
Micropayments through cryptocurrency
mining

Department of Informatics and Media

Author: Viktor Tigerström
Supervised by: Andreas Hamfelt

September, 2016

Abstract

The monetary policies of states and systems built upon them do not naturally
allow transactions of a very small value, as the transaction costs exceeds
the actual value of the transaction. These types of transactions are called
micropayments. This is problematic as it removes the possibility to monetize
content that has a valuation that is so low that the costs of the transaction
exceeds the value of the content.

In this thesis we aim to create a system that allows micropayments to mon-
etize low value content. We do so by developing a design theory based on
Gregor and Jones conceptual model for design theories within Information
Systems research. The system that we develop will use the end users compu-
tational power to generate a value, by running a cryptocurrency miner.

We present the background knowledge required to fully understand the pre-
sented design theory. Within the design theory, we present a theoretical
framework to base systems on that enables micropayments through cryp-
tocurrency mining. We also present a developed proof of work prototype
that proves the validity of the theoretical framework.

Lastly we discuss our design theory. We conclude that the design theory
enables transactions of a very low value, such as 0,0001 $ cents. Transactions
of such small value is not possible with systems built upon states monetary
policies. We also conclude that the proposed design theory can be further
developed to function independently of cryptocurrency mining. Instead the
value for the transaction could be generated through solving complicated
problems if institutions are willing to pay for computational power to solve
them.

1

Contents

1 Introduction 4
1.1 Introduction . 4
1.2 Micropayment definition . 5
1.3 Method . 5
1.4 Aim . 6
1.5 Research question . 6
1.6 Outline . 7

2 Background 8
2.1 History of digital currency . 8
2.2 Cryptography . 9
2.3 Bitcoin . 10
2.4 Blockchain . 11
2.5 The double spending problem 12
2.6 Byzantine generals problem 12
2.7 Mining . 13
2.8 Incentives for miners . 14
2.9 Blockchain related cryptography 15
2.10 Generation process . 17
2.11 Construction of the block header 19
2.12 Mining process . 20
2.13 Difficulty target . 22
2.14 Mining distribution . 24
2.15 Mining pools . 25
2.16 Stratum . 27
2.17 Stratum methods . 30

2

3 Computational micropayments 35
3.1 Mining reward as micropayments 35
3.2 Structure of solution . 36
3.3 Client . 38
3.4 Proxy Server . 40
3.5 Mining Pool . 42

4 Functioning prototype 44
4.1 Client . 44
4.2 Proxy server . 46
4.3 Mining pool . 47
4.4 Demonstration of prototype 48
4.5 Future developments of prototype 56
4.6 Previous implementations . 57

5 Concluding remarks 59
5.1 Conclusions . 59
5.2 Discussion . 61
5.3 Future research . 65

3

Chapter 1

Introduction

1.1 Introduction

Systems created upon monetary policies of states to allow digital payments
do not naturally allow transactions of a very small value. These type of trans-
actions are called micropayments. The reason for this is that the transaction
cost of each individual micropayment, is significant and sometimes exceeds
the actual value of the transaction.

Imagine a blogger that has an average reader base of 1 million unique readers
per day. If the blogger wants to start profiting from the content the blogger
is writing, the blogger has three main income alternatives. Either make the
blog available for monthly paying subscribers only, or include advertisements,
or lastly accept donations. The first two alternatives will likely lead to a
decrease in readers. The last alternative is optional, and will therefore not
lead to a decrease in readers. However only a small percentage of all readers
will make a donation, as the donation will have to be of a significant value
to exceed the transaction costs. If the readers instead would be able to for
example donate only 1 USD cent, each donation will not be of any significant
value. However given that 5% of all readers chose to donate 1 USD cent, the
collective value per month of all donations reaches 15,000 USD.

With the current banking systems, this low value in a transaction is simply
not possible. In this thesis we propose an alternative system that would allow

4

micropayments with this kind of value. This will be done by instead using
the computational power of each individual client (in this case reader), to
generate a value corresponding to the value of the micropayment.

The solution that we propose is a theoretical framework, which to base sys-
tems upon to allow micropayments of this kind of value. To prove the func-
tion of the theoretical framework a functioning prototype has been developed
to prove its validity.

1.2 Micropayment definition

There is no absolute definition of how small the transaction value must be
to be called a micropayment. It is therefore subjective. In this thesis we
define that a transaction is a micropayment if it is valued at 1 USD cent or
less.

1.3 Method

In this thesis we develop a design theory, based on Gregor and Jones contri-
bution. Gregor and Jones developed a theoretical framework that describes
a conceptual model of how a design theory within Information Systems re-
search should be developed. The model consists of 8 core components:

1. Purpose and scope: The component describes a set of meta-requirements
or goals for the artifact and defines the boundaries or scope of the the-
ory. In short it defines "what the system is for".

2. Constructs : The entities of the theory and how they are represented.

3. Principle of form and function: The architecture of the artifact.

4. Artifact mutability : The artifact’s changes of state anticipated in the
theory.

5. Testable propositions : Statements about the design theory that can be
tested as true or false.

5

6. Justificatory knowledge: Defines the knowledge based on social or de-
sign sciences that justifies the design theory in the context.

7. Principles of implementation: Describes the principles that was used
when implementing the artifact in the design theory.

8. Expository instantiation: The physical implementation of the artifact
represents the design theory.

All of these components must be evaluated when creating a design theory.
The design theory that we have developed within this thesis will be evaluated
analytically. (Shirley Gregor 2007)

1.4 Aim

The aim of this thesis is to develop a design theory based on the contribu-
tion of Gregor and Jones. The design theory describes how cryptocurrency
mining can be used to make micropayments. We start off by first providing
necessary background information for understanding how cryptocurrency and
blockchain technology works, and how value can be generated through cryp-
tocurrency mining. After this a theoretical framework of how cryptocurrency
mining can be used to make micropayments is provided. Lastly we provide
a description of a developed functioning prototype, an artifact, that proves
that the theoretical framework is valid.

1.5 Research question

This thesis is centered around creating a solution that enables micropayments
through cryptocurrency mining. The design theory created in this thesis, has
been formed by a research question. This research question is:

Is it possible to create a solution that enables micropayments, through the
use of cryptocurrency mining?

6

1.6 Outline

This thesis first provides background information regarding cryptocurrency
and blockchain technology. The background information is generally focused
on the cryptocurrency bitcoin when giving detailed explanation. It has inten-
tionally been focused on areas that can be generalized to most other types of
cryptocurrencies. The information regarding cryptocurrency and blockchain
technology provided in the background section has been selectively chosen to
understand the design theory that this thesis proposes.

The next chapter describes a theoretical framework of how cryptocurrency
mining can be used at the to make micropayments. The provided framework
defines guideline recommended to follow when creating a system that allows
micropayments through cryptocurrency mining. The framework is general-
izable enough to allow multiple ways of implementing the system.

The following chapter describes a specific way of implementing the theoreti-
cal framework, by providing a description of a functional prototype to prove
the proof of concept of the theoretical framework. The prototype is just a
proof of concept and is therefore not fully operational for a full scale business
system. Because of this we also provide information regarding how the pro-
totype can be further developed to be able to operate as a full scale business
system.

After this we provide a discussion to conclude that the thesis fills the re-
quirements of Gregor and Jones’ theoretical framework of a design theory.
We also conclude the developed prototype as a proof of concept. Further
more, we conclude that the prototype would function in a full scale system
if developed further.

Lastly potential future research is provided.

The 8 core components of Gregor and Jones contribution is approached in the
different chapters of this thesis. The Purpose and scope is stated in chapter
1. Chapter 2 provides Justificatory knowledge. The components Principle of
form and function, Constructs, Artifact mutability, Testable propositions as
well as Principles of implementation are described in chapter 3. Lastly the
component Expository instantiation is stated in chapter 4.

7

Chapter 2

Background

2.1 History of digital currency

The history of digital currency is closely linked to the developments of cryp-
tography. The reason for this is that in order to have a secure and reliable
digital currency, there are fundamental properties linked to cryptography
that have to be achieved:

Trust in the authenticity of the currency : In order for a digital currency to
be viable, a user of the currency must be able to tell if the digital currency
is authentic, or if it is counterfeit.

Possibility to claim the tokens of the currency : A user of the currency must
be able to ensure that they are the only ones that can spend the tokens
of the currency that they hold. The user must also not be able to spend
the same tokens more than once. This is problematic as the currency is
digital and anything digital can be copied (also known as the double spending
problem).(Chapter 1 Antonopoulos 2014)

As two of the main goals of cryptography is authentication and non-repudiation
the close link between digital currency and cryptography is explainable.
Many different solutions to develop digital currencies have been tried through-
out history. (page 5 Menezes, Oorschot, and Vanstone 1996) Before 2008,
there was however never any solution that managed to solve the double spend-
ing problem in a viable way. Since the currency is digital, there has to be

8

some kind of solution to make sure that users can not just copy their digital
tokens and spend the same tokens more than once.

Before 2008 the only solution found to this problem was to have a central
authority that controls all the transactions. When a transfer of a digital token
has taken place, this central authority updates which user has the ownership
of the digital token. This is to make sure that the new owner of the digital
token is the only user that can later claim ownership of the digital token and
transfer it. This way of solving the problem, is similar to the way the banking
systems presently works. A problem with this solution, is that governments
has the monetary policy of being the only authority within countries that has
the right to mint currencies. This is problematic, since when an organisation
or person tries to mint a currency, governments or other organisations may
try to shutdown the digital currency.To do so, all that needs to be done is to
shutdown the central authority that controls the transactions of the digital
currency. (Chapter 1 Antonopoulos 2014) Two examples of digital currencies
invented before 2008 are b-money and HashCash.

2.2 Cryptography

Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone defines
cryptography as the study of mathematical techniques related to aspects of
information security such as confidentiality, data integrity, entity authenti-
cation, and origin authentication. (page 4 Menezes, Oorschot, and Vanstone
1996)

Cryptography is a set of techniques rather than only a means of providing in-
formation security. This implies that cryptography focuses on the prevention
and detection of cheating and other malicious activities. (page 4 Menezes,
Oorschot, and Vanstone 1996)

Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone defines four
goals of cryptography, upon which all further specific goals within cryptog-
raphy derive from. These are:

1. Privacy or confidentiality : One of the main goals of cryptography is
to keep the content of information private or confidential only to those
that are authorized to take part of it. There are numerous different

9

cryptographical techniques to achieve this goal, and which technique
is most suitable depends on the specific case. One example would be
a scenario where the contents of an email should be readable only by
the receiver, which for example could be achieved by encrypting the
email text using a key that is known by the receiver. (page 5 Menezes,
Oorschot, and Vanstone 1996)

2. Data integrity : The goal of data integrity is to ensure that data cannot
be altered by an unauthorised part. To solve this issue techniques to
detect data alteration by unauthorized parties have been developed.
(page 5 Menezes, Oorschot, and Vanstone 1996)

3. Authentication: The goal authentication relates to techniques to au-
thenticate both information and the entities sharing it. For entity
authentication this implies that the entities sharing the information
should be able to authenticate that they are the exact entity they claim
to be. Information authentication techniques guarantee that the origin
of the information actually is from the actual entity. Because of these
two focuses of authentication, the goal of authentication has been sep-
arated into two major classes: entity authentication and data origin
authentication. (page 5 Menezes, Oorschot, and Vanstone 1996)

4. Non-repudiation: The goal of non-repudiation is to prevent an entity
from denying previous commitments or actions. This means that an
action that has been made by an entity is final and should never be
possible to deny or undo. (page 5 Menezes, Oorschot, and Vanstone
1996)

