
1 

 

Micrologix 1400 Modbus TCP Sample Program for AKD BASIC                 2/7/2017 Revision A 

Typically AB users will use Ethernet/IP to communicate to an AKD ( AKD-P-NxEI ) drive but some have 

been motivated for various reasons to use a standard drive ( AKD-P-NxAN ) and use Modbus TCP instead. 

The sample program was originally written for an application that involved a Micrologix 1400 to the AKD 

BASIC hence the program will demonstrate writing to the AKD BASIC 5000 range Modbus registers. The 

method of writing and reading is not restricted to the AKD BASIC but applies to all the AKD drives that 

support Modbus TCP ( all but the ProfiNET version AKD-P-NxPN ). 

The following application note will provide details on the setup and execution of the sample program. 

The intention of the sample project and this application note is to allow the first time user to perform a 

bench test to establish a connection between the PLC and 1 AKD drive and verify Modbus TCP 

communications. 

Included in the zip file along with the sample project are: 

• *.BAS program 

• *.AKD parameter file 

• *.RSS RSLogix500 ladder project 

Notes on using sample project 

To use the sample project the communication channel must be setup for the target PLC. 

For example I setup my Micrologix 1400 using the PLC’s keypad on the front to set the address to 

192.168.0.12. This application note will not go into the details; it is assumed the user is familiar with 

setting this. 

Open the sample program offline and double-click the Channel Configuration in the project tree in 

RSLogix 500. The Channel Configuration window will appear. 



2 

 

 

I changed the IP Address to match my PLC’s. Note the other settings but in particular the “Modbus TCP 

Enable”. This will need to be checked to enable Modbus TCP protocol. 



3 

 

 

 

 

 

 



4 

 

You may have noticed there is a tab “Chan. 1-Modbus”.  Other than the “Local Port Number TCP” being 

the standard 502 no other settings were utilized. 

 

 

Click Apply and OK to close out the Channel Configuration window. 

 

 

 

 

 

 

 

 



5 

 

Next it is important to setup and know what the target IP address is; that is the AKD drive’s IP Address. 

The AKD can be setup with the 192.168.0.x convention using the rotary dials on the front of the drive or 

by using Workbench to set a static IP address for the drive. 

In my case, online in Workbench you can see under the Online drive->Settings->Communication->TCP/IP 

screen that the IP mode of my drive is “0-Rotary Switches”.  Mode 1 could have also been used which is 

1-Fixed IP Address. 

 

 

Now that the drive’s IP address has been established, it is important to modify the sample project so the 

target IP address matches the AKD drive’s. The Micrologix 1400 supports Modbus TCP via the MSG 

( Message ) block. This means a MSG block must be triggered one at a time to read or write to an AKD 

drive parameter ( more on this later ) or a group of consecutive registers ( multiple read or writes ). 

 

 

 

 

 

 

 



6 

 

Begin by editing the offline program beginning with the first MSG block on rung 1. 

 

 

 

Double-click on the “Setup Screen” inside the ENABLE_DRIVE_BLOCK MSG to bring up the MSG’s 

configuration screen. 

The Ethernet IP address will need to be changed to the AKD drive’s IP Address. 

 

 

 

 

 

 



7 

 

In my case ( as shown before ) my AKD’s IP Address is 192.168.0.5. 

 

 

Close the MSG Setup Screen->Right Click on the Edited Rung->Verify Rung. 

 

 

 

 

 

 

 

 



8 

 

 

This process must be repeated for every MSG block in the Sample Project. 

In summary these instances are: 

Rung Number Name Address 

1 ENABLE_DRIVE_BLOCK MG9:2 

3 DISABLE_DRIVE_BLOCK MG9:3 

5 WRITE_TO_DRIVE_BLOCK MG9:0 

7 READ_FROM_DRIVE_BLOC MG9:1 

 

 

After editing, either save the project or save the project under a different name and keep the original for 

your records ( recommended ). 

The project is ready to download and test. 

From the Comms pull-down menu in RSLogix 500, select the Systems Comms… 

 

 

 

 

 

 

 



9 

 

 

 

In my case RSLinx is already running. 

