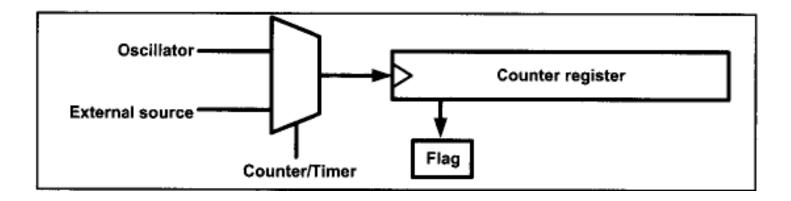

Microprocessors, Lecture 5:

AVR Microcontrollers -Timers (Chapter 9 of the text book)

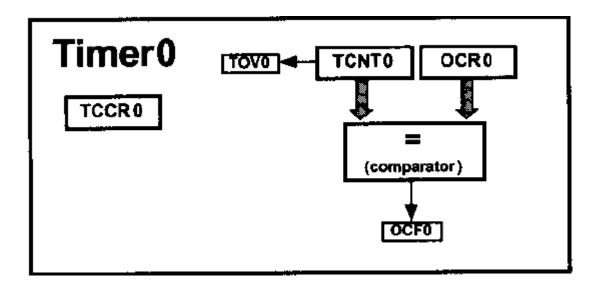

Contents

- Timers 0 and 2 of ATmega32
- Timer programming in C

Timer/Counter

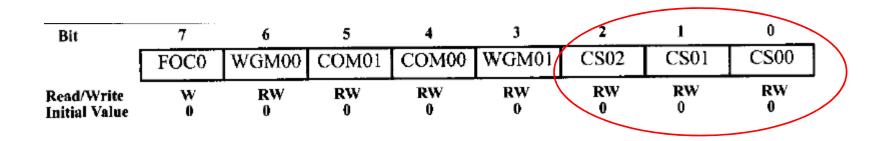
- What is a timer?
 - To count an event
 - To generate delay

- ATmega32: 3 timers
 - Timer0 (8-bit)
 - -Timer1 (16-bit)
 - Timer2 (8-bit)


- Basic registers:
 - -TCNTx (x=0,1,2)= timer/counter register
 - Keeps the timer/counter value
 - On reset, contains 0
 - Counts up with each pulse

TCNT0

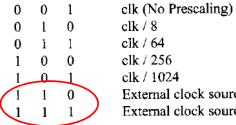
	D7	D6	D5	D4	D3	D2	D1	D0
--	----	----	----	----	----	----	----	----


- Basic registers:
 - -TOVx(x=0,1,2)= timer/counter overflow flag
 - -TOVx Becomes 1 when TCNTx overflows
 - » switches from 0xFF to 0x00
 - Should be reset by software

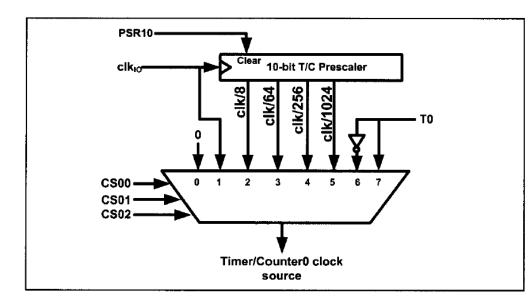
- Basic registers:
 - -OCRx (x=1,2,3)= output compare register
 - Another way to count
 - The contents of OCRx are compared to TCNTx
 - » OCFx is set if they are equal

- Basic registers:
 - -TCCRx (x=1,2,3)= timer/counter control register
 - Setting modes of operation

TCCR0 in AVR

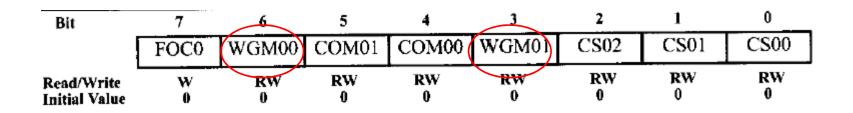

CS02:00	D2	D1	D0	Timer0 clock selector
	0	0	0	No clock source (Timer/Counter stopped)
	0	0	1	clk (No Prescaling)
	0	1	0	clk / 8
	0	1	1	clk / 64
	1	0	0	clk / 256
	1	0	1	clk / 1024
	1	1	0	External clock source on T0 pin. Clock on falling edge.
	1	1	1	External clock source on T0 pin. Clock on rising edge.

