
Microprocessor

Lecture (2)

1

• Introduction to instruction set architecture, microarchitecture
and system architecture

• Microcomputer architecture and Basic Blocks of a
Microcomputer

• Introduction to microprocessor

• Simplified Explanation of Control Unit design

• Program Execution by Conventional Microprocessors

• Pipeline

• Branch Prediction Feature

• Scalar and Superscalar Microprocessors

• Microprocessor architectures RISC vs. CISC

• Microprocessor Data Types

• Evolution of the microprocessor

Outline

2

Introduction to instruction set architecture(1)

What are Instructions?

Instructions are the direction given to a computer, that causes
electrical signals to be sent through specific circuits for
processing

• Instructions are the most basic actions the processor can take:

 - ADD AX, BX — Add value AX to BX and store in AX

 - CMP AX, 5 — Compare value in AX to 5

 - JE 16 — Jump ahead 16 bytes if comparison was equal

 High level programming languages (C, C++, Java) allow many
processor instructions to be written simply:

• if (A + B = 5) then… — Jump if sum of A and B is 5

• Every program must be converted to the processor instructions
of the computer it will be run on.

3

Introduction to instruction set architecture (2)

• Instruction set

– Design defines functions performed by the processor

– Differentiates computer architecture by the

• Number of instructions

• Complexity of operations performed by individual
instructions

• Data types supported

• Format (layout, fixed vs. variable length)

• Use of registers

• Addressing (size, modes)

4

Introduction to instruction set architecture (ISA) (3)

• Instruction set architecture (ISA) refer to the actual programmer visible
instruction set.

• Serves as an interface between software and hardware.

• Provides a mechanism by which the software tells the hardware what should be

done.

instruction set

High level language code : C, C++, Java, Fortran,

hardware

Assembly language code: architecture specific statements

Machine language code: architecture specific bit patterns

software

compiler

assembler

5

Introduction to instruction set architecture (4)

• Instruction set design issues include:

– Where are operands stored?

• registers, memory, stack, accumulator

– How many explicit operands are there?

• 0, 1, 2, or 3

– How is the operand location specified?

• register, immediate, indirect, . . .

– What type & size of operands are supported?

• byte, int, float, double, string, vector. . .

– What operations are supported?

• add, sub, mul, move, compare . . .

6

Microarchitecture and system architecture (1)

What is Computer Architecture?

• The science and art of designing, selecting, and
interconnecting hardware components and designing the
hardware/software interface to create a computing system
that meets functional, performance, energy consumption,
cost, and other specific goals.

• “The term architecture is used to describe the attributes
of a system as seen by the programmer, i.e., the conceptual
structure and functional behavior as distinct from the
organization of the dataflow and controls, the logic design,
and the physical implementation.” Gene Amdahl, IBM
Journal of R&D, April 1964

 7

8

Microarchitecture and system architecture (2)

• What is Computer Architecture? Functional

operation of the individual HW units within a

computer system, and the flow of information and

control among them.

Technology

Programming

Language

Interface

Interface Design
(ISA)

Measurement &
Evaluation

Parallelism

Computer
Architecture:

Applications
OS

Hardware Organization

Microarchitecture and system architecture (3)

• The task the computer designer faces is a complex one:

Determine what attributes are important for a new

computer,

• Then design a computer to maximize :

 - performance and

 - Energy efficiency,

while staying within : cost, power, and availability constraints.

• This task has many aspects, including instruction set design,

functional organization, logic design, and implementation.

• Architecture is concerned with internal structures of each, interconnections

(speed and width) , and relative speeds of components

• Want maximum execution speed Balance is often critical issue.

 9

Microarchitecture and system architecture (4)

ISA vs. Microarchitecture Level Tradeoff

• A similar tradeoff (control vs. data-driven execution) can be made
at the microarchitecture level

• ISA: Specifies how the programmer sees instructions to be
executed

– Programmer sees a sequential, control-flow execution order vs.

– Programmer sees a data-flow execution order

• Microarchitecture: How the underlying implementation actually
executes instructions

– Microarchitecture can execute instructions in any order as long
as it obeys the semantics specified by the ISA when making the
instruction results visible to software

• Programmer should see the order specified by the ISA

10

Microarchitecture and system architecture (5)

• Microarchitecture is the steps a processor takes
to execute a particular set of instructions.

• Processors of the same architecture have the same
instructions but may carry them out in different
ways.

