained in this book shall be construed as a grant of any right of manufacture, sale, use, or reproduction, in connection with any method, process, apparatus, product, composition, or system, whether or not covered by letters patent, copyright, or trademark, and nothing contained in this book shall be construed as a defense against any alleged infringement of letters patent, copyright, or trademark, or as a defense against liability for such infringement.

Comments, criticisms, and suggestions are invited, and should be forwarded to ASM International.

ISBN-13: 978-1-61503-725-4 ISBN-10: 1-61503-725-X SAN: 204-7586

ASM International[®]
Materials Park, OH 44073-0002
www.asminternational.org

Printed in the United States of America

Editorial Board

Editor-In-Chief

Richard J. Ross, Consultant

Editors/Section Champions

Vijay Chowdhury, Evans Analytical Group
Dermot Daly, Xilinx
Dave Dozor, IR Labs
George Gaut, Qualcomm
Cheryl Hartfield, Omniprobe
Leo G. Henry, ESD/TLP Consulting
Becky Holdford, Texas Instruments
Kultaransingh (Bobby) Hooghan, FEI Corp
Martin Keim, Mentor Graphics
Larry Kessler, Sonoscan
Steven Maher, Oklahoma Christian University
Richard J. Young, FEI Corp.
Thomas Zanon, PDF Solutions

Contents

Preface to the Sixth Edition	xi
Section 1: Introduction	
The Failure Analysis Process	1
Section 2: Failure Analysis Process Overviews	
System Level Failure Analysis Process: Making Failure Analysis a Value Add Proposition in Today's High Speed Low Cost PC Environment	.16
Board Level Failure Mechanisms and Analysis in Hand-Held Electronic Products	.23
Failure Analysis Flow for Package Failures	.34
Chip-Scale Packages and Their Failure Analysis Challenges	.40
Wafer Level Failure Analysis Process Flow	.49
Failure Analysis of Microelectromechanical Systems (MEMS)	.52
Failure Analysis and Reliability of Optoelectronic Devices	.78
Solar Photovoltaic Module Failure Analysis	.99
DRAM Failure Analysis and Defect Localization Techniques	104
Failure Analysis of Passive Components1 Stan Silvus	111

Section 3: Failure Analysis Topics

Reliability and Quality Basics for Failure Analysts	21
Electronics and Failure Analysis	28
Submicron CMOS Devices14 Theodore A. Dellin	49
Analog Device and Circuit Characterization15 Steve Frank	59
Screening for Counterfeit Electronic Parts	71
Section 4: Fault Verification and Classification	
An Overview of Analog Design for Test and Diagnosis18 Stephen Sunter	81
An Overview of Integrated Circuit Testing Methods19 Anne Gattiker, Phil Nigh, Rob Aitken	90
Diagnosis of Scan Logic and Diagnosis Driven Failure Analysis	99
Interpretation of Power DMOS Transistor Characteristics Measured with Curve Tracer	09
High-Volume Scan Analysis: Methods to Avoid Failure Analysis21 Darrell Carder, Steve Palosh, Rajesh Raina	18
Differentiating between EOS and ESD Failures for ICs22 Leo G. Henry	25
The Power of Semiconductor Memory Failure Signature Analysis23 Cary A. Gloor	39
Section 5: Localization Techniques	
Beam-Based Defect Localization Techniques24 Edward I. Cole, Jr.	46
Electron Beam Probing26	63