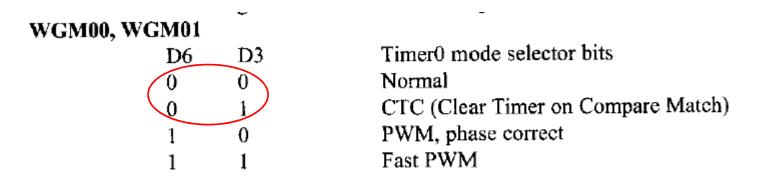
TCCR0 in AVR


D2 D1 D0 Timer0 clock selector CS02:00

0

No clock source (Timer/Counter stopped) 0 0

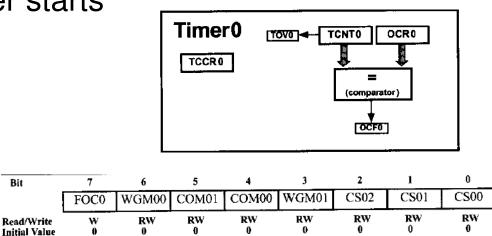



External clock source on T0 pin. Clock on falling edge. External clock source on T0 pin. Clock on rising edge.

		40 PIN DIP		
		\neg \square	40	PA0 (ADC0)
(T1) PB1		\mathbf{U}	39	PA1 (ADC1)
(INT2/AIN0) PB2	– 3		38	PA2 (ADC2)
(OC0/AIN1) PB3	d 4	MEGA32	37	PA3 (ADC3)
(SS) PB4	= 5		36	PA4 (ADC4)
(MOSI) PB5	= 6		35	PA5 (ADC5)
(MISO) PB6	d 7		34	PA6 (ADC6)
(SCK) PB7	6 8		33	PA7 (ADC7)
RESET	– 9		32	AREF
VCC	d 10		31	AGND
GND	d 11		30	AVCC
XTAL2	d 12		29	PC7 (TOSC2)
XTAL1	= 13		28	PC6 (TOSC1)
(RXD) PD0	d 14		27	PC5 (TDI)
(TXD) PD1	H 15		26	PC4 (TDO)
(INT0) PD2	E 16		25	PC3 (TMS)
(INT1) PD3	d 17		24	PC2 (TCK)
(OC1B) PD4	d 18		23	PC1 (SDA)
(OC1A) PD5	– 19		22	PC0 (SCL)
(ICP) PD6	d 20		21	PD7 (OC2)

TCCR0 in AVR

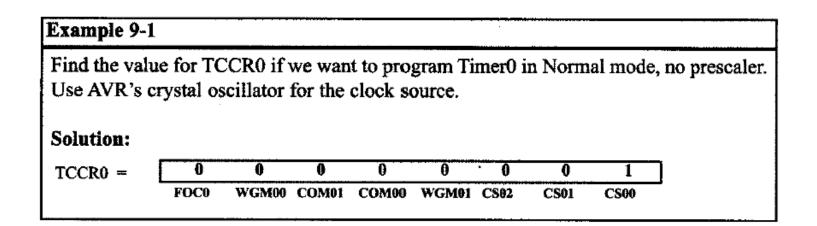
- TIFR (timer/counter interrupt flag register)
- To keep the state of the counters
- One register for all counter/timers