2.3 Bitcoin

In the original white paper that pseudonym Satoshi Nakamoto published in
2008, a concept of a digital decentralized cryptocurrency called bitcoin was
proposed. The cryptocurrency was proposed to be an application hosted on
an invention called a blockchain. Satoshi Nakamoto combined previous ideas
of creating a digital currency, such as b-money and HashCash. By mixing
these ideas with known cryptographic concepts Satoshi Nakamoto found a
solution of how to transfer digital currency between different parts on a decen-

10

tralized network without the need of a central authority. Using the concept
of a blockchain, these transactions of the digital currency could guarantee
that the transferred tokens were not counterfeit. (Nakamoto 2008)

2.4 Blockchain

The word blockchain refers to a technology that was proposed by the pseudonym
Satoshi Nakamoto through the public release of the “The bitcoin white pa-
per” in 2008. Satoshi Nakamoto suggested a cryptographic solution to take
a hash of a block of items. By timestamping a block and then publishing
the hash to every participant in a public network the timestamp will prove
that the data in the block existed at the time of the timestamp. On top of
this, every new block of items that is later published in the network, will also
include the previous timestamp in its hash. This leads to a chain of hashes
of blocks of items, hence the word blockchain. This implies that the validity
is reinforced of every block published prior to the new block. (Nakamoto
2008)

In other terms a blockchain is a public ledger holding transactions that is
distributed over a decentralized network. Every participant in the network
holds a copy of the ledger, and is also informed about any new transactions
that are added to the ledger. This leads to that every item that is transacted
in the ledger can be traced back to its origin. This is done by following all
transactions it has been part of back to its creation and original inclusion in
the ledger. This means that as long as the users of the ledger are unable to
add items to the ledger, it is impossible for the users to counterfeit an item
in a transaction. The reason for this is that the ownership of the item can
be validated by tracing its origins in the ledger.

The solution that Satoshi Nakamoto proposed, also guarantees that a user
A transferring an amount of digital tokens to a user B, can not transfer the
exact same tokens to another user C after the transaction to user B. This is
also known as not allowing double spending. (Nakamoto 2008)

11

2.5 The double spending problem

Before the release of The bitcoin white paper, there have been several at-
tempts of creating digital currency. All had however failed to provide a vi-
able solution to the double spending problem without using a central clearing
authority. A simple explanation of the problem is that all digital currencies
in their core is just a set of digital data. Like any set of digital data, it can
easily be copied. If a user A has digital tokens of a digital currency that it
controls on their digital storage media, this means that the user A can trans-
fer to the user B’s digital storage media. The problem is that the user A can
easily copy the data before transferring it, and then later claim ownership of
the data and transfer the same data to a user C, hence spending the digital
tokens more than once. (Chapter 1 Antonopoulos 2014)

To solve this issue, Satoshi Nakamoto proposed a new solution in The bitcoin
white paper. The solution did not have a central authority that controls all
transactions. The users did not have actual data representing digital tokens
that was transferred between the users either. Instead the transfers took place
through a public ledger in a decentralized network that was distributed to
all participants of the network, the blockchain. It is then easy to determine
if a transaction is valid and does not lead to a double spending. This is done
by checking if the items transacted have already been spent on the ledger,
as it is public. This does however require a guarantee that the ledger holds
correct information. (Nakamoto 2008)

2.6 Byzantine generals problem

The bitcoin white paper includes a solution that describes how to guarantee
that the participants of the network can know that the information in the
ledger is correct. It describes how computers without the need of a third
party can agree on a state, for example that user A has made a transaction
to user B. This problem is know as the Byzantine Generals problem, and is
a know problem within computer science. (Leslie Lamport and Pease 1982)
Satoshi Nakamoto proposal was the first solution to solve the problem. The
core of the solution was to make the participating computers in the network
to compete against each other to solve a cryptographic problem. On top of

12

this, in order for a participant to get its solution accepted by the rest of the
network, the participant have to follow a set of rules that every participant
of the network also have to follow. By combining these two concepts, the
validity of the decentralized ledger can be guaranteed. This process has been
given the name mining. (Chapter 1 Antonopoulos 2014)

2.7 Mining

The main function of the mining process is to secure the network in order to
guarantee the validity of the blockchain. However the process has been given
the name mining based on that mining generates new minted cryptocurrency.
When a new block to the blockchain is published, the participant that has
found the cryptographic solution and publishes the block is rewarded with
an amount of bitcoins. The amount of bitcoins that is rewarded per block is
not permanent and is decreasing over time as more blocks are added to the
blockchain. Therefore the way that bitcoins are generated can be compared
to the mining of gold, where the gold gets extensively harder and harder to
find over time, hence the name mining. (Chapter 8 Antonopoulos 2014)

In its simplest terms mining can be seen as a cryptographic game where every
participant in the game randomly suggests different solutions that when run
through an encryption algorithm proves to be correct or not. It is impossi-
ble to determine if a solution is correct or not before it is run through the
encryption algorithm. Therefore every participant has no choice but to sug-
gest random solutions as it is impossible to determine which solution will be
correct before trying it. This means that the game is constructed to make it
difficult to find a correct solution, but very easy to check whether a solution
is correct or not. (Chapter 8 Antonopoulos 2014)

Based on these characteristics a metaphor to compare the mining process
to a competition to solve a giant sudoku puzzle is often used. This is since
it is hard to find the solution for a sudoku puzzle, but easy to check if the
solution is correct or not.

13

2.8 Incentives for miners

An important aspect of the concept of mining is that every participant is
investing resources that have value in order to participate in the mining
competition. These resources are mainly electricity and hardware. This
means that the miners are economically invested in the mining process, and
therefore have incentives for getting return on their investment. In order to
get return on their investment, the miners need the reward that they get
from finding the correct hash for a block. The miners also need to make sure
that the block is constructed in a correct way to get it accepted into the
blockchain. If the found block is not accepted into the blockchain, the miner
that found it does not get the reward it includes. In order to get a block to be
accepted, the miner needs to make sure that the block follows all the rules set
up by the consensus of the network. If a miner starts changing parameters
in the block, for example trying to change the reward size of bitcoins, the
other miners of the network will not accept the new block and the block will
therefore not become a part of the agreed blockchain. (Nicolas T. Courtois
and Naik 2014)

This is essential as this gives the miners incentives to follow the rules if they
want to maximize their profits. This also means that the miners benefit
from making sure that the rules are being followed by others. The miners
do this by not sending blocks that are invalid further to other miners in the
network, and by accepting valid blocks and send them further. It is possible
to imagine a scenario where a miner did the opposite. The actions of one
miner would not make any difference, as one miner itself cannot create a
consensus on the network unless this miner controls over 50% of the hashing
power. However if enough miners to create a consensus did let invalid blocks
through, or stopped transmitting valid blocks further, this would seriously
damage the network as the blockchain could not be seen as reliable. This
would in turn negatively affect the value of bitcoin as it would become less
useful. As the miners have invested resources to mine, this would be very
unbeneficial for the miners. The reason for this is that the value of the reward
per block, is dependent on the value of bitcoin. (Nicolas T. Courtois and
Naik 2014)

This leads to the conclusion that one of the key aspects to why consensus can
be found among the miners is that the reward for following the rules is much

14

higher than breaking them. This gives the miners an incentive to follow the
rules.

2.9 Blockchain related cryptography

Some cryptographical techniques are more central within blockchain tech-
nologies. This section aims to give a basic understanding of these specific
techniques.

1. Encryption: Encryption refers to techniques to scramble information
into an unrecognisable form. This scrambled unrecognisable form is
called a hash. The idea of encryption is that it should not be possible
to restore the hash to its original form if a part only has access to the
scrambled information. A encryption technique is defined as breakable
if a third part with no prior knowledge of the encryption scheme the
technique uses, can restore the scrambled information to its original
form within a appropriate time frame. (page 14 Menezes, Oorschot,
and Vanstone 1996)

Some encryption techniques allows the authorized parts to decrypt the
information to its original form with the use of a key that is only known
by trusted parties. A key is a combination of different characters. There
are two main forms of key techniques, secret key techniques and public
key techniques. Secret key techniques are based on the idea that there is
a secret key that that only authorized parts know and that can decrypt
the scrambled information. Public key techniques are explained below.
(page 15-21 Menezes, Oorschot, and Vanstone 1996)

Blockchain technologies use encryption for many different areas. One
clear example of this is during the the mining process. Blockchain tech-
nologies use an encryption function at the block header in order to see
if the resulting hash meets the difficulty target. The hash is irreversible
which makes it impossible to know which variation of a block header
will meet the difficulty target before applying the encryption function
to it. Bitcoin encrypts the block header by applying the encryption
function SHA-256 twice to the block header.

2. Public key techniques : The idea of public key techniques is that there

15

are two separate keys involved in the encryption and decryption process
of a set of information. There is one private key, that is secret to
everyone except the part that encrypts the information. There is also
one non secret public key that is publicly known. The public key is
generatable from the private key, but it is not possible to generate the
private key based on the public key. The idea is that information that
has been encrypted with the private key, can be decrypted using the
public key. In this way it is possible to guarantee that the part that
has encrypted the information is the authorized owner of the private
key. This is done by checking if it can be decrypted using the public
key. (page 24-25 Menezes, Oorschot, and Vanstone 1996)

This idea is widely used within blockchain technologies. The way that
the consensus network can guarantee that a transaction has been au-
thorized by the owner of the items transacted in the transaction is based
on the public key technique. This is since ownership of the items trans-
acted over a blockchain technology network is proved by the ownership
of a private key that is linked to the storage address of the items. The
owner of the items can therefore authorize a transaction of the items
through encrypting the transaction using the private key. Every part
of the network can then easily check the authenticity of the transaction
by decryption using the corresponding public key.

3. Digital signature: Digital signatures are used to authenticate that a
message has been signed by an authorized part. The signature is done
by encrypting information using a signature procedure with elements
only known by the part signing the message. The signature can then be
verified by a publicly known verification transformation that decrypts
the encrypted message. (page 22 Menezes, Oorschot, and Vanstone
1996)

Again this technique is used for transactions within blockchain tech-
nologies. The owner of the items transacted authenticates the transac-
tion by signing the transaction with it’s private key. The signature can
then be verified using the public key known by the entire network.

4. Time-variant parameters : In blockchain technologies a time-variant
parameter is used during the mining process called nOnce. A nOnce
is a 32bit (4-byte) random number. The name nOnce refers to that
the value is used no more than once for the same purpose. (page 398-

16

401 Menezes, Oorschot, and Vanstone 1996) For blockchain mining this
means that the same value is not tried by a miner more than once for
a specific block header. A incorrect number leads to a hash of the
block header that does not meet the difficulty target and therefore is
unnecessary to try again. As the block header includes a field for the
current timestamp in form of a 32bit number that represents every
second since the timestamp 1970-01-01T00:00 UTC, the block header
changes every second. This gives the miners 232 different nOnce values
to try every second in order to find a correct solution.

2.10 Generation process

The mining algorithm is constructed to make the miners find the solution
for a new block after an average determined time period. The exact time
period varies between different types of cryptocurrencies. For Bitcoin this
time period is set to 10 minutes. It is important to notice that this time
period is an average determination, meaning that it is possible for bitcoin
miners to find two blocks with only a short time span in between, while
it is also possible that the time span could be extensively longer than 10
minutes.