I highlighted the Micrologix 1400 and then clicked on “Download” 

 

 

The following window will appear. Click Yes. 

 

 

 

 

 

 



10 

 

 

 

 

The following window will appear. Click Yes. 

 

In my case the processor was in RUN MODE. I clicked Yes to switch to PROG mode. 

 

 

After downloading the following window appears. I clicked Yes to switch back to RUN MODE. 

 



11 

 

 

After going to RUN MODE the following window appears. I clicked Yes to go Online. 

 

 

The zip file contains the AKD setup used to test the sample project. It will be necessary to change the 

motor and feedback to match your case. 

To demonstrate the details of setup, I set my drive up with minimal settings and then will demonstrate 

key settings. 

Before triggering any of the Modbus TCP read/writes to the drive verify a couple of settings in the AKD 

using Workbench. 

The first setting is in the online drive’s project tree under Settings->Communication->Modbus. 

The default type of scaling is “1-Modbus Specific”. Although  I’ve seen on occasion someone interested 

in using it, it is quite rare. In general, the most popular setup is to set the type of scaling to “0-Drive 

Internal”.  So that no additional scaling is performed between Workbench units and the values read or 

written over Modbus TCP. 

 

 

 

 

 



12 

 

Next I setup the units for the bench test. This assumes the motor is free to turn and not connected to 

any load. Although the units can be set for inches, mm, deg, etc. for this test I left the Units to the 

default ( Motor Only ). 

 

It is always a good idea when establishing communications to ping your PC, the PLC, and the AKD drive 

to make sure everyone replies. 

This is done in search programs and files box in Windows 7 when you click on the “Start” icon. 

 

I repeated the method and got replies for all 3 IP Addresses. 

 

 

 



13 

 

 

To prove the PLC is communicating to the drive, the AKD drive should be healthy and ready to enable 

with the exception of the softare enable. This application note assumes you’ve already gone through the 

process of wiring and basic drive/motor setup per the AKD Installation Manual, Quick Start, Workbench 

Help, and other support documentation. 

From the bottom status bar of Workbench: 

 

Since the enable/disable from the PLC is independent of the AKD BASIC sample program  we can prove 

PLC to drive communications using the Enable and Disable MSG blocks. 

Now we’re ready to enable the drive via the Micrologix 1400 over Modbus TCP. 

The methodology used in the ladder for triggering the MSG blcoks will be explained in greater detail but 

first right click on the DRV_EN contact in rung 0. 

 

From the choices, select “Toggle Bit” to trigger the logic (  note the drive should enable  ). 



14 

 

 

 

 

If the MSG block executes without error the DN ( done ) bit should turn on, on the output of the MSG 

block in rung 1. 

 

 

From the Workbench software: 

 

 



15 

 

 

 

Next the sample program shows how to command to software disable the drive. 

Using the same convention as before, on rung 2 right click on the DRV_DIS contact and select “Toggle 

Bit” to trigger the disable MSG block. 

 



16 

 

The DN ( done ) bit on the output of the DISABLE_DRIVE_BLOCK MSG in rung 3 should turn on indicating 

the MSG block successfully executed ( the drive should be disabled ). 

 

 

From Workbench bottom status bar, the Drive is Inactive and the SW is OFF. 

 

  

Next the Sample Program will demonstrate writing data to Modbus Registers.  

At this point before proceeding, load the AKD BASIC sample program into the AKD BASIC drive and also 

perform the dynamic mapping. 

After opening the sample program, compiling, downloading, and running you can see the status bar at 

the bottom of the Program screen in Workbench that shows the name of the loaded program and the 

status of “Running”. 

 

 

 

 



17 

 

The sample project makes use of Modbus Dynamic Mapping ( more detail on this later ). 

Either via Workbench Terminal by typing each line one by one or by putting the entire mapping into a 

Macro and running the macro ( also in the Workbench Terminal screen ),  drive parameters used for this 

sample project are dynamically mapped. 