TIFR

Bit	7	6	5	4	3	2	1	0	7					
	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOVI	OCF0	TOV0						
Read/Write Initial Value	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0						
TOV0	D0	Time	r0 overfl	ow flag bi	t									
	0 =	Timer0 di	id not ov	erflow.										
	1 =	1 = Timer0 has overflowed (going from \$FF to \$00).												
OCF0	D1 Timer0 output compare flag bit													
	0 =	compare	match die	ł not occu	I r.									
	1 =	compare :	match oc	curred.										
TOV1	D2	Time	r1 overfle	ow flag bi	t									
OCF1B	D3	Time	r1 output	compare	B match f	flag r	<u></u>	···-						
OCF1A	D4	Time	r1 output	compare	A match f	flag	Timer0	TOVO	TCNT0 OCR0					
ICF1	D5	Input	Capture	flag		-	TCCRO							
TOV2	D6	Time	r2 overflo	ow flag		ļ			=					
OCF2	D7	Time	r2 output	compare	match flag	g			(comparator)					
			<u> </u>		•									
									OCF0					

Timer0 in normal mode

Bit


- Set TCNT0 with proper value
- Set TCCR0: which clock source? Which prescalar?
 - When is set, the timer starts
- Keep monitoring TOV0
- Stop timer Set TCCR0
- Clear TOV0

Example 9-1	1										
Find the value of the second s							er0 in	Normal	mode	with a	
Solution:	Solution:										
From Figure	9-5 we	have TC	CR0 =	0000 0	011; X1	TAL cl	ock sou	rce, pre	scaler o	of 64.	
TCCR0 =	0	0	0	0	0	0	1	1			
	FOC0	WGM00	COM01	COM00	WGM01	CS02	CS01	CS00			

D2	D1	D0	Timer0 clock selector	D6	D3	Timer0 mode selector bits
0	0	0	No clock source (Timer/Counter stopped)		0	Normal
0	0	1	clk (No Prescaling)	0	0	
ŏ	ĩ	Ô	clk / 8	0	1	CTC (Clear Timer on Compare Match)
0	1	1	•	1	0	PWM, phase correct
0	-	1	clk / 64	1	1	Fast PWM
1	0	0	clk / 256	-	-	
1	0	1	clk / 1024			
1	1	0	External clock source on T0 pin. Clock on falling	edge.		

1 1 External clock source on T0 pin. Clock on rising edge.

D2	D1	D0	Timer0 clock selector	D6	D3	Timer0 mode selector bits
0	0	0	No clock source (Timer/Counter stopped)	0	0	Normal
0	0	1	clk (No Prescaling)	õ	1	CTC (Clear Timer on Compare Match)
0	1	0	clk / 8	1	0	PWM, phase correct
0	1	1	clk / 64	1	1	Fast PWM
1	0	0	clk / 256	1	•	
1	0	1	clk / 1024			
1	1	0	External clock source on T0 pin. Clock on falling e			
1	1	1	External clock source on T0 pin. Clock on rising ed	lge.		

Example 9-7

Assuming that XTAL = 8 MHz, write a program to generate a square wave with a period of 12.5 µs on pin PORTB.3.

Solution:

For a square wave with T = 12.5 μ s we must have a time delay of 6.25 μ s. Because XTAL = 8 MHz, the counter counts up every 0.125 μ s. This means that we need 6.25 μ s / 0.125 μ s = 50 clocks. 256 - 50 = 206 = 0xCE. Therefore, we have TCNT0 = 0xCE.

TCCR0=0x01 //normal mode, no prescaling TCNT0=0xCE

Example 9-8

Assuming that XTAL = 8 MHz, modify the program in Example 9-7 to generate a square wave of 16 kHz frequency on pin PORTB.3.

Solution:

Look at the following steps. (a) T = 1 / F = 1 / 16 kHz = 62.5 µs the period of the square wave. (b) 1/2 of it for the high and low portions of the pulse is 31.25 µs. (c) 31.25 µs / 0.125 µs = 250 and 256 - 250 = 6, which in hex is 0x06. (d) TCNT0 = 0x06.