The reward per block, is for most cryptocurrencies designed to be diminish-
ing over time. This is the case for bitcoin. The reward for bitcoin is set
to decrease by half of the previous reward after every 210000 blocks or ap-
proximately every four years. When bitcoin was first launched in January
2009, the reward was first set to be 50 bitcoins per block. In November
2012 this reward was decreased to 25 bitcoins, and in July 2016 the reward
was decreased further to 12.5 bitcoins per block. This pattern will go on
until approximately year 2137 when the last new bitcoin has been generated,
making a total of around 21 million bitcoin, or 20.99999998 million to be
exact.(Chapter 8 Antonopoulos 2014)

It is important to know that the generation process of cryptocurrencies can
vary between different types of cryptocurrencies. Examples of this is that the
average time per new block can vary, and the reward size per block can also
vary. Even though most cryptocurrencies are designed to have a diminishing
block reward over time, it is possible to design cryptocurrencies with a static,

17

or even increasing rewards over time.(Chapter 8 Antonopoulos 2014)

After the last new bitcoins have been generated, no new bitcoins will ever
be minted. After this, the only reward that miners will receive will consist
of something called transaction fees. With every transaction, the sender
can choose to include a fee for the miner who finds the block, hence the
word transaction fee. It is not mandatory for the sender to include a fee
with a transaction. However the miner who finds the solution for a block can
choose not to include transactions without a fee, and will most likely prioritize
transactions with fees. In order to get a transaction to be included in a block
as fast as possible, it is beneficial for senders to include a transaction fee.
The idea is that as the number of new minted coins per block decreases, the
transaction fees will increasingly become a larger part of the total reward per
block. For bitcoin, there is currently a limit for the number of transactions
that can be included in a block. However this limit is artificial and will most
likely change with upcoming updates to the source code of bitcoin. The
idea is that if the amount of transactions per day continuously increase, the
miners will still get a big enough reward from the transaction fees to still
be able to profit from mining, even when no new bitcoins are generated. As
the graph below shows, the number of transactions has so far continuously
increased over time.(Chapter 8 Antonopoulos 2014)

Figure 2.1: Number of bitcoin transactions over time

18

2.11 Construction of the block header

Every block has a header, that holds information regarding the block and it’s
construction. This header is constructed by the miner that finds the solution
to the cryptographic game. The header is included in the block that the
miner sends to the other miners to inform that it has found the solution to
the cryptographic game. To find the solution to the cryptographic game, the
miners do also need information from the previous block header. This means
that a block cannot be created without its parent block, forming a chain of
blocks that all are linked to each other. The header has a certain structure
that is agreed upon among the miners of the network. The exact definition of
the structure can vary between different types of cryptocurrencies.(Chapter
8 Antonopoulos 2014)

The bitcoin the block header has the following structure:

Size Field Description
4 bytes Version A version number to track soft-

ware/protocol
32 bytes Previous Block Hash A reference to the hash of the pre-

vious (parent) block in the chain
32 bytes Merkle Root A hash of the root of the merkle

tree of this block’s transactions
4 bytes Timestamp The approximate creation time

of this block (seconds from Unix
Epoch)

4 bytes Difficulty Target The proof-of-work algorithm dif-
ficulty target for this block

4 bytes nOnce A counter used for the proof-of-
work algorithm

Table 2.1: The bitcoin block header structure

(Chapter 8 Antonopoulos 2014)

All fields are required to be valid in order for the block to be accepted by
the miners.

One of the fields holds the reference to the previous block, in the form of
the hash of to the previous block. For example, the block 427139, holds the

19

reference to block 427138, and reference it by holding its hash:
000000000000000002d18728cdf626452818bc3c621007a311d4d985c6744356
(Blockchain.info 2016a)

Another field that is of big importance is the difficulty target. Simply ex-
plained this field defines the difficulty to solve the cryptographic game. The
field consists of 4 bytes, where the first byte is a hexadecimal exponent, and
the other three bytes is a coefficient. In block 277316, the value for the field
is 217375482757.24, which in a hexadecimal value is 329C96A385. The diffi-
culty target is further explained in section 2.12.(Blockchain.info 2016a)

The last field holds a 4 byte nOnce. Simply explained this field is the number
that the miner presents as the solution to the cryptographic game. The
game is constructed in such a way that it is impossible for the miner to
determine which number is correct without testing the number, but very
easy to determine that a number is correct by testing it. Therefore the
miners have no choice but to test different numbers randomly.

2.12 Mining process

The process of mining a blockchain block could simply be explained as hash-
ing the block header continuously while changing the nOnce parameter until
the resulting hash meets the difficulty target.

Bitcoin uses the SHA256 algorithm for hashing the block header. (Shirriff
2014) The type of hashing algorithm that is used varies between different
cryptocurrencies. Some other examples are the CryptoNight algorithm that
is used for the cryptocurrency Monero, the Scrypt algorithm that is used for
Dogecoin and the Quark algorithm that is used for Quarkcoin.

A characteristic property for the different hashing algorithm is that regardless
of the input length, the algorithm always produces an output of fixed length.
The algorithm that is used for bitcoin SHA256, always produces as 256bit
output. It is also important that the same input always produces the same
result. It should also be almost impossible to find two inputs that produce
the same result.

To make this more concrete, if the word Blockcain is encrypted using the

20

SHA256 algorithm it produces the following output:
625da44e4eaf58d61cf048d168aa6f5e492dea166d8bb54ec06c30de07db57e1 if the
algorithm is implemented to return a HEX string representing the hash. As
the result is completely dependent on the input, a single change to the in-
put string, as adding an extra number in the end, completely changes the
output.

To demonstrate this fact, the input string has been modified in following
table, by adding an extra number to the end of the input string:

Input Output
Blockchain0 1170bfd4266d3ff0472740483fd69223e04365054e621a72ef2...
Blockchain1 0fc6e34f6899f5e2ca06688e49bb42cc104a45d5bb86c55eafe...
Blockchain2 4f07e031df167abda5623314c19c38e11358853f1c876b892a...
Blockchain3 20e39c7046b6be85eb64afacec02847fb217293cd7962b8766...
Blockchain4 2c7b2f1bcc04491890c56839d656ef80e710aeea99de670f43a...
Blockchain5 92876aecd4e88a09c69eebdc4d1c9ae2b26ea4bf5408833dc6...
Blockchain6 7de32ac537d88fb324a0d3ca4df697b0dcf8ee4be45ea5717a...
Blockchain7 442a9a086b7ffd951a03ac346e6e28729c4ab686ae38e06a14...
Blockchain8 20dd65cd4de1f6371fc6520db22ad2a85d1e8c5c12c1dadea8...
Blockchain9 10a0862fb6d82673f0256a892e8739bd146f67be28c8427b27...
Blockchain10 c4cdcbe41674235a3422665ceb92146e0e8f1235e4a45c788a...

Table 2.2: Examples of SHA256 hashing

Imagine a game where the goal is to add an extra number at the end of the
input string "Blockchain" and to find an output that starts with a 0 in the
beginning. As demonstrated in table above, this is the case for the input
Blockchain1.

This is exactly how the mining process for bitcoin works. Instead of having
the string "Blockchain" as the input string, the input is the block header
as the block header data is represented as a string. And instead of adding
a number to the end of the input string, the field for the nOnce repeatedly
changed which completely changes the output hash. Bitcoin also uses the
SHA256 algorithm, but the bitcoin mining algorithm is however implemented
to encrypt the blockheader twice to produce the blockhash. (Chapter 8
Antonopoulos 2014)

As the data in the blockheader is represented as strings, the bitcoin min-

21

ing algorithm is implemented to take these strings, and concatenate them
before encrypting them to produce the block hash. The strings of data is
concatenated in the following order:

1. Version (As hexadecimal)

2. Previous block hash

3. Merkle root

4. Timestamp (Epoch value as hexadecimal)

5. Difficulty target (As hexadecimal)

6. nOnce

The goal of the bitcoin mining process is also to find an output hash that
starts with a 0. Instead of just requesting an output hash that starts with
just one zero, the goal can be to find an output hash that starts with multiple
zeros. How many zeros that are requested, is determined by the field for the
difficulty target in the block header. (Shirriff 2014)

The bitcoin mining has over time been developed to become a little more ad-
vanced than our simple game. As the nOnce value can have around 4 billion
different values, this gives the miners the ability to try around 4 billion differ-
ent values per second. This is because every second, the timestamp changes
which completely changes the output hash given that all the other data val-
ues for the blockheader is the same, including the nOnce value. Over time
miners have however become advanced enough to try all the different nOnce
values in one second. To solve this, to make sure that miners always have
different values to try, the miners have been given the opportunity to modify
the coinbase transaction in a block. As the merkle root has is produced based
on all transactions, including the coinbase transaction, any modification to
the coinbase transaction changes the hash of the merkle root. As the merkle
root changes, the hash of the blockheader also changes. (Shirriff 2014)

2.13 Difficulty target

The function of the difficulty target is simplified to decide how many zeros
the hash of a block header must start with.

22

The difficulty target is adjustable and varies between different blocks. The
reason for this is that for bitcoin, a block should be added to the blockchain
on average every 10 minutes. This is independent of how many miners at the
moment are trying to find new block, and how many hashes they manage to
try per second. (Chapter 8 Antonopoulos 2014)

If the difficulty target was fixed, as more miners join the mining process,
an acceptable output hash would be found more and more frequently. The
technology they use to compete in the mining process is also continuously
developing, which would speed up the process even faster. This would quickly
invalidate the idea of adding a block to the blockchain every 10 minutes.

The difficulty target is therefore adjusted frequently, to make it harder to
find an accepted output hash if the number of hashes tried in the network
increases. It is also modified to make it easier to find an accepted output
hash if the number of hashes tried in the network decreases. This is called
difficulty retargeting. For bitcoin the difficulty target is retargeted every
2016 blocks. This is done by every node in the network. How often the diffi-
culty target is retargeted varies between different cryptocurrencies.(Chapter
8 Antonopoulos 2014) For some cryptocurrencies, like Monero, the difficulty
target is retargeted every block.

For bitcoin the retargeting is done by checking how long it took for the last
2016 blocks to be added to the blockchain. This can be done by checking the
timestamp field in the block header for the first of the 2016 blocks and the
last, and comparing the time difference. The expected time for this is 20160
minutes. If it took less time than this, it means that the difficulty target
must be increased, and vice verse if it took more time than 20160 minutes.
The difficulty target is determined by the following formula:

New Difficulty = Old Difficulty * (Actual Time of Last 2016 Blocks / 20160
minutes) (Chapter 8 Antonopoulos 2014)

If a new block is proposed by a miner after the retargeting that has not
adjusted the difficulty target, it will not be accepted by the other miners and
will therefore not be added to the blockchain.