MODBUS.DYNMAP 1 

MODBUS.CLRDYNMAP  

MODBUS.ADDR8192 2072 

MODBUS.ADDR8193 2073 

MODBUS.ADDR8194 856 

MODBUS.ADDR8195 857 

MODBUS.ADDR8196 220 

MODBUS.ADDR8197 221 

MODBUS.ADDR8198 240 

MODBUS.ADDR8199 241 

MODBUS.ADDR8200 954 

MODBUS.ADDR8201 955 

MODBUS.ADDR8202 956 

MODBUS.ADDR8203 957 

MODBUS.ADDR8204 958 

MODBUS.ADDR8205 959 

MODBUS.DYNMAP 0 

 

 

 

 

 



18 

 

Modbus Writes 

 

 

 

As indicated before, the sample BASIC program ( included in the zip file ) will need to be loaded and 

running in the drive which includes the following Modbus declarations which allows these registers to 

be valid ( exist ) otherwise there will be errors and timeouts from the Modbus master. The zip file has 

the AKD BASIC program names as a *.txt file extension because often the required *.bas file is blocked 

by email servers, etc.  Simply rename the file with the *.bas extension and  open, compile,download, 

and run in the AKD BASIC test drive. Note AKD BASIC variables are mapped with Modbus registers 

starting at register address 5000 up to 5999. 

MBInfo  

 $MBMap32(5000, MT_ACC) 

 $MBMap32(5002, MT_DEC) 

 $MBMap32(5004, MT_P) 

 $MBMap32(5006, MT_V) 

 $MBMap32(5008, MT_CNTL) 

 $MBMap32(5010, MT_MOVE) 

 

 

 

 

 



19 

 

It is important to note that the PLC’s addressing of Modbus registers is offset by 1 to the addresing of 

the AKD drive ( i.e.  drive address 5000 is PLC’s address 5001, drive’s 5001 is the PLC’s 5002, and so 

forth ).  From the MSG block for the writes, note the starting address ( MB Data Address ) for the Target 

Device uses the offset and starts at 5001. 

 

 

 

 

 

 

 

 

 



20 

 

In summary: 

AKD BASIC 

Modbus Address 

Variable Variable 

Description 

PLC Modbus 

address 

PLC Memory 

Address 

PLC value in 

Sample Program 

5000-5001 MT_ACC Move Accel 5001-5002 N7:0-N7:1 10000 

5002-5003 MT_DEC Move Decel 5003-5004 N7:2-N7:3 10000 

5004-5005 MT_P Move Target 

Position or 

Relative 

Distance 

5005-5006 N7:4-N7:5 1 and 25 

( translates to 

65561 in the 32 

bit word ) 

5006-5007 MT_V Move 

Runspeed 

5007-5008 N7:6-N7:7 55 

5008-5009 MT_CNTL Selects 

Absolute  

( MT_CNTL=0 )

or Relative 

Move 

( MT_CNTL=1 ) 

5009-5010 N7:8-N7:9 1 ( Relative 

Move ) 

5010-5011 MT_MOVE Start Move 5011-5012 N7:10-N7:11 1( Start The 

Move ) 

 

 

 



21 

 

For simplicity, I used the MOVE.POSCOMMAND in the Workbench Terminal to reset the current 

feedback position to 0. 

 

 

 

 

 

 

 

 

 



22 

 

 

To trigger the Writes ( and the move ), right click on the WDD contact in rung 4 and select “Toggle” bit: 

 

 

 

 

 

 

 

 



23 

 

The DN ( Done ) bit should turn on indicating the write was successful. 

 

 

 

From the Workbench Watch window, the relative distance of 65561 was reached. 

 

 

You can keep triggering the write by toggling the contact on and off to index multiples of 65561 counts. 

To perform absolute positioning set N7:9=0 and then set the desired absolute position in registers N7:4 

and N7:5. For example I set N7:4=10 and N7:5=0. This is equivalent to 65560 ( 32 bit word ). On retrigger 

the drive should move to the new position. 

 

 

 



24 

 

Modbus Reads 

Next the Sample Program demonstrates reading data from Modbus Registers. 