Timers in AVR-CTC mode

- Compare mode (clear timer o compare)
- Another way to count
 - 1. Increment TCNT at each clock cycle
 - 2. OCFn=1 when OCRn=TCNTn

Example 9-20

Assuming XTAL = 8 MHz, write a program to generate a delay of 25.6 ms. Use Timer0, CTC mode, with prescaler = 1024.

Solution:

Due to prescaler = 1024 each timer clock lasts $1024 \times 0.125 \,\mu s = 128 \,\mu s$. Thus, in order to generate a delay of 25.6 ms we should wait 25.6 ms / 128 $\mu s = 200$ clocks. Therefore the OCR0 register should be loaded with 200 - 1 = 199.

Timer 2 in ATmega32

- Just like timer 0, but no external clock
 Timer only
- TCCR2:

Bit	7	7		6 5		4	3	2	1	0
	FOC	2	WGM20		COM21	COM20	OM20 WGM21		CS21	CS20
Read/Write Initial Value			R (:W)	RW 0	RW 0	RW 0	RW 0	RW 0	RW 0
CS2	CS22:20		D1	D0 0	Timer2 clo		or ce (Timer/	Counter st	onned)	
	0		0	1		(No Presca	· ·	counter st	opped)	
		Õ	ĩ	0	clk	•	B)			
		0	1	1	clk	/ 32				
	1		0	0	cik	/ 64				
		1	0	1	clk	/ 128				
		1	1	0	clk	/ 256				
		1	1	1	clk	/ 1024				

Timer programming in C

We can use the register names in C codes:

 TCNT0, TCNT1, TCNT2
 TIFR0,....
 TCCR0,....

—

Timer programming in C

Example 9-39

Write a C program to toggle all the bits of PORTB continuously with some delay. Use Timer0, Normal mode, and no prescaler options to generate the delay.

Solution:

```
#include "avr/io.h"
void TODelay ( );
int main ( )
ł
      DDRB = 0xFF; //PORTB output port
      while (1)
      Ł
            PORTB = 0x55; //repeat forever
            TODelay (); //delay size unknown
PORTB = 0xAA; //repeat forever
            TODelay ();
      ł
void TODelay ( )
      TCNT0 = 0x20; //load TCNT0
TCCR0 = 0x01; //Timer0, Normal mode, no prescaler
      while ((TIFR&0x1)==0); //wait for TF0 to roll over
      TCCR0 = 0;
                    //clear TF0
      TIFR = 0x1;
}
```

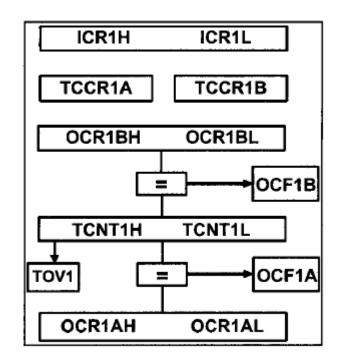
Timer programming in C

Example 9-40

Write a C program to toggle only the PORTB.4 bit continuously every 70 μ s. Use Timer0, Normal mode, and 1:8 prescaler to create the delay. Assume XTAL = 8 MHz.