23

2.14 Mining distribution

Historically, in the early years of bitcoin mining, bitcoin miners used the
CPU of their computers to participate in the mining process. However as
more and more miners started participating, competition rose. This made
miners use better and better hardware in order to have an edge over their
competitors, hence making the difficulty target rise. This is since the better
hardware a miner has, the more nOnce per second can be tried. More tried
nOnces per second makes the chance to find a correct solution higher and
therefore increases the overall reward for a specific miner over time. (Chapter
2 Antonopoulos 2014)

The raising difficulty target, made miners use more and more specialized
mining hardware. Soon miners realised that they could try more nOnce
values per second (also called hashes per second or hash/s) using the GPU of
computers with high end graphic cards, such as gaming computers. (Chapter
2 Antonopoulos 2014)

In 2013 a new type of bitcoin mining hardware emerged. The new hardware
had the bitcoin mining algorithm (SHA256) printed directly in the hardware.
This specialized hardware is called ASIC (for: application-specific integrated
circuits). ASIC:s proved to be even more effective than GPU mining. Most
GPU units produce less than 1 GH/s (one million hashes per second) (Wiki
2016a), while many ASIC units produce more than 1000 GH/s while con-
suming less electricity. (Wiki 2016b)

At the time of writing, a miner needs to use ASIC:s in order to profitably
mine bitcoin. This is since the value of the reward a miner can produce
with even the most effective graphic cards, doesn’t exceed the cost of the
electricity it consumes. (Antonopoulos 2014)

For many other cryptocurrenices than bitcoin, this is however not necessarily
the case. As ASIC:s are highly specialized a specific ASIC unit can only
be used to hash inputs using the specific algorithm it has printed into the
hardware. This means that another cryptocurrency that doesn’t use the same
hashing algorithm as bitcoin cannot be mined using a specialized bitcoin
ASIC unit.

For many types of cryptocurrencies, there are therefore no developed ASIC
units to mine them. This makes these type of coins much more efficient to

24

mine with a desktop computer. There are also cryptocurrencies that use
algorithms that are specialized to be effective for CPU mining.

2.15 Mining pools

Mining cryptocurrency is a highly competitive industry. At the time of writ-
ing (august 2016) the hashrate of the entire bitcoin network is around 1,6
billion GH/s. (Blockchain.info 2016b) A miner can buy an ASIC unit for
example producing 4730 GH/s for around 1000 $ dollars (august 2016). (Bit-
main 2016) If a miner buys this specific ASIC unit, that miner can produce
a hash rate equal to around 0,000394% of the entire bitcoin network. That
means that while mining, the miner would find the correct solution to ap-
proximately every 253700 block on average, which is equal to around 4,83
years. As the unit also consumes 1293 watt, the miner also have to take the
power consumption over the time period into calculation.

This equation is however based on the assumption that the hashrate of the
entire bitcoin network stays the same during this entire time period. This will
most likely not be the case, as historically the hashrate of the bitcoin network
has been increasing rapidly as time progress (Blockchain.info 2016b). As the
hashrate of the entire network increases, the difficulty target is also recal-
culated which makes it harder to find the correct solution with the current
hardware the miner is using.

This makes mining for a single miner with a hashrate equal to a very small
percentage of the bitcoin network very luck based. A miner has the same
probability to find the correct solution for the next block independently if
that miner has found the correct solution for the previous 3 blocks or haven’t
found the correct solution for 4 years. This means that over the time span of
4,83 years, the miner could be extremely lucky and find 10 correct solutions,
or end up not finding the correct solution for a single block over the entire
time period.

At the seldom occasion that the miner finds the correct solution, it is highly
rewarded. The current reward is 12.5 bitcoins valued at approximately 7200
$ dollars with the current bitcoin price (August, 2016), plus any miner fees
included in the transactions of the block.

25

For most miners it is preferable to split this reward to small payments over
time than to receive it all in one huge payment. This makes mining rewards
more reliable and easier to calculate. For this reason mining pools have been
invented.

Mining pools basically makes it possible for multiple miners to collaborate to
try to find the solution for a block, and to split any reward received between
the miners. If any miner of a mining pool finds the correct solution to a
block, how much of the reward the different miners receive is based on how
much contribution they have made to find the block. The idea is to fairly
distribute the reward between miners that mines with different hardware,
as some miners produces much more hashes per seconds than others. The
mining pool usually also take a small percentage of the block reward for
the coordination of the miners. Mining pools also make sure to split the
work into different solutions that they want the connected miners to try, to
make sure that multiple miners connected to the pool are not trying the
same solutions, and do the same work more than once. Currently the vast
majority of all the hashing power of the bitcoin network goes through mining
pools (Blockchain.info 2016c).

To calculate how much contribution a miner has made, the difficulty target
to get a share of the reward from a pool is much less restrictive than the
actual block header difficulty target, often more than 1000 times easier. This
means that more nOnce values will be correct to get a share of the block
reward. When a miner submits a solution that meets the difficulty target
set by the pool, this is called that the miner submits a share. (Chapter 8
Antonopoulos 2014)

Occasionally, a miner will provide solution that meets both the difficulty tar-
get set by the pool, and the actual difficulty target of the blockchain. When
such an event happens, the pool publishes the block, and distributes the re-
ward from that block to the different miners based on how many shares they
have contributed with. The mining pool usually pays the miners the reward
they have received, as soon as it has exceeded a given amount. (Chapter 8
Antonopoulos 2014)

Technically, a miner connects to a mining pool with a specialized mining
software that communicates through a given protocol. The mining pool
provides all connected miners solutions to try. If a miner finds a solution that
meets the requirements set by the pool difficulty target, the miner submits it

26

to the pool. The pool notes that the miner has submitted a share, to calculate
how much reward the miner will get once a block is found by the pool. The
mining pool is a full node that is connected to the rest of the network. This
makes all miners restart the mining process again. And the process to try to
find the solution to the next block in the blockchain is started.

If a miner outside of the pool finds the solution to a block and broadcasts it
before the pool does, the pool informs all the miners connected to it to stop
mining the previous block. The pool will instead provide the miners with a
new block that the miners will try to find a solution for.

Mining pools communicate with the miners through a specialized protocol
for cryptocurrency mining, called Stratum.

2.16 Stratum

In the past, the communication between mining pools and miners was done
through the Hypertext Transfer Protocol (HTTP). However as HTTP was
designed for website browsing where the client asks for specific content, using
the HTTP for mining was not optimal. Using HTTP for pool mining created
three main problems:

As the amount of hashes a single miner could produce increased rapidly, the
network load on the mining pools also steadily increased. One request from
the miner to get the solutions that the pool wanted the miner to try (also
called one getwork job) could last for one 4.2 GH/s mining rig for around
one minute, or until a new block was found by the rest of the network. As
many miners have hardware that generates much more GH/s than that, a
pool received tremendous amount of HTTP getwork requests. A pool often
has several thousand connected miners, which puts much stress on the pool.
(SlushPool 2012)

Another problem was that the miners needed to have regular contact with
the pool in order to make sure that the solutions they were trying were for
valid blocks. This is to avoid committing invalid shares, hence getting them
rejected. Having a regular contact with the pool did however lead to much
network load. To solve this the Long polling pattern was used. The Long
polling pattern is a known solution for managing real time updates for regular

27

web technologies. As the situation is different for cryptocurrency mining, it
is however not optimal. (SlushPool 2012)

After a long polling broadcast, the clients need to reconnect to the server.
When many miners did this during the same time period it could be hard to
distinguish actual miners trying to reconnect from DDoS attacks. (SlushPool
2012)

The situation when miners communicate with pools is different compared
to normal HTTP client web browsing. The situation is turned around, and
instead the server already knows large parts of the content they need to
provide to the miner. (SlushPool 2012)

To solve the given situation with its problems, the Slushpool (a bitcoin min-
ing pool) came up with a solution using a new protocol called Stratum. This
protocol has now been implemented for a majority of the cryptocurrency
mining pools (even though it may have some adjustments for different cryp-
tocurrencies). (SlushPool 2012)

The Stratum protocol doesn’t use HTTP for the communication. Instead the
Stratum protocol uses a plain TCP socket connection to transfer JSON-RPC
messages in the payload containing the information between the miners and
the pool. (wiki 2016)

This approach brings some benefits. One benefit is that as the messages are
JSON-RPC messages, they are in a human readable form. This simplifies
debuggning, as the programmer can read the communication between the
client and the pool.(SlushPool 2012)

The JSON messages are transferred through a TCP socket, and typically
fit in one TCP segment. This means that the overhead is not as high as a
HTTP message, even though the overhead possibly could be reduced even
further through the use of other protocols. Using JSON objects the code
also becomes easy to extend without invalidating backwards compatibility.
JSON, or Javascript objects are widely supported on all platforms.

The biggest benefit however is that the server can drive the load themselves.
There is no need for alternative solutions to work around the problems with
HTTP. This means that the Long polling solution is not needed as the server
can transfer messages to the miners at any time. This also reduces the
problem with distinguishing miners trying to connect to the server, from

28

DDoS attacks. (SlushPool 2012)

Another big benefit is that the new protocol can increase the amount of
possible solutions the miners can try when mining a block. This is especially
important for bitcoin as the hashing power of the network has increased
rapidly. This has increased the difficulty target to a point where the old
solution just doesn’t provide the miners with enough solutions to try for a
block. (SlushPool 2012)

The reason that Stratum provides the miners with an increased amount of
solutions to try, is that the Stratum protocol allows the miners to produce
unique block heads locally. Before Stratum the miners where only allowed
to iterate over the time and nOnce field of a block header. With Stratum
the miner can also edit the coinbase transaction field by adding the nOnce
in it. The coinbase transaction holds the address to where the blockreward
will be sent. This coinbase transaction field can however be modified without
breaking anything. The coinbase transaction was before set by the mining
pool (server-side), but with the Stratum the miners are free to modify this
(client-side). When modifying the coinbase transaction, the merkelroot for
the block changes. This means that when hashing the block header, net-
work load on the server is reduced as miners can try more solutions without
communicating with the server. (SlushPool 2012)

Stratum transfers only merkle branch hashes to the miners, instead of a
complete dump of server’s memory pool as the old method did. Stratum also
scales much better to the increasing amount of transactions in the bitcoin
network. This is since the miners themselves don’t have to deal with all the
transactions, but leaves that job to the pool. (SlushPool 2012)

Lastly, Stratum also made the process of checking if the shares from the
miners are correct much less demanding for the pool.

Other alternatives : Instead of using JSON, there are other protocols that
possibly could have been used. However these alternatives includes a few
disadvantages which has further affected the distribution of the Stratum pro-
tocol among the pools within the different cryptocurrencies.

Some of the possible alternatives are:

1. Custom text protocol : Custom text protocols comes with the benefit
of being human readable and therefore easy to debug, just like JSON.

29

However as the text protocol is custom, this also means that all the
predefined features in JSON, such as request, responses and serializa-
tion has to be defined, which would seem unnecessary as JSON already
has these features defined. (SlushPool 2012)

2. Custom binary protocol : The most beneficial reason for using a custom
binary protocol would be that the network load would be lower than
using JSON, as there is some overhead for sending JSON-RPC mes-
sages. However as binary data is not human readable, debugging the
communication is harder than JSON objects. Developing serializers
and deserializers for binary data is also challenging. As JSON already
has a predefined serializer it can be argued that this is an unnecessarily
tricky approach. (SlushPool 2012)

3. Protocol buffers : Protocol buffers is an technique developed by Google.
The technique could possibly work just as well as JSON. However
Google has only protocol compilers for C++, Java and Python. This is
not that beneficial as cryptocurrencies software, such as miners, often
are implemented in other languages, such as C for performance reasons.
(Google 2016a) There are however third party implementations for var-
ious other languages, such as C, C#, Haskell, Perl and Ruby.(Google
2016b)

2.17 Stratum methods

The communication between the client and the pool is sent through JSON
messages with a specific structure. An example of such a message that is
used for bitcoin mining pools is:
"id": 1, "method": "mining.subscribe", "params": []\n (wiki 2016)

In this case this is a message sent from the client to the pool in order to
subscribe to the pool. The id field of the JSON message holds the id of
the miner that is connecting. The method field holds the information of
the action the miner wants to do, in this case it is to subscribe to the pool.
The params field holds extra information as parameters to be sent into the
method. In this case the field is empty. The \n after the JSON message is
mandatory in order to signal the end of the JSON-RPC message.