• Microarchitecture Features:

 –Cache memory

 –Pipelining

 –Out-of-Order Execution

 –Superscalar Issue

11

Microcomputer architecture and Basic Blocks of a Microcomputer

Basic Blocks of a Microcomputer

A microcomputer has three basic blocks: a central
processing unit (CPU), a memory unit,

 and an input/output (I/O) unit.

The CPU(microprocessor) executes all the instructions
and performs arithmetic and logic operations on data.

A memory unit stores both data and instructions. The
memory section typically

 contains ROM and RAM chips.

A system bus (comprised of several wires) connects
these blocks.

12

Basic Blocks of a Microcomputer

13

• In a single-chip microcomputer, these three

elements are on one chip, whereas

• in a single-chip microprocessor, separate chips

are required for memory and I/O.

Microcomputer architecture and Basic Blocks of a Microcomputer

14

Microcomputer architecture

 (Basic Blocks of a Microcomputer)

15

Introduction to Microprocessor MPU

• Microprocessor MPU is fabricate a CPU on a

single chip

• Along with the microprocessor chip, appropriate

memory and I/O chips can be used to design a

microcomputer (with CPU being a microprocessor)

• Microcontrollers include a microcomputer,

timers, and A/D (analog-to- digital) and D/A

(digital to analog) converters, all on a single chip.

16

Introduction to Microprocessor MPU

• A microprocessor is a stand alone, self contained
single chip microcomputer.

• It must have as a minimum:

– a central processing unit (CPU)

– nonvolatile and program memory

– input and output capabilities.

• A structure that has these can be programmed in some
convenient programming language

• can interact with the outside world through the
input/output ports.

17

Introduction to the microprocessor

• Other important requirements:
• must be relatively simple

• reasonably small

• necessarily limited in most of its features – memory,

processing power and speed, addressing range and, of

course in number of I/O devices it can interact with.

• The designer must have access to all features of the

microprocessor – bus, memory, registers, all I/O ports,

• In short, Microprocessors are components with

flexible features that the engineer can configure and

program to perform task or a series of tasks.

18

Arithmetic

Logic

Unit

Register

Arrays

Control Unit

GP-

CPU
CLK Reg

MPU

CPU

Microprocessor-based System

19

Microcontroller Unit (MCU)

 An integrated electronic computing and logic device that includes

three major components on a single chip

 Microprocessor

 Memory

 I/O ports

 Includes support devices

 Timers

 A/D converter

 Serial I/O

 Parallel Slave Port

 All components connected by common

communication lines called the system bus.
20

• The microprocessor is the CPU of the microcomputer

• The logic inside the microprocessor chip can be divided

into three main areas:

• The register section

• The control unit,

• and the arithmetic-logic unit (ALU).

Single-Chip Microprocessor

21

• Register is a Small, permanent storage locations within
the CPU used for a particular purpose

• Manipulated directly by the Control Unit

• Wired for specific function

• Size in bits or bytes (not MB like memory)

• Can hold data, an address or an instruction

• The number, size, and types of registers vary from one
microprocessor to another.

Basic Microprocessor Registers

There are four basic microprocessor registers:
instruction register, program counter, memory address
register, and accumulator.

Register Section

22

Instruction register (IR) :

• The instruction register stores instructions.

• The word size of the microprocessor determines the

size of the instruction register. For example, a 32-bit

microprocessor has a 32-bit instruction register.

Register Section

23

Program Counter (PC):

• The program counter contains the address of the

instruction or operation code (op-code).

• The program counter normally contains the address

of the next instruction to be executed.

• The size of the program counter is determined by the

size of the address bus.

Register Section

24

How Program Counter is Work ?

1. Upon activating the microprocessor’s RESET input, the address

of the first instruction to be executed is loaded into the program

counter.

2. To execute an instruction, the microprocessor typically places the

contents of the program counter on the address bus and reads

(“fetches”) the contents of this address(i.e., instruction) from

memory

3. The program counter contents are incremented automatically by

the microprocessor’s internal logic. Microprocessor executes a

program sequentially, unless the program contains an instruction

such as a JUMP instruction, which changes the sequence.

Register Section

25

Memory Address Register (MAR).

The memory address register contains the address of

data.

 The microprocessor uses the address, which is stored in

the memory address register, as a direct pointer to

memory. The contents of the address is the actual data

that is being transferred.