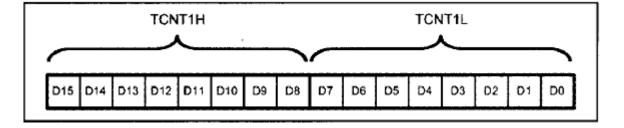
Solution:

```
XTAL = 8MHz \rightarrow T_{machine cycle} = 1/8 MHz
Prescaler = 1:8 \rightarrow T<sub>clock</sub> = 8 × 1/8 MHz = 1 µs
70 \,\mu\text{s}/1 \,\mu\text{s} = 70 \,\text{clocks} \Rightarrow 1 + 0 \,\text{xFF} - 70 = 0 \,\text{x}100 - 0 \,\text{x}46 = 0 \,\text{xBA} = 186
#include "avr/io.h"
void TODelay ( );
int main ( )
       DDRB = 0xFF; //PORTB output port
       while (1)
       £
                                  //Timer0, Normal mode
              TODelay ( );
              PORTB = PORTB ^ 0x10; //toggle PORTB.4
       }
void TODelay ( )
{
       TCNT0 = 186;
                       //load TCNT0
       TCCR0 = 0x02;
                            //Timer0, Normal mode, 1:8 prescaler
       while ((TIFR&(1<<TOV0))==0); //wait for TOV0 to roll over
                          //turn off Timer0
       TCCR0 = 0;
       TIFR = 0x1; //clear TOV0
```


Timer 1

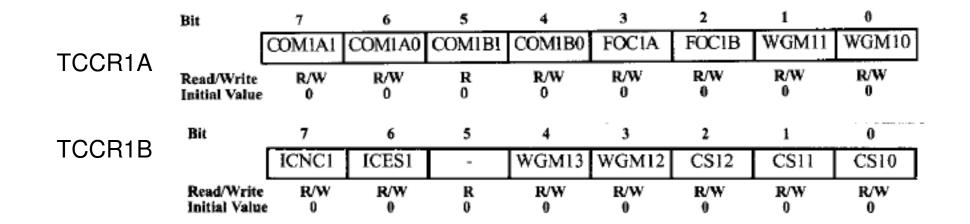
- 16-bit counter/timer
- TCNT1L and TCNT1H
- 2 8-bit registers to control timer 1

-TCCR1L and TCCR1H


 2 registers in compare mode

-OCR1A and OCR1B

Timer 1

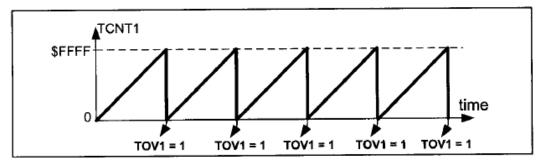

TCNT1

	Bit	7	6	5	4	3	2	1	0
	[OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	OCF0	TOV0
	Read/Write Initial Value	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
3 flags in TIFR:	TOV0	-	Timer0 di Timer0 h	id not ove as overflo	owed (goin	ng from \$	FF to \$00)).	
TOV1	OCF0			match die	compare d not occu curred.	-			
and	TOV1 OCF1B	D2 D3	Time	r1 output	•	B match f	-		
OCF1A-	OCF1A ICF1	D4 D5	Input	Capture	flag	A match f	lag		
OCF1B	TOV2 OCF2	D6 D7		r2 overflo r2 output		match fla	g		