30

An example response that the pool can send to the previous request is:
{"id": 1, "result": [[["mining.set_difficulty", "b4b6693b72a50c7116db18d6497cac52"],
["mining.notify", "ae6812eb4cd7735a302a8a9dd95cf71f"]], "08000002", 4],
"error": null}\n

The id field of this messages corresponds to the request id field. The result
field holds the response information corresponding to the request information.
The last two fields in the result contains the extranOnce1 the miner will use
(in this case "08000002"), and the number of bytes the miner will use for the
extranOnce2 counter (in this case 4). Lastly, the error field holds possible
errors that the request has lead to.

There are several different methods that the client can send to the server,
and the exact implementation varies between different cryptocurrencies. For
bitcoin mining the methods from the client to the pool is:

1. mining.subscribe("user agent/version", "extranOnce1")
The mining subscribe method is used by the client to connect to the
pool, in order to initialize the mining process. The method has two
arguments. The first argument "user agent/version" is set to the clients
miner version. The second parameter "extranOnce1" is optional. It
allows the miner, if supported by the pool, to send an extranOnce to
use as the starting point. This may be used if the miner for example
has lost connection to the pool when mining using a specific nOnce. If
so, the miner can resume its mining process with that nOnce. (wiki
2016)

2. mining.extranOnce.subscribe()
Indicates to the server that the miner supports that the server sets a
extranOnce starting point. (wiki 2016)

3. mining.authorize("username", "password")
The authorize method is used to authorize the miners pool account.
This means that if the pool is implemented to only allow miners that
have created accounts on the pool, the username field must correspond
to that account. Some pools may however be implemented to create
a new account with the username if such an account does not exist.
The pool often sets the password field as optional. If not, it must cor-
respond to the created account. Worth noting is that there can often
be several usernames connected to one account. An example of this

31

is that if the username for an account is "Satoshi", two different user-
names called "Satoshi.miner1" and "Satoshi.miner2" can exist. This
allows two different miners to be connected to the same account, to
allow any rewards from shares that these miners submits to be sent to
one account.

The response from the pool to an authorize call is either true or false,
corresponding to if the username and password (if not optional) is
accepted by the pool or not. (wiki 2016)

4. mining.get_transactions("job id")
Gets the associated transactions that should be included in a block
for a specific job id. The response will include the transactions in hex
format. (wiki 2016)

5. mining.submit("username", "job id", "ExtranOnce2", "nTime",
"nOnce")
This is the method the miner will use when submitting a share for a
specific job. The miner will call this method when it has found a hash
that meets the difficulty target set by the pool. When the miner has
submitted the share, the pool will respond with true if the share is
accepted, and false if it is not. The username field should be set to
the miner worker name. The job id field should correspond to the id
of the current job. The ExtranOnce2 field should have the size set by
the pool through the response to the miners mining.subscribe call. The
nTime field should be the current timeStamp. The nOnce field should
correspond to a nOnce the miner has found that leads to a hash that
meets the pool difficulty target. (wiki 2016)

6. mining.suggest_difficulty(preferred share difficulty Number)
This is a method that can be used by the miner to suggest the difficulty
target that the pool will use as the boundary that hash shares must
meet. The pool is not required to take this suggestion into considera-
tion, even if the pool supports this feature. (wiki 2016)

7. mining.suggest_target("full hex share target")
The miner can suggest a share target of the pool by using this method.
This is often done before the miner calls the mining.subscribe method.
The pool is not required to take this suggestion into consideration, even
if the pool supports this feature. (wiki 2016)

32

There are also several different methods the pool can use to send informa-
tion from the pool to the client. The exact implementation varies between
different cryptocurrencies, but the stratum protocol for bitcoin supports the
following methods:

1. mining.set_difficulty(difficulty)
Used by the pool to set the difficulty target that the hashes provided
by the miners must meet in order to get an accepted share. The miners
should implement this new target when they receive their next job.
(wiki 2016)

2. mining.notify("Job ID", Hash of previous block, Generation
transaction (part 1), Generation transaction (part 2), List of
merkle branches, Bitcoin block version, nBits, nTime, Clean
Jobs)
This method is used by the pool to assign the miner to a job. The
miner will then try different solutions in order to try to find a solution
that leads to a hash that meets the difficulty target set by the pool.
The information for the different parameters should be:
The "Job ID" field should be set to a unique id that the miners will
use when sending back information such as a share to match the infor-
mation to a specific job.
The Hash of previous block field is necessary for the miner in order to
build the block header.
The Generation transaction (part 1) field is used by the miner by insert-
ing the ExtranOnce1 and ExtranOnce2 after the information provided
by this field, in order to build the block header.
The Generation transaction (part 2) field holds the information the
miner will insert after the part 1 field and the inserted ExtranOnce1
and ExtranOnce2 in order to build the block header. This completes
the full generation transaction that the miner provides.
The List of merkle branches field is used to build the merkle root, by
hashing the full generation transaction with the merkle branches.
The Bitcoin block version field holds the block version, which is needed
to build the block header.
The nBits field holds the encoded information of the difficulty target
of the entire network (not the pool difficulty target), this is used when
building the block header.
The nTime field holds the current time stamp.

33

The Clean Jobs field is used to inform the miners if they should move
on to the next job or not. An example of when this could be appropri-
ate would be when the bitcoin network has already found the solution
to the block the miner has a job assigned to. This would make any new
share to that block useless. If true, the miner is informed to move on
to the next job immediately. If false, the miner will move on once the
miner has tried every possible nOnce solution for the current job it is
assigned to. (wiki 2016)

3. mining.set_extranOnce("extranOnce1", extranOnce2_size)
This method will be called by the pool in order to replace the values
sent to the miner in the initial response to the miner.subscribe call from
the miner. This will happen as a response if the miner has called the
mining.extraonce.subscribe method.(wiki 2016)

4. client.get_version()
Is called in order to ask the miner to send its miner name and ver-
sion.(wiki 2016)

5. client.reconnect("hostname", port, waittime)
This method is called in order to ask a client to reconnect to the pool.
The hostname field is the url the miner should reconnect to. The port
field holds the port the miner should use when reconnecting. The wait
time field contains the number of seconds the miner should wait before
reconnecting after it has disconnected. The miner may ignore this
request if the hostname and port isn’t the same as it is currently using.
(wiki 2016)

6. client.show_message("human-readable message")
This method is called in order to send a message to the miner that
it should present to the user. The message should be inserted in the
"human-readable message" field. (wiki 2016)

34

Chapter 3

Computational micropayments

3.1 Mining reward as micropayments

Many different types of cryptocurrencies have a value. While it has been
widely discussed whether cryptocurrencies has any intrinsic value or not as
they are not backed up by any state, it is hard to argue against the fact that
they are valued at the price that people are willing to pay.

Currently the value of many of the most popular and used cryptocurrencies
are most often measured in fiat currencies. At the time of writing, bitcoin the
most popular cryptocurrency is valued around 575 $ dollar (August 4th 2016).
The value of many other less used cryptocurrencies is instead often measured
by how much bitcoin one unit of that specific type of cryptocurrency can be
traded for. One example is the cryptocurrency Monero. At the time of
writing (August 4th 2016), one unit of Monero can be traded to around
0.0032 bitcoin, on a specific exchange platform that allows users to trade
different cryptocurrencies for other types of cryptocurrencies. One example
of such an exchange platform is Poloniex (https://poloniex.com/).

The reward for finding a solution of a block for a cryptocurrency consists of
a given amount of that type of cryptocurrency. That means the reward will
have a value given that the specific cryptocurrency has a value. Mining pools
allow the miners that have submitted shares to the mining pool to split the
reward of a block found by the pool. This provides a situation where a share

35

to a mining pool has a value. Most mining pools set the difficulty target to
submit a share to much lower than the actual difficulty target of the block.
This leads to that the value of one submit is only a fractional part of the full
block reward value.

In this paper, we will provide a design theory that concludes how these frac-
tional parts of the full reward can be used to create micropayments through
the computational power of a user’s computer.

3.2 Structure of solution

In order to build a system that allows fractional parts of the mining reward
to serve as micropayments, we suggest some crucial design decisions that
allow such an approach.

First of all the miners must connect to a mining pool, in order to split the full
reward into fractional parts that will form the micropayments. The system
must therefore be structured to allow users to make micropayments through
mining clients that connects to a mining pool. As the fractional reward that
the user receives is the actual micropayment, it is important that the reward
is not transferred to the user. Instead it should be transferred to the part
that acts as the receiver of the micropayment.

The design of the system that we propose also allows multiple users to com-
bine their fractional mining reward, hence micropayment, to the same re-
ceiver. The reason for this is that one micropayment of for example 0,1 USD
cent has a too insignificant value for a receiver. However if 1 million users
combine their individual micropayment of 0,1 USD cent, the combined value
reaches 1000 USD dollars.

Mining of cryptocurrency is not naturally designed for this goal. First of
all the mining softwares are not designed to make the user make a limited
amount of submits to reach a specific value. Instead the mining softwares are
designed to let the clients mine continuously and make continuous submits
until the user itself decides to turn the mining software of. The mining
software is also designed to make the user manually setting for the miner,
such as the pool username that the reward will be transferred to.

36

Architecture of theoretical framework : We suggest a design that instead of
just the individual mining clients and the mining pool also includes a server
that acts a proxy between the clients and the mining pool to solve the issues
described above.

The idea with the server is to provide the mining pool with the information
of where the mining reward should be sent. This is to make sure that all
reward of the miners that are making micropayments to the same receiver
will be transferred to the same output address. The server will also provide
the miners with the information of how many submits the miners have to
contribute with to meet the value of the micropayment. When the client has
generated enough value, it will terminate the miner process. The server will
also keep a record of how many submits a miner has made, in order to know
how much value a specific client has generated.

Steps of theoretical proposal:

1. Miner connects to proxy server : The client connects to the proxy server
through a TCP-socket connection.

2. Proxy server sends mining information to miner : The proxy server
then sends the necessary information to the client. This contains infor-
mation for the clients miner, such as which algorithm to use and how
many submits the client needs to provide.

3. Miner sends Stratum JSONs : The miner will then start sending JSON
objects following the Stratum protocol to the proxy server. The proxy
server will then check the JSON objects and replace necessary informa-
tion such as output address of the mining reward. After this the proxy
will transmit the possibly modified JSON objects to a mining pool.

4. Mining pool sends back a Stratum response: The pool will then send
back a JSON object following the Stratum protocol as a response. The
proxy server will check this response and take necessary actions. The
actions includes keeping track of the amount of accepted submits the
miner has made if the pool responds that a submit the miner has made
has been accepted. After this the proxy server will transmit the JSON
object to the miner.

5. Step 3 and 4 repeated : The steps 3 and 4 are repeated until the miner
has made enough submits to have generated enough value for the mi-

37

cropayment. When this occurs, the mining process of the client is
terminated.