Register Section

26

General Purpose Register (GPR) : For an 8-bit
microprocessor, the general-purpose register is called
the accumulator.

• It stores the result after most ALU operations.

• These 8-bit microprocessors have instructions to shift
or rotate the accumulator one bit to the right or left
through the carry flag.

• In16- and 32-bit microprocessors the accumulator is
replaced by a GPR.

• any GPR can be used as an accumulator.

Register Section

27

• General Purpose Register (GPR).

The term general-purpose comes from the fact that

these registers can hold data, memory

 addresses, or the results of arithmetic or logic

operations.

• Most registers are general-purpose, but some, such as

the program counter (PC),are provided for dedicated

functions.

Register Section

28

Other Microprocessor Registers such as general-purpose

registers, index register, status register and stack pointer register.

• general-purpose registers speeds up the execution of a

program because the microprocessor does not have to read

data from external memory via the data bus if data is stored in

one of its general-purpose registers.

• Index Register is typically used as a counter in address

modification for an instruction or for general storage

functions. Used to access tables or arrays of data.

• Status Register(a processor status word register or

condition code register, contains individual bits, with each

bit having special significance. The bits in the status register

are called flags.

Register Section

29

Flags Type

• A carry flag is used to reflect whether or not the result generated

by an arithmetic operation is greater than the microprocessor’s

word size.

• AUXILIARY CARRY FLAG: This flag is set to a 1 by the

instruction just ending if a carry occurred from bit 3 to bit 4 of

the A Register during the instruction’s execution.

Register Section

30

Auxiliary carry flag

Flags Type

• A zero flag is used to show whether the result of an

operation is zero. It is set to1 if the result is zero, and

it is reset to 0 if the result is nonzero.

• A parity flag is set to 1 to indicate whether the result

of the last operation contains either an even number

of 1’s (even parity) or an odd number of 1’s (odd

parity), depending on the microprocessor.

Register Section

31

Flags Type

• A sign flag (sometimes called a negative flag) is used to
indicate whether the result of the last operation is
positive(set to 0) or negative(set to 1)

• Overflow flag arises from representation of the sign flag
by the most significant bit of a word in signed binary
operation. The overflow flag is set to1 if the result of an
arithmetic operation is too big for the microprocessor’s
maximum word size, otherwise it is reset to 0

Register Section

32

EXAMPLE :

• Find the sign, carry, zero, overflow, and parity even

flag for the following arithmetic sign number:

(11110000) +(10100001) =10010001

 SF =1 ,CF=1 ,ZF=0 ,OF=0 ,PF=0

 Register Section

33

• Stack Pointer Register A stack consists of a number

of RAM locations set aside for reading data from or

writing data into these locations and is typically used

by subroutines

• Two instructions, PUSH and POP, are usually

available with a stack. The PUSH operation

 is defined as writing to the top or bottom of the stack,

whereas the POP operation means reading from the

top or bottom of the stack.

Register Section

34

Register Section

35

Register Section

36

Register Section

37

Register Section

38

• The main purpose of the control unit is to read and

decode instructions from the program memory.

• To execute an instruction, the control unit steps

through the appropriate blocks of the ALU based on

the op-codes contained in the instruction register.

Control Unit

39

Control Signal Actions

• RESET. This input is common to all

microprocessors. When this input pin is driven HIGH

or LOW (depending on the microprocessor), the

program counter is loaded with a predefined address

specified by the manufacturer.

Control Unit

40

Control Signal Actions

• READ/WRITE (R/W) This output line is common to

all microprocessors. The status of this line tells the other

microcomputer elements whether the microprocessor is

performing a READ or a WRITE operation. A HIGH

signal on this line indicates a READ operation, and a

LOW indicates a WRITE operation.

Control Unit

41

Control Signal Actions

• READY, This is an input to a microprocessor. Slow devices
(memory and I/O) use this signal to gain extra time to transfer data
to or receive data from a microprocessor. The READY signal is
usually an active low signal; that is, LOW indicates that the
microprocessor is ready. Therefore, when the microprocessor
selects a slow device, the device places a LOW on the READY pin.

• The microprocessor responds by suspending all its internal
operations and enters a WAIT state. When the device is ready to
send or receive data, it removes the READY signal. The
microprocessor comes out of the WAIT state and performs the
appropriate operation.