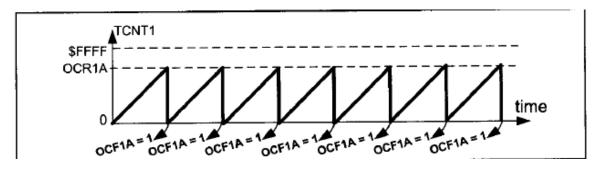
Timer 1 control registers

- 2 registers
- Plenty of operation modes

Timer 1 control registers

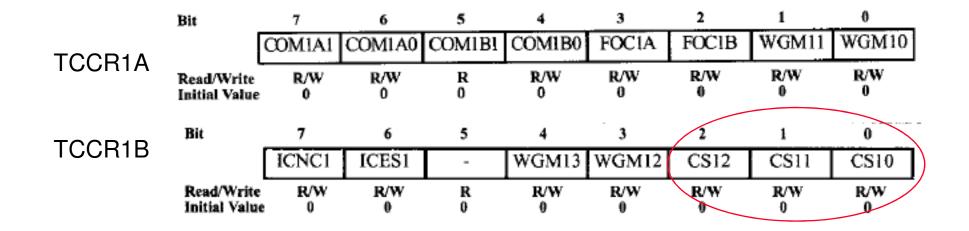

In this course, we focus on modes 0 and 4

	Mode	WGM13	WGM12	WGM11	WGM10	Timer/	Counter Mod	le of Operatio	n Top	Update of OCR1x	TOV1 Flag Set on
	0	0	0	0	0	Norma	I		0xFFFF	Immediate	
	1	0	0	0	. 1	PWM,	Phase Correct	t, 8-bit	0x00FF	TOP	BOTTOM
	2	0	0	1	0	PWM,	Phase Correct	t, 9-bit	0x01FF	ТОР	BOTTOM
e	3	0	0	1	1	PWM,	Phase Correc	t, 10-bit	0x03FF	TOP	BOTTOM
C I	4	0	1	0	0	CTC			OCR1A	Immediate	MAX
	5	0	1	0	1	Fast PV	VM, 8-bit		0x00FF	TOP	TOP
	6	0	1	1	0	Fast PV	VM, 9-bit		0x01FF	TOP	TOP
[7	0	1	1	1	Fast PV	VM, 10-bit		0x03FF	TOP	TOP
	8	1	0	0	0	PWM, Phase and Frequency Correct			t ICR1	BOTTOM	BOTTOM
	9	1	0	0	1	PWM,	Phase and Fre	equency Correc	tOCR1A	BOTTOM	BOTTOM
	10	1	0	1	0	PWM,	Phase Correc	t	ICR1	TOP	BOTTOM
[11	1	0	1	1	PWM,	Phase Correc	t	OCRIA	TOP	BOTTOM
	12	1	1	0	0	СТС			ICR1	Immediate	MAX
	13	1	1	0	1	Reserve	ed		-	-	-
	14	1	1	1	0	Fast PV	VМ		ICRI	TOP	TOP
[15	1	1	1	1	Fast PV	VM		OCR1A	TOP	TOP
						_					0
	H	Bit			6 11 A 0 C C	5 MIBI	4 COM1B0	3 FOCIA	2 FOC1B	WGM11	WGM10
CR1	A	Read/Write	L		w	R	R/W	R/W	R/W	R/W	R/W


TC 0 õ 0 0 Ð 0 Initial Value 0 Bit 7 6 5 2 1 0 3 ICNC1 ICES1 WGM13 WGM12 CS12 CS11 CS10 -TCCR1B R/W R 0 R/W R/W 0 **Read/Write** R/W R/W R/W R/W **Initial Value** 0 0 0

Timer 1 modes

- 16 modes, we use 2 modes in this chapter:
- Normal mode:



• CTC mode

Timer 1 control registers

CS12:CS10	D2D1D0	Timer1 clock selector
	0 0 0	No clock source (Timer/Counter stopped)
	0 0 1	clk (no prescaling)
	0 1 0	clk / 8
	0 1 1	clk / 64
	100	clk / 256
	1 0 1	clk / 1024
	1 1 0	External clock source on T1 pin. Clock on falling edge.
	1 1 1	External clock source on T1 pin. Clock on rising edge.