To make a concrete example, imagine that a popular blogger posts informa-
tion regarding technical updates in the cellphone industry. To finance the
time spent writing the blog posts, the blogger has given readers the possibil-
ity to donate 1 cent worth of their computational power to the blogger. The
reader Bob who wants to donate 1 cent, runs the client program which re-
ceives information of what algorithm to use from the proxy server. The proxy
server also sends how many shares Bob’s miner should submit. The proxy
server decides that the algorithm to run is the CryptoNight algorithm to
mine the cryptocurrency Monero as it is the most profitable cryptocurrency
to mine at the time the reader wants to donate money. The proxy server
connects the miner with MoneroPool, a Monero mining pool and calculates
how many submits Bob’s mining program needs to commit. The reward for
finding the solution to one block is set to around 12 Monero which has a total
value of around 96 dollars at the time of writing (28th, August 2016), with a
block difficulty target set to around 2,500,000,000. The difficulty target for
an accepted share at the given pool is however only set to 25000, making it
100,000 times easier to find an acceptable hash for the pool then the actual
block. This makes a share to the pool valued on average 100,000 times less
than an acceptable solution for the entire block. The value is therefore 96
USD dollar / 100,000 which is equal to around 0,1 USD cent per share. This
means that in order for Bob to make a micropayment of 1 cent he must make
10 submits. The miner then keep trying to find acceptable shares by running
the hashing algorithm on the jobs provided by the pool through the proxy
server, until 10 acceptable shares have been made. When this happens, the
miner will terminate and Bob will have made his full donation of 1 USD
cent.

In the following sections of this chapter, the different architectural parts of
the system will be explained more in detail, and their responsibilities.

3.3 Client

The main responsibility of the client-side of the solution is to run a miner for
cryptocurrency.

38

We suggest to make the client-side system to either be a standalone program
that the user can preferably install on its computer or a system that runs in
the user’s web browser. A web browser system is suggested to be an add-on
that the user can install to their web browser. Both of these approaches
implies advantages unique to the chosen approach.

The main advantage of choosing to make the client-side system as a stan-
dalone program is that it is very easy to create a system that runs in the
background. This can be done without substantially effecting the perfor-
mance of the user’s hardware when the user is doing other tasks on the
computer simultaneously. The advantage to have the program run in the
background is that the user specifically must ask to terminate the specific
standalone program in order to make it stop mining, if the user wants to
terminate it before having made enough submits. This is not the case for
the web browser approach as the mining process is terminated as soon as the
web browser is closed by the user. It is suggested that the miner of the stan-
dalone program only uses the current free resources of the hardware when it
is running in the background. It should scale down as soon as the user starts
other processes that requires resources of the hardware.

Choosing the approach to run the system in a web browser mainly gives the
advantage of creating a smooth user experience when the user is going to start
the mining process. Lets say a vendor places a donate button on their web
page to let users donate 1 cent worth of their computational power. When
the user presses this button, the system can start directly without requiring
the user to interact with another program outside the browser. This requires
that the web browser mining add-on is set up.

Another important aspect is if the mining process should use the CPU or
the GPU. There are different hashing algorithms, and also different cryp-
tocurrencies, for both of alternatives. It is also possible to have two separate
miners running at the same time with different hashing algorithms. If so its
possible to target both the CPU and GPU at the same time to maximize the
value generated per minute. It is important to take into consideration that
an average desktop computer can compete better with other miners if it is
using the CPU. This is because the difference in performance between an av-
erage desktop computer’s CPU and an optimized computer is less significant
than than the difference of the GPUs. It is also important that maximizing
the performance of the GPU will limit the user experience more when the

39

user will try to use the hardware for other tasks simultaneously, compared
to the CPU. An example is that the GPU generates a lot more heat when
being pushed to its limit, compared to the CPU.

3.4 Proxy Server

The proxy server of the theoretical framework acts like a middle man be-
tween the client system and the mining pool by receiving all communication
from the miner (in the form of Stratum JSON messages) and then transmit-
ting them to a mining pool. When the pool answers, the JSON response is
transmitted back to the miner.

The basic layout for this is simple. As the the communication between the
miner and the pool is based on the Stratum protocol, it is humanly readable
and can therefore be easily interfered and handle accordingly by the proxy
server.

How different messages should be handled depends on the specific message
and type of algorithm being run by the miner. There are some general
messages that are suggested to be handled independent of this:

1. Login request : The first communication that will be sent from the miner
is a login request. We suggest that the parameters for the login name
and possibly password (if required) is changed in this message to corre-
spond to the receivers information of the micropayment. By adapting
this approach, the receivers’ information is never really disclosed to the
client. In some cases this can be beneficial for the receiver as they might
not want to make this information public. This also makes it possible
to create a system where the login name of the miner is unique for
every client before the name is changed, in order to uniquely identify
the different miners.

2. Job: The pool will then answer by replaying with a job that the miner
should try to find the solution for. None of this information has to
be manipulated in any way, and can be transmited back to the miner
directly.

3. Miner sends submit : If the miner finds a solution to a job, it will send

40

the solution back to the pool as a share. This message doesn’t really
have to be handled in any other way then being transmitted to the
pool, unless the proxy server should check if the solution is valid or
not.

4. Pool sends submit status : The pool will then answer if the share was
accepted as a valid solution or not. If accepted the proxy server should
store the information that the miner has made a correct share in some
way, and then transmit the message to the miner. It is important to
only store the submit as a valid share when the pool responds that it
was accepted, and not immediately when the miner sends the submit.
This is since the client-side of the miner can be manipulated to send
incorrect solutions often in order to try to reach the amount of requested
submits faster.

5. Miner resends login request : If the miner doesn’t receive a new job from
the pool after a given amount of time, the miners are also programmed
to resend a log in message. It is important that the proxy server is
programmed to be able to handle this correctly, in order to not handle
the request as a request from a new miner. If this happens, the proxy
server should not set the submits made by the miner when sending the
log in message again to 0.

The proxy server also has other responsibilities than the handling the stratum
messages. Other important responsibilities includes:

1. Provide the client with an algorithm to run: It is suggested that the
proxy server is programmed to be able to find out which cryptocur-
rency is the most profitable to mine in terms of value per minute for
the hardware of an average desktop computer. This limits the time the
client has to spend running the mining process. This probably maxi-
mizes the amount of clients that will submit all required shares. When
a cryptocurrency has been chosen, the server should send information
to the client of which hashing algorithm it should run in order to mine
that specific coin.

2. Provide the client with amount of submits to reach: The pool should
also provide the client with information on how many accepted shares
it should submit before the micropayment is complete. This is to make
sure that the client can turn off the mining process once the target has

41

been hit.

3. Keep track of accepted submits : The pool should also keep track of how
many accepted submits the miner has made. This is since the miner
can reconnect several times and shouldn’t have to start over with the
submit count every time. As the client-side also can be manipulated
by the end user, it is not viable to store this information on the client-
side. This makes it possible to implement functionality for a user to
use several different computers, but to still submit shares for the same
micropayment.

3.5 Mining Pool

When designing the system there is a key decision that has to be made
regarding the choice of mining pool. It is important to decide whether a
designated mining pool should be set up specifically for the system or if a
third party mining pool should be used. Both of these alternatives have
benefits and disadvantages.

Designated mining pool : The benefit of using a designated mining pool or
pools is mainly to have the control of the pool. This removes the risk of hav-
ing to trust a third party, which is quite important since the cryptocurrency
that will be mined has a value. Also the need to pay a fee to the third party
for using the pool is removed. However managing a pool is not simple, and
involves much complexity which is an obvious disadvantage. Another disad-
vantage is that the pool requires many connected miners at the same time, in
other words users using their computational power for micropayments. Sta-
tistically the overall reward per hash should be the same regardless of how
many miners a pool has. As fewer miners means that a correct solution will
be found more seldom, this also means that receivers possibly have to wait an
extended amount of time before they can withdraw any value from the pool.
It is therefore highly recommended that pools with a significant amount of
the total hashing power of the network for a specific cryptocurrency are used,
as this will lead to continuous payments often.

Third party mining pool : Key benefits of using third party mining pool or
pools include the fact that it makes it easy to build a system that allows

42

clients to mine the most profitable cryptocurrency. It is easy to find func-
tioning mining pools for pretty much every major cryptocurrency. There are
also mining pools that can be used to mine several different cryptocurren-
cies in the same pool. It is also positive that the complexity of managing a
mining pool is removed. However the most important disadvantages of this
approach is that the mining pools will then charge a small fee for every share,
hence taking a small part of every micropayment. Also there is complexity
involved in using third party mining pools while enabling withdrawals of the
receivers of the micropayments cryptocurrency. This is because withdrawals
work differently in different mining pools. On top of this, using third party
mining pools adds risk as they have to be trusted to hold the receivers cryp-
tocurrency.

Our recommendation based on this is to use third party pool or pools. The
exception is if the amount of users using the system is high enough to host
pools that produce hashing power that is a significant part of the network
of the cryptocurrency being mined. If so a dedicated pool or pools for the
system is recommended.

43

Chapter 4

Functioning prototype

In this chapter, the prototype that has been created will be explained in
detail. The previous chapter explained the theoretical approach to a solution
for using computational power as micropayments. This chapter will instead
explain a developed functioning prototype that proves that the theoretical
approach works.

Worth to take into consideration is that the developed prototype is only a
proof of concept, and not a optimized solution. This means that there are
several parts of the prototype that need to be further developed in order to
make the prototype function in a full scale business system.

The chapter is divided into several different sections, each explaining the
implementation of the different parts of the prototype. Lastly the chapter
includes a section that describes further developments of the prototype that
would be needed in order to make it function in a business perspective.

4.1 Client

In our prototype the client is a standalone Windows Form C# program.
The idea of the program is to be a minimalistic program that runs in the
background without effecting the performance for the other tasks that the
user runs simultaneously.

44

The user interface has been made as simple as possible, and its only function
is to display the progress of the micropayment. This has been done by only
including the most necessary information to the user. Because of this the
user has not been given any ability to interact with the user interface other
then terminating the program.

The reason for making a standalone program was to prove that the client
program can run in the background while the user is using the computer for
other purposes. The program will function without effecting the performance
for the other tasks that the user runs simultaneously.

The miner that the client use has been limited to only use the CPU and
not the GPU. Part of the reason for this solution is that the using the CPU
is less noticeable for the end user than using the GPU. Another reason for
this limitation is that the developed client system is made to only function
as a prototype and not as an optimal solution. Using the GPU adds much
complexity when programming the system. This is because the settings for
the miner system must be based on the type of graphic card that the desktop
computer uses. To develop a client system that handles this correctly with-
out requiring manual set up of the settings is complex. This was the main
reasons for limiting the prototype to the CPU, as the prototype was made
to show a proof of concept while keeping the developing process as simple as
possible.

For simplicity reasons the client miner has not been developed specifically for
this project, instead a third party open source miner has been used. Because
of this the part of the client system developed in the prototype is the GUI that
interacts with the miner program without the need for the user to manually
edit anything. The third party miner that is used is called "Minerd". The
prototype client system is limited to only mining one type of cryptocurrency,
Monero.

As the GUI has been developed as a C# Windows Forms application, it is
currently run as an .exe file which limits the systems usage to the Windows
operation system. This limitation is not optimal for every type of user. This
limitation was made to remove the complexity of developing a cross platform
system.

45

4.2 Proxy server

The prototype proxy server has been developed as a C# console application.
The way to connect to the proxy server is through TCP-socket connections
from the client application. The proxy server will then set up a TCP-Socket
connection to a mining pool specifically for that client and transmit necessary
JSON messages between the miner and the pool.

The pool allows asynchronous TCP-connections, which is highly preferable
as this means that a client won’t block a thread to the proxy server when
waiting for messages from the pool.

Ideally the proxy server would be set up on a virtual machine using the
Microsoft Azure environment, as this is a robust hosting alternative that
scales based on the traffic the proxy server is currently handling. However
since the system is only meant to function as a proof of concept prototype,
it is currently only hosted locally to prove its functionality.