Control Unit

42

Control Signal Actions

• Interrupt Request (INT or IRQ). The external I/O

devices can interrupt the microprocessor via this input pin on the

microprocessor chip. When this signal is activated by the external

devices, the microprocessor jumps to a special program called the

interrupt service routine. This program is normally written by the

user for performing tasks that the interrupting device wants the

microprocessor to carry out. After completing this program, the

microprocessor returns to the main program it was executing when

the interrupt occurred.

Control Unit

43

• The ALU performs all the data manipulations, such as

arithmetic and logic operations, inside a

microprocessor. The size of the ALU conforms to the

word length of the microcomputer.

• ALU Functions:

 1.Binary addition and logic operations

 2. Finding the one’s complement of data

 3. Shifting or rotating the contents of a general-

purpose register 1 bit to the left or right through a

carry

Arithmetic-Logic Unit

44

• The control unit performs two basic

operations:

1. instruction interpretation

2. and instruction sequencing.

There are two methods for designing a control unit:

Simplified Explanation of Control Unit design

45

Hardwired control

Microprogrammed control

(firmware)

clocked sequential circuit ROM inside the control unit

(control memory)

 more expensive

flexibility

Simplified Explanation of Control Unit design

• Hard Wired Control Unit The Cycles or Phases

(Fetch, Indirect, Execute, Interrupt) are constructed as

a State Machine

• The Individual instruction executions can be

constructed as State Machines

– Common sections can be shared. There is a lot of

similarity

• One ALU is implemented. All instructions share it

46

State Machine

• Combinational logic

– Determine outputs at each state.

– Determine next state.

• Storage elements

– Maintain state representation.

State Machine

Combinational

Logic Circuit

Storage

Elements

Inputs Outputs

Clock

47

Problems With Hard Wired Designs

• Sequencing & micro-operation logic gets complex

• Difficult to design, prototype, and test

• Resultant design is inflexible, and difficult to build upon

 (Pipeline, multiple computation units, etc.)

• Adding new instructions requires major design and adds

complexity quickly

48

Control Unit : Organization Microprogrammed

control

• The Control Memory contains sequences of microinstructions that provide

the control signals to execute instruction cycles, e.g. Fetch, Indirect,

Execute, and Interrupt.

Horizontal Micro-programming:

• Wide control memory word

• High degree of parallel operations possible

• Little encoding of control information

• Fast

Vertical Micro-programming :

• Width can be much narrower

• Control signals encoded into function codes – need to be decoded

• More complex, more complicated to program, less flexibility

• More difficult to modify

• Slower

49

• The following three steps for completing the instruction:

1.Fetch. The microprocessor fetches (instruction read) the

instruction from the main memory (external to the

microprocessor) into the instruction register.

2. Decode. The microprocessor decodes or translates the

instruction using the control unit. The control unit inputs the

contents of the instruction register, and then decodes

(translates) the instruction to determine the instruction type.

3. Execute. The microprocessor executes the instruction using the

control unit. To accomplish the task, the control unit generates

a number of enable signals required by the instruction.

Program Execution by Conventional Microprocessors

50

• For example, suppose that it is desired to add the contents of two

registers, X and Y, and store the result in register Z. To accomplish

this, a conventional microprocessor performs the following steps:

1. The microprocessor fetches the instruction into the instruction

register.

2. The control unit (CU) decodes the contents of the instruction register.

3. The CU executes the instruction by generating enable signals for the

register and ALU sections to perform the following:

 a. The CU transfers the contents of registers X and Y from the

Register section into the ALU.

 b. The CU commands the ALU to ADD.

 c. The CU transfers the result from the ALU into register Z of the

register section.

Program Execution by Conventional Microprocessors

51

• Enhancement in 32-bit microprocessors (like

Pentium) include : cache memory, memory

 management, pipelining, floating-point

arithmetic, and branch prediction.

• Cache memory is a high-speed read/write

memory implemented as on-chip

 hardware in typical 32-bit microprocessors in

order to increase processing rates. This topic

 is covered in more detail in Chapter 3.

 Program Execution by typical 32-bit Microprocessors

52

• Memory management

allows programmers to write programs much larger than

those that could fit in the main memory space available

to the microprocessors; the programs are simply stored

on a secondary device, such as a hard disk.

This topic is covered in more detail in Chapter 3.