 

 

The Sample Program makes use of dynamic mapping to put the desired AKD Parameters’ Modbus 

Addresses in sequential order to accomplish a block read. Recall the dynamic mapping previously 

covered but repeated here. 

The following must be mapped using Workbench terminal. Note all of the following can be copied and 

pasted into a Macro in Workbench Terminal. The Macro can be run in order to execute the mapping 

with one button. 

MODBUS.DYNMAP 1 

MODBUS.CLRDYNMAP  

MODBUS.ADDR8192 2072 

MODBUS.ADDR8193 2073 

MODBUS.ADDR8194 856 

MODBUS.ADDR8195 857 

MODBUS.ADDR8196 220 

MODBUS.ADDR8197 221 

MODBUS.ADDR8198 240 

MODBUS.ADDR8199 241 

MODBUS.ADDR8200 954 



25 

 

MODBUS.ADDR8201 955 

MODBUS.ADDR8202 956 

MODBUS.ADDR8203 957 

MODBUS.ADDR8204 958 

MODBUS.ADDR8205 959 

MODBUS.DYNMAP 0 

 

In summary: 

Dynamic 

Address 

Standard Address Parameter Parameter 

Description 

PLC Modbus 

address 

PLC Memory 

Address 

8192-8193 2072-2073 PL.FB_32 Position 

Feedback 

8193-8194 N7:12-N7:13 

8194-8195 856-857 VL.FB Velocity 

Feedback 

8195-8196 N7:14-N7:15 

8196-8197 220-221 DRV.ACTIVE  Drive Active 8197-8198 N7:16-N7:17 

8198-8199 240-241 DRV.DISSOURCES Possible 

Reasons For A 

Drive Disable 

8199-8200 N7:18-N7:19 

8200-8201 954-955 DRV.FAULT1 Current Drive 

Fault 1 

8201-8202 N7:20-N7:21 

8202-8203 956-957 DRV.FAULT2 Current Drive 

Fault 2 

8203-8305 N7:22-N7:23 

8204-8305 958-959 DRV.FAULT3 Current Drive 

Fault 3 

8205-8206 N7:24-N7:25 

 

 

 

 



26 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 

 

To perform the block read, right click on the contact “RDD” in rung 6 and select “Toggle Bit”. 

 

 

 

 

 

 

 



28 

 

The DN ( Done ) bit on the output of the MSG block should turn on indicating it executed successfullly 

without error. 

 

 

 

The values read can be verified online: 

 

You can compare the value in the window above with values queried in Workbench Terminal. 

 

 

 

 



29 

 

 

For example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 

 

Reading Actual Feedback Position using AB Micrologix 1400 Modbus TCP 

From the previous the  dynamically mapped parameters should have been updated in the PLC. 

Since N7 registers in the PLC are signed 16 bit registers and can only hold -32768 to +32767 the position 

feedback value that can be contained is limited. One method which is shown in the sample project is to 

multiply the high word by 65536 and add the low word to the result and store the value in a L11 register 

which can hold a signed 32 bit value ( -2, 147, 483, 648 to + 2, 147, 483, 647 ). 

After triggering the read as described previously, I compared the value in the Workbench watch with the 

L11:0 value in rung 8 of the sample project and the 2 values matched. 

 

 

 

 

 



31 

 

 

 

An alternate method is to use the CPW ( Copy Word ) instruction. The Copy Word Instruction can be 

used to copy the 2 consecutive 16 bit integers ( N7 ) into a long 32 bit integer ( L11 ). The CPW 

instruction copies the 2 16 bit integers in ascending order ( i.e. N7:12 is copied to the low word and 

N7:13 is copied high word of the L11 register ), therefore unlike the method above, it is required the 

dynamic mapping swap the word order in order for the CPW data to appear correctly in the PLC. Note 

this code is not included in the Sample Project but for demonstrational purposes. 

MODBUS.DYNMAP 1 

MODBUS.ADDR8192 2073 

MODBUS.ADDR8193 2072 

MODBUS.DYNMAP 0 

 

On retrigger of the read, the value in L11:11 matched what was in 

the AKD’s PL.FB. 

 

 

 

 

 

 