The pool is connected through a TCP-Socket connection to the DNS that the
pool is hosted on. As Stratum is based on JSON messages sent over TCP,
the proxy server does not allow HTTP connections, and is therefore not a
public HTTP-API.

A very important aspect is that the prototype proxy server is able to handle
several connected miners at the same time without high latency. It is also
able to track individual information of the separate miners, such as number
of accepted shares.

One aspect of the prototype proxy server that is not ideal is that the proxy
server cannot decide the most profitable cryptocurrency to mine for the time
being. It is set up to only let the connected clients mine the cryptocurrency
Monero. To minimize the time spent for the clients to generate enough value,
this is solution not optimal.

The decision not to include this feature is because it is straightforward how
to develop this feature, but requires more development time than available
for the prototype. What is required is that the proxy server would need
to connect to API:s of block explorers for the different cryptocurrencies it
should evaluate. This is to acquire information regarding the amount of
hashing power for the networks of the different cryptocurrencies, as well as

46

the different difficulty targets. It is also required to connect to an API that
can provide information of the price of one unit of the different cryptocurren-
cies. With this information it is possible to calculate how much the hashing
power of an average desktop computer is worth per minute, for the different
cryptocurrencies. With this information it is easy to calculate the currently
most profitable cryptocurrency to mine for the users.

4.3 Mining pool

As the developed system is a prototype it will not have several thousand
connected users. For this reason, it is not preferable to use a specified mining
pool for the system. This leads to the decision that third party mining pools
is the most viable solution to use.

As the prototype is only a proof of concept, only one type of cryptocurrency
will be mined by the client miners. For this reason only one mining pool has
been used. This mining pool is a Monero mining pool with the descriptive
name MoneroPool.com.

47

4.4 Demonstration of prototype

In this section we will demonstrate the developed prototype by demonstrating
and explaining images of the prototype in action.

Proxy server is started :
The first action is the initialization of the proxy server, which is a console
application. In a real functioning business system the proxy server would be
hosted on a virtual machine using Microsoft Azure. Using Azure, the console
application would run continuously, and would only be started once.

Figure 4.1: The proxy server is started

48

Important to notice is that the proxy server implementation has for the sake
of this demonstration been modified to print events and communication that
goes through it. In a real functioning business system, this would not be
necessary.

Client is started :
A client is started and is connected to the server. The client then sends a
login request following the Stratum protocol to the proxy server, which will
be sent to a mining pool. Note that the login name the miner sends to the
proxy server is not the login name that will be sent to the mining pool. The
proxy server will modify the login name. The login name should correspond
to the micropayment receiver’s information.

Figure 4.2: The client program is started

49

Job is received from pool :
The mining pool responds by sending back a job to the proxy server, that
the client’s miner should start finding a solution for. The job is sent through
a Stratum JSON message, that is transmitted back to the client through the
proxy server.

Figure 4.3: The job is recived and sent back to the client

50

Client receives job:
When the client receives the job, the miner will start trying to find the
correct solution by hashing the block header using the blob sent by the pool.
If the hash meets the difficulty target set by the target field in the job JSON
received from the pool, the miner will submit back the solution found. In
the prototype, the client will signal that it is working to find a solution by
displaying a small blinking loading bar in the GUI. Another more appropriate
way to display this could of course be implemented.

Figure 4.4: The job is received and sent back to the client

51

New block found :
If a solution for the current block is found by the Monero network, all miners
should abandon their current jobs and start trying to find a solution for the
next block. When this happens, the pools sends a new job to the proxy server
that is transmitted back to the client which will start working with the new
job.

Figure 4.5: A new job is sent to the miner

52

Client reconnects :
The miner will sometimes send a new login request to the pool, and will then
receive a new job. If this happens it is important that the submit count is
not reset either on the client or the proxy server.

Figure 4.6: Login request resent by miner

Solution found :
When the miner finds a correct solution that meets the difficulty target of
the job, it will send in the submit to the proxy server. The submit is then

53

transferred further to the mining pool. If the mining pool responds with an
"OK" status, the submit was a valid share.

Figure 4.7: Miner submitted valid share

54

Client receives information of valid share:
When the message is sent to the miner that it has submited a valid share,
the submit count is increased. When the submit count reaches the required
amount to have generated the value for the micropayment, the mining process
is aborted. When this happens, the client is alerted that the micropayment
is complete. The client program is closed when the user closes the alert
message. Note that for the sake of this demonstration the required submit
count has been set to 1. However for a larger micropayment, this count would
be set to a higher number.

Figure 4.8: Micropayment is complete

55

4.5 Future developments of prototype

The developed prototype functions as a proof of concept. There are how-
ever some extra functionality that would be preferable to add in order for
the prototype to be viable in a business perspective. These functionalities
would be preferable for a business that wants to add the possibility to receive
micropayments through computational power.

Our idea of how the prototype could be viable in a business perspective
requires the development of two extra functionalities:

1. Payment option on website: In order for a business to add the possi-
bility to receive payments though computational power, they must be
able to add some control that lets the user download the client system
and start the mining process. The control should also determine the
value of the micropayment that the users will generate. We have two
suggestions for such controls. For businesses that have full access to
edit the HTML content on their website, we suggest that the business
should be able to add a button that displays a simple message such as
"donate 1 cent of your computational power". Once a user presses the
button, the client system will be downloaded along with the correct
settings. The settings should be corresponding to the business that
will receive the value. If the user that clicks the button already has
the client system downloaded, only the settings for the receiver will be
downloaded.

For businesses that don’t have full access to edit the HTML content
on their website (such as business operating on social medias, Youtube
and similar platforms), another solution is required. Our solution is
that the business should be able to generate a hyperlink that leads
those clicking on the link to download the client system. The system
will then install with the correct settings for the specific receiver of the
micropayment.

2. Registration for receivers : If a business wants to receive micropayments
in cryptocurrency the business needs to somehow set up an account at
a mining pool as well as a cryptocurrency wallet address to link their
account to. However this process may be far to complex for most busi-
nesses, especially if they lack knowledge in how cryptocurrency func-

56

tions. For many businesses receiving the payment in cryptocurrency is
also not optimal as all their utilities, staffing salaries and etc. needs to
be payed in a fiat currency.

For these reasons our solution is to develop a website that lets busi-
nesses register with all the necessary information. Our website system
will then handle all connections with mining pools so that the busi-
ness does not need to set up their own wallets. When the business
later wants to withdraw the value from the micropayments, they do
not need to operate through mining pools. The suggestion is instead
to let the business operate through our website. The businesses should
then have the opportunity to choose if the value should be withdrawn
as cryptocurrency or as a fiat currency. If the business choose to with-
draw the value as a fiat currency, all the cryptocurrency that users have
generated through micropayments will be exchanged to fiat currency
on an exchange platform.

4.6 Previous implementations

When we started writing this thesis and developing the prototype, there was
to our knowledge no released implementation that used the computational
power of desktop computers to generate micropayments.

The closest implementation to our knowledge was the 21 bitcoin computer.
The 21 bitcoin computer can be connected to a desktop computer through a
USB-port. The computer can allow micropayments through mining, if used
to develop such a service. The 21 bitcoin computer is however fundamen-
tally different from our solution. The 21 bitcoin computer is a designated
specialized hardware for bitcoin, and can be used to mine bitcoin effectively.
It can however not be used to mine other cryptocurrencies. The 21 computer
has been developed to allow developers to develop applications for bitcoin,
and is not mainly developed to allow micropayments through mining. (21.co
2016)

During the development of the prototype and the writing of the thesis, the
user "ctorres" posted a developed system that is quite similar to our solution
on the Bitcointalk forum. The post was made the 14th July 2016. The

57

system is called "TicketMiner" and allows users to run a web browser add on
to generate value. There is one fundamental difference to our proposal. The
proxy server is meant to be hosted by the receiver of the micropayment. This
requires that the receiver hosts a node.js server. From a business perspective
we argue that this in most cases is not viable, as it requires knowledge of the
receiver to host a server, and requires knowledge in node.js for maintenance.
This also means that it is not usable if the receiver does not have full access
to edit the HTML content. It eliminates the easy set up and interaction that
our prototype can allow if it is further developed, but could potentially allow
micropayments through cryptocurrency mining if set up correctly. (ctorres
2016)

58

Chapter 5

Concluding remarks

5.1 Conclusions

In this thesis we have developed a design theory to show how cryptocurrency
mining can be used to generate value to make micropayments.

The relevant background knowledge for our design theory has been described
in chapter 2. In this chapter we in detail explained the underlying technology
behind cryptocurrency, as well as briefly explaining the previous research and
concepts that cryptocurrency and blockchain technology are based on.

Further we have proposed a theoretical framework that applications to re-
alize micropayments through cryptocurrency can be based upon in chapter
3. We have concluded that in order to do so the system needs to include
three essential parts. A client system, a proxy server and a mining pool or
pools. We have described the essential parts of these systems. We have also
described which parts that need to be developed and which parts that can
use third party solutions.

Chapter 4 describes a prototype that is based on this theoretical framework
proposed in chapter 3. This prototype was developed to show that a real
world application based on the theoretical framework is functional. By de-
veloping a functional prototype, we have concluded that it is indeed possible
to generate value for a micropayment through the use of cryptocurrency min-
ing. In accordance with Gregor and Jones a developed design theory must

59

consist of 8 core components. We do here conclude that our developed design
theory does so:

1. Purpose and scope: The purpose and scope is described in chapter 1 of
this thesis. The chapter explains that the purpose of this thesis is to
develop an artifact to make it possible to use cryptocurrency mining as
a way to generate value for micropayments. The chapter also explains
that the scope is to develop a theoretical framework that describes how
this can be done, as well as a prototype built upon this theoretical
framework.

2. Principle of form and function and Constructs : In chapter 3 we de-
scribe a theoretical framework of how cryptocurrency mining can be
used for micropayments. In this chapter we clearly define the archi-
tecture of the framework, as we define three main architectural com-
ponents, the client side, the proxy server and the mining pool. We
also define clear constructs of the different components, such that the
client side should include a miner that can run cryptocurrency mining
algorithms.

3. Artifact mutability : The theoretical framework described in chapter
3 allows artefactual mutability as it is a generalizable framework and
does not define an exact solution other than its three core components.
The actual implementation of the framework can vary which is also
discussed. A mentioned example is that the client system could either
be a standalone system, or a browser add on. It is also mentioned that
third party solutions can be used for parts of the system, as well as the
client miner can either be using the GPU, CPU or both.

4. Testable propositions : Chapter 3 also defines several testable proposi-
tions of the design theory such as: Can the proxy server transmit the
JSON messages between the pool and the miner? Can the mining pool
provide the miners with work? And maybe most importantly, can the
system generate value for micropayments?

5. Justificatory knowledge: We define relevant background knowledge in
chapter 2. This chapter describes the past research that cryptocurrency
is based on, such that the cryptography and the byzantine generals
problem.

6. Principles of implementation: The theoretical framework described in

60

chapter 3 clearly defines guidelines, that can be followed to develop a
system that allows micropayments through cryptocurrency mining.

7. Expository instantiation: Chapter 4 describes a developed prototype
that is based on the theoretical framework described in chapter 3. The
prototype is a proof of concept to prove that applications can be built
based on the theoretical framework. This verifies that cryptocurrency
mining can be used to generate value for micropayments.

5.2 Discussion

We claim that the theoretical framework that we have developed in this
thesis is valid and functional to base and develop a full scale system upon.
Further we claim that since the theoretical framework is valid and functional,
it proves that the value generated when mining cryptocurrency can be used
as micropayments.