53

Program Execution by typical 32-bit Microprocessors

Pipeline

• One way to speed up CPU is to increase clock rate

– limitations on how fast clock can run to complete
instruction

• Another way is to execute more than one instruction at
one time

• Pipelining breaks instruction execution down into
several stages

– put registers between stages to “buffer” data and control

– execute one instruction

– as first starts second stage, execute second instruction, etc.

– speedup same as number of stages as long as pipe is full

54

• Example of the execution of a stream of five

instructions: 11,12,13,14, and 15, in which I3 is a

conditional branch instruction.

Pipelining

55

• This allows these microprocessors to anticipate jumps of the
instruction flow ahead of time.

• To accomplish this, the Pentium includes on-chip hardware
called the Branch Unit (BU).

• The BU contains the branch execution unit (BEU) and the
branch prediction unit (BPU). Whenever the Pentium
encounters a conditional branch instruction, it sends it to the
BU for execution.

• The BU evaluates the instruction’s branch condition using the
BEU and determines whether the branch should or should not
be taken.

• Once the BU determines the branch condition, it calculates the
starting address (Branch target) of the next block of code to be
executed. The Pentium then starts fetching code at the new
address.

Branch Prediction Feature

56

• Scalar processors such as the 80486 can execute one

instruction per cycle. The 80486 contains only one pipeline.

• Superscalar microprocessors, can execute

 more than one instruction per cycle. These microprocessors
contain more than one pipeline.

• Superscalar machines issue a variable number of
• instructions each clock cycle, up to some maximum

– instructions must satisfy some criteria of
– independence

• The Pentium, a superscalar microprocessor, contains two
independent pipelines. This

 allows the Pentium to execute two instructions per cycle.

Scalar and Superscalar Microprocessors

57

• There are two types of microprocessor architectures:
RISC and CISC.

• RISC stand for (reduced instruction set computer) and
CISC for (complex instruction set computer).

RISC Characteristics

• One instruction per cycle

• Register to register operations

• Few, simple addressing modes

• Few, simple instruction formats

• Hardwired design (no microcode)

• Fixed instruction format

• More compile time/effort

Microprocessor architectures RISC vs. CISC

58

Why CISC?

• Compiler simplification?

– Complex machine instructions harder to exploit

• Smaller programs?

– Program takes up less memory but…

– Memory is now cheap

– May not occupy less bits, just look shorter in

symbolic form

• More instructions require longer op-codes

• Register references require fewer bits

59

Microprocessor Data Types - x86 Data Types

• 8 bit Byte

• 16 bit word

• 32 bit double word

• 64 bit quad word

• 128 bit double quadword

• Addressing is by 8 bit unit

• Words do not need to align at even-numbered address

• Data accessed across 32 bit bus in units of double
word read at addresses divisible by 4

60

The Evolution of The Intel x86 Microprocessor

8080 :

 first general purpose microprocessor

 8 bit data path

 Used in first personal computer

8086 : much more powerful

 16 bit

 instruction cache, prefetch few instructions

 80286: This extension of the 8086 enabled addressing a 16-

MByte memory instead of just 1 MByte.

 80386: Intel’s first 32-bit machine,

Support for multitasking

80486 :

 sophisticated powerful cache and instruction pipelining

 built in maths co-processor

61

Pentium Evolution

• Pentium

– Superscalar

– Multiple instructions executed in parallel

• Pentium Pro

– Increased superscalar organization

– Aggressive register renaming

– branch prediction

– data flow analysis

– speculative execution

62

Pentium Evolution

 Pentium II

 MMX technology

 graphics, video & audio processing

 basically takes attributes of the Pentium Pro processor

(designed for 32 bit OS) plus the capabilities of MMX

technology to yield processor speeds of 333, 300, 266, and 233

MHz.

 MMX (matrix math extensions) is intended for efficient

multimedia and communications operations.

 Pentium III:Additional floating point instructions for 3D
graphics

 Pentium 4 :Note Arabic rather than Roman numerals

 Further floating point and multimedia enhancements

 Itanium : 64 bit
63

64

 Evolution of the Microprocessor

• All computer families have common Characteristics

– Similar or identical instruction sets.

– Similar or identical O/S.

– Increasing speed.

– Increasing number of I/O ports (i.e. more

terminals).

– Increased memory size.

– Increased cost.

65

That’s all for Today!!

Text Book:

• Computer Architecture A Quantitative

Approach (Chapter 1)

COMPUTER ORGANIZATION AND ARCHITECTURE

(Chapter 12, 13)

66