Failure Localization with Active and Passive Voltage Contrast in FIB and SEM	.269
Fundamentals of Photon Emission (PEM) in Silicon – Electroluminescence for Analysis of Electronic Circuit and Device Functionality	.279
Picosecond Imaging Circuit Analysis – PICA	292
Current Imaging Using Magnetic Field Sensors	301
Thermal Defect Detection Techniques Daniel L. Barton, Paiboon Tangyunyong	.310
Thermal Failure Analysis by IR Lock-In Thermography	.330
Principles of Thermal Laser Stimulation Techniques	.340
Introduction to Laser Voltage Probing (LVP) of Integrated Circuits	.349
CAD Navigation in FA and Design/Test Data for Fast Fault Isolation	.354
Acoustic Microscopy of Semiconductor Packages	362
Electronic Package Fault Isolation Using TDR D. Smolyansky	.383
Section 6: Deprocessing and Sample Preparation	
Delayering Techniques: Dry Processes Wet Chemical Processing and Parallel Lapping Kendall Scott Wills, Srikanth Perungulam	.397
The Art of Cross Sectioning	.417
Delineation Etching of Semiconductor Cross Sections	.437

Special Techniques for Backside Deprocessing
Deprocessing Techniques for Copper, Low K, and SOI Devices
Section 7: Inspection
Optical Microscopy457 John McDonald
Scanning Electron Microscopy477 W. Vanderlinde
Ultra-High Resolution in the Scanning Electron Microscope
Transmission Electron Microscopy for Failure Analysis of Semiconductor Devices
X-ray Imaging Tools for Electronic Device Failure Analysis
Atomic Force Microscopy: Modes and Analytical Techniques with Scanning Probe Microscopy
Section 8: Materials Analysis
Energy Dispersive X-ray Analysis549 W. Vanderlinde
Analysis of Submicron Defects by Auger Electron Spectroscopy (AES)561 Juergen Scherer, Patrick Schnabel, Kenton Childs
SIMS Solutions for Next Generation IC Processes and Devices
Section 9: Focused Ion Beam Applications
Focused Ion Beam (FIB) Systems: A Brief Overview583 Kultaransingh (Bobby) Hooghan, Richard J. Young
Circuit Edit at First Silicon

The Process of Editing Circuits through the Bulk Silicon	607
Section 10: Management and Reference Information	
Education and Training for the Analyst	612
Management Principles and Practices for the Failure Analysis Laboratory	617
Managing the Unpredictable – A Business Model for Failure Analysis Service	627
Failure Analysis Terms and Definitions Ryan Ong	635
Author Index	651
Subject Index	653

Preface to the Sixth Edition

Richard J. Ross, Editor-in-Chief

As the semiconductor industry moves from the "micro" to the "nano" realm, the Failure Analysis community needs to be pro-active in maintaining its ability to verify, isolate, uncover, and identify the root-cause of problems. These problems may be discovered in design debug, product or technology development and qualification, fabrication, packaging, reliability stress, or. most unfortunately, in the field. New materials and ever-shrinking technology dimensions make it increasingly more challenging for the failure analyst and make it increasingly important to provide analysis with information, training, equipment, and materials to enable them to cope with these challenges and opportunities.

For over three decades. this work, "Microelectronics Failure Analysis Desk Reference" has been a key aide to analysts. It has been used as a textbook, a workbook, and a laboratory manual over that time and has undergone, now, six iterations of content selection and revision. The printed version has gone from 275 pages to over 600. Some of the methods and techniques which are included in this edition did not even exist when the first edition was published in the 1970s.

The work itself must change as well to reflect the challenges and opportunities of the times. This edition will exist in web-based online, DVD, and printed form to meet the diverse needs of the community. Some "old favorites" remain as their base technology and practice are still relevant and useful; others have become superseded by the technology. The use of color throughout the work is also introduced in this edition.

No undertaking of this magnitude accomplished without the efforts of many. The Editorial Board and Section Champions recruited experts in the various specialized fields, nurtured and encouraged them, and drove to a schedule which, in the economic climate of the past few years, required understanding and revision. The staff at ASM International, particularly Kate Russell and Scott Henry were of immeasurable help and support. Zanon, EDFAS Education Chair, was tolerant, understanding, and supportive when inevitable frustrations of time and effort Without the various authors, of appeared. course, this work does not exist and I am eternally grateful to each of them. Finally, I want to thank my family for their support for the time spent on the computer and the phone.