The most valid proof we have for this claim is the fact that we have developed
a functioning prototype, and we claim that this prototype is a valid proof
of concept. The reason for this is that the prototype (even though it is not
yet developed into a full scale system) clearly can allow multiple clients to
generate value. This value can be transferred to a single wallet address that
is decided by the proxy server.

This claim does however raise a few concerns that must be addressed in order
to be valid.

1. Insufficient number of connected clients tested : One concern that is
important to discuss is the fact that the prototype has not been tested
with an extensive amount of users, hence connected miners that gener-
ate a value. Since one of the core ideas of the system from a business
perspective is that an extensive amount of connected clients together
will generate a value that is significant to the receiver, one can claim
that the prototype is not a proof of concept until this has been done.
This is not the case with the prototype, as it has not been tested other
than locally. As it has been tested locally, it has not been possible to
let extensive amount of clients on separate hardware connect to the
proxy server. Instead only multiple miner clients started on the same

61

hardware have been able to connect to the proxy server. This means
that all clients are sharing the same hardware. This in turn means that
all clients are only generating as much total hashing power as if there
was only one single client running on the hardware.

We do however claim that this concern is not an issue as all procedures
used when the system is running for two connected clients are exactly
the same as if there are one million connected clients for the same
receiver. The only difference is the amount of resources the system
requires, which increases as the amount of connected clients increases.
As the system is also based on asynchronous programming, users will
not block threads while waiting for responses from the proxy server.
The specific implementation of the prototype also allows it to be hosted
using Microsoft Azure, which scales the resources depending on the
need.

Something important to notice is that despite the amount of connected
clients, value is always generated when using the prototype. This is
since the prototype uses a third party pool which has many more con-
nected miners that are not connected to the prototype. This means
that as long as a client is able to make a valid share to the pool, it will
generate value. The only thing that is different with fewer connected
clients to the prototype is that the total value for the receiver will be
lower as fewer clients will make micropayments. This may lead to that
the total value generated will not be enough if the receiver wants to
withdraw the value as a fiat currency as the transactions fees of fiat
currency might be too high. This also applies to some types of cryp-
tocurrencies if the total value generated for the receiver is very low.
This does not invalidate the fact that value is generated to a given
receiver, hence creating a micropayment using cryptocurrency mining.
It is just too low to be of any valid use for the receiver.

It is also important to notice that all technical implications that comes
with a higher connected client amount are implementation concerns
that can be solved programatically and with extensive testing. Such
concerns is out of the scope of this thesis. The thesis focuses on pro-
viding a design theory with a theoretical framework that describes how
micropayments based on cryptocurrency mining can be achieved, not
the unique way of implementing the theoretical framework.

62

2. One type of cryptocurrency mined : A concern where the developed
prototype partly contradicts with the proposed theoretical framework is
that the framework suggests that the system should be able to identify
the most profitable cryptocurrency to mine. The system should then
provide the clients with this information, and let the clients mine that
cryptocurrency to optimize the amount of time the client needs to spend
during the mining process. However the prototype has been limited to
only handle one type of cryptocurrency. As the prototype only needs
to show the proof of concept, we argue this is an acceptable limitation.
The value needed for the micropayment will take longer to generate
compared to mining the currently most profitable cryptocurrency, but
it will still be generated after a given amount of time. We claim that
this is enough as a proof of concept as the aim of the thesis is to prove
that cryptocurrency mining can be used as micropayments, not to find
the most optimal way to do so. Also the theoretical framework only
suggests this as an optimal solution, not as a requirement to build a
functioning system.

3. More clients leads to rising difficulty : If more users start using the
system, this would lead a increased total hashing power for the network
of the cryptocurrency they are mining. This leads to an increased
difficulty and making it more difficult to find a correct solution for a
block for that type of cryptocurrency.

One could argue that if everything else stays the same, the hashing
power per user will then become less and less valuable as more hashing
power is competing for the same amount of reward. The system would
then become counterproductive as it would take longer and longer time
for a specific user to generate enough value for their micropayment as
the system gets more users.

However this argument has been proven to be wrong time after time
for several different cryptocurrencies. History has shown that as min-
ing becomes less profitable, either because of dropping reward value or
increased competition, many miners simply tend to stop mining and
therefore lowering the total hashing power of the network. The rea-
son for this is simple, most miners run the mining process to make a
profit. If they are not profitable anymore, which could be because the
electricity costs exceed to reward they receive, they have no reason to

63

keep mining.

We therefore claim that this would be the most likely scenario if this
became an issue for an implementation of the system. This guarantees
that the system will still be viable, even if the system became used by
a majority of the population.

Important is also that its possible to implement a system that makes
different users of the system mine different cryptocurrencies, hence
spreading the hashing power among the networks of different types
of cryptocurrencies.

4. Fewer cryptocurrencies can be mined in the future: An argument that
would invalidate the use of the design theory is that the amount of
cryptocurrencies with a actual value may decrease in the future. This is
because there could instead be only a few dominating cryptocurrencies
that holds all the value. This would most likely lead the development
of specified hardware to mine all of valuable cryptocurrencies. As we
have already stated, when there is specified hardware to mine using
a specific algorithm, a desktop computer generates value at a much
slower rate as the hashing power it can produce is very low compared
to the specified hardware. This makes mining on desktop computers
very unprofitable, and would make a system built based on the design
theory next to unusable.

However history seems to prove that this is an incorrect assumption.
This is because the amount of different types of cryptocurrencies with
a actual value and the types of hashing algorithms they are using are
increasing, not decreasing.

We also believe that this development can be explained since the de-
velopment of cryptocurrencies is the first time where different curren-
cies can have unique properties that gives them an advantage in a
niched area. For example, one cryptocurrency can be niched to be the
most anonymous cryptocurrency, while another cryptocurrency can be
niched to be the most transparent cryptocurrency. This is different
from the fiat currencies, where the actual properties of the currencies
do not vary, other than the state behind them and their monetary
policies.

For this reason we speculate that in the future, the amount of different

64

cryptocurrencies with a value will continue to raise.This would sustain
the validity of the design theory.

It is also much easier to publish a new cryptocurrency using a new
hashing algorithm, than to build specified hardware that can only be
used to mine using a specific mining algorithm. This is since it’s ex-
pensive to develop and produce specified hardware. A producer must
be able to produce and sell or use the specified hardware in order to
generate a higher value than the development and production cost.

5.3 Future research

The design theory that has been developed in this thesis can potentially be
developed further in many ways and lead to much further research. This
section lists two areas that we believe would be very interesting to focus
future research within.

Possibility for very small value payments : The entire idea of the thesis is to
create a new way to do micropayments. However the word micropayment is
quite vague and subjective as to how small the value of a payment has to
be to be called a micropayment. Some people can subjectively think that
a payment of 1 $ dollar is a micropayment, where others would think that
it needs to be under 1 $ cent. In this thesis we define micropayments as
a transaction valued at 1 $ cent or less. However the solution proposed in
this thesis allows for much smaller micropayments than this. It would for
example allow a micropayment valued at 0.00001 $ cent. This requires that
the system uses a mining pool which has set the difficulty at a low enough
level to let one share be valued at this value.

A large scale system to allow such small value transfers that is widely used
does not currently exist. The transaction costs for fiat currencies exceed this
small value drastically to allow such small payments. Even for bitcoin, the
most popular cryptocurrency, the transaction fee for a transaction currently
averages around a value of 3 cents. This makes transactions of a lower value
unprofitable.

A system built based on our theoretical framework could potentially fill this
gap. This could possibly open up for payments for content that before has

65

been impossible as they have had a too low value to monetize. It’s hard
too imagine what such content would be as it would be a completely new
market area. However two potential examples could be wallpaper images on
a website that before distributed them for free, or a website that runs an
algorithm on your profile picture for social media to automatically set the
lightning settings of the image to preferable levels.

It would be very interesting to do further research on this subject. The
research could focus on what this new payment channel could lead to, and
the potential new market areas it could open up.

The system can be generalized to compute other algorithms : The design the-
ory in this thesis is focused on providing a solution that describes how to
allow micropayments through cryptocurrency mining, as this is the scope
of the thesis. However the solution could be even more generalized. If the
theoretical framework is more generalized there are possible solutions that
would not require cryptocurrency mining to generate a value.

If for example the mining pool was instead replaced with an institution that
required much computational power to solve an issue and they were willing
to pay for it. If so, the problems that the clients would run an algorithm to
try to solve could be changed to the institution’s problems. An easy example
to think of would be if a university was interested of running an algorithm
to find new prime numbers. As long as the proxy server could communicate
with the university and it could scale up different solutions to try among the
miners this would be a very viable system to do so. By this modification,
the system has then allowed micropayments through computational power
without using cryptocurrency. This requires that the university would be
willing to pay a fee to the micropayment receiver depending on how much
computational power the client contributes with. Note that the problem to
solve could of course be changed to anything else that would require much
computational power.

This more generalized solution as well as different problems that it could be
used to solve, would be interesting to research further.

66

Bibliography

Leslie Lamport, Robert Shostak and Marshall Pease (1982). “The Byzantine
Generals Problem”. In: ACM Transactions on Programming Languages and
Systems 4.3, pp. 382–401.

Menezes, Alfred J., Paul C. van Oorschot, and Scott A. Vanstone (1996).
Handbook of applied cryptography.

Shirley Gregor, David Jones (2007). “The Anatomy of a Design Theory”. In:
Journal of the Association for Information Systems 8.5, pp. 312–335.

Nakamoto, Satoshi (2008). “The bitcoin white paper”. In:
SlushPool (2012). Startum Mining Protocol. url: https://slushpool.com/
help/#!/manual/stratum-protocol.

Antonopoulos, Andreas M. (2014).Mastering Bitcoin: Unlocking Digital Cryp-
tocurrencies.

Nicolas T. Courtois, Marek Grajek and Rahul Naik (2014). The Unreasonable
Fundamental Incertitudes Behind Bitcoin Mining.

Shirriff, Ken (2014). Bitcoin mining the hard way: the algorithms, protocols,
and bytes. url: http://www.righto.com/2014/02/bitcoin-mining-
hard-way-algorithms.html.

21.co (2016). 21 bitcoin computer. url: https://21.co/buy/.
Bitmain (2016). Bitmain. url: https://enshop.bitmain.com/productDetail.
htm?pid=000201511170341298180m44675v0613.

Blockchain.info (2016a). Bitcoin blockchain block 427139. url: https://
blockchain.info/sv/block/000000000000000001ad749dc81bcb3cf4d63a5cb38e8154abd648b7abbb55eb.

– (2016b). Bitcoin network hashrate. url: https://blockchain.info/
charts/hash-rate.

– (2016c). Bitcoin network pools. url: https://blockchain.info/sv/
pools.

67

ctorres (2016). TicketMiner. url: https://bitcointalk.org/index.php?
topic=1550230.0.

Google (2016a). Protocol buffers. url: https://developers.google.com/
protocol-buffers/.

– (2016b). Protocol buffers other languages. url: https://developers.
google.com/protocol-buffers/.

Wiki, Bitcoin (2016a). Hardware comparison of non specialized hardware.
url: https://en.bitcoin.it/wiki/Non- specialized_hardware_
comparison.

– (2016b). Hardware comparison of specialized hardware. url: https://en.
bitcoin.it/wiki/Mining_hardware_comparison.

wiki, Bitcoin (2016). Stratum mining protocol. url: https://en.bitcoin.
it/wiki/Stratum_mining_protocol.

68