Timer 1 control registers

	Mode	WGM1	3 WGM12	WGM11	WGM10	Timer/Count	er Mode of Oper	ration Top	Update of TO OCR1x S	V1 Flag iet on	
CS	12:CSI	0	D2D1I	50	Tim	erl clock	selector		1 1	1	
			0 0	0	No	clock sou	rce (Timer/	Counter	stopped)		
			0 0	1		(no presca	-				
			0 1	0	clk						
			0 1	1	clk						
			1 0	0		/ 256					
			1 0	1		/ 1024					
			1 1	0			k source or	1 T1 nin	Clock on	falling edge	
			1 1	1 .				-		rising edge.	
	11	I 1	1 0	1 1		PWM, Phase		I I I pm. OCRIA		TTOM	
	12	i	1	0	0	СТС	-	ICR1		XAN	
	13	1	1	0	1	Reserved		-	-	-	
	14	1	1	1	0	Fast PWM		ICRI		TOP	
	15	1	1	1	1	Fast PWM		OCR1A	ТОР	TOP	
	Bit	_	7		6	5	4	3	2	1	0
		C	ЮM1A	1 CON	/11A0	COMIBI	COM1B0	FOCIA	FOCIB	WGM11	WGM10
TCCR1A	Read/W		R/W		/W	R	R/W	R/W	R/W	R/W	R/W
	Initial V	alue	0		0	0	0	0	0	0	0
	Bit		7		6	5	4	3	2	1	0
TCCR1B		[ICNC	1 IC	ES1	-	WGM13	WGM12	2 CS12	CS11	CS10
	Read/\ Initial		R/W 0	/ I	₹/₩ 0	R 0	R/W Ø	R/W 0	R/W 0	R/W 0	R/W 0

University of Tehran 32

An LED is connected to PC4. Assuming XTAL = 8 MHz, write a program that toggles the LED once per second.

Solution:

As XTAL = 8 MHz, the different outputs of the prescaler are as follows:

Scaler No. 1	Timer Clock	Timer Period	Timer Value
None	8 MHz	1/8 MHz = 0.125 μs	1 s/0.125 μs = 8 M
8	8 MHz/8 = 1 MHz	$1/1 \text{ MHz} = 1 \mu \text{s}$	$1 \text{ s/1} \mu \text{s} = 1 \text{ M}$
64	8 MHz/64 = 125 kHz	$1/125 \text{ kHz} = 8 \mu \text{s}$	1 s/8 μs = 125,000
256	8 MHz/256 = 31.25 kHz	$1/31.25 \text{ kHz} = 32 \mu \text{s}$	$1 \text{ s/32 } \mu \text{s} = 31,250$
1024	8 MHz/1024 = 7.8125 kHz	$1/7.8125 \text{ kHz} = 128 \mu\text{s}$	1 s/128 µs = 7812.5

From the above calculation we can use only options 256 or 1024. We should use option 256 since we cannot use a decimal point.

Write a C program to toggle only the PORTB.4 bit continuously every 2 ms. Use Timer1, Normal mode, and no prescaler to create the delay. Assume XTAL = 8 MHz.

Solution:

XTAL = 8 MHz \Rightarrow T_{machine cycle} = 1/8 MHz = 0.125 µs Prescaler = 1:1 \Rightarrow T_{clock}= 0.125 µs 2 ms/0.125 µs = 16,000 clocks = 0x3E80 clocks

1 + 0xFFFF - 0x3E80 = 0xC180

```
#include "avr/io.h"
void T1Delay ( );
int main ( )
Ł
     DDRB = 0xFF; //PORTB output port
     while (1)
     ł
           PORTB = PORTB ^ (1<<PB4); //toggle PB4
          T1Delay ( );
                       //delay size unknown
     ł
}
void TlDelay ( )
{
                     //TEMP = 0xC1
     TCNT1H = 0xC1;
     TCNT1L = 0x80;
                     //Normal mode
     TCCR1A = 0x00;
     TCCR1B = 0x01; //Normal mode, no prescaler
     while ((TIFR&(0x1 ))==0); //wait for TOV1 to roll over
     TCCR1B = 0;
     TIFR = 0x1 ; //clear TOV1
}
```

Write a C program to toggle only the PORTB.4 bit continuously every second. Use Timer1, Normal mode, and 1:256 prescaler to create the delay. Assume XTAL = 8 MHz.

Solution:

XTAL = 8 MHz \Rightarrow T_{machine cycle} = 1/8 MHz = 0.125 µs = T_{clock} Prescaler = 1:256 \Rightarrow T_{clock} = 256 × 0.125 µs = 32 µs 1 s/32 µs = 31,250 clocks = 0x7A12 clocks \Rightarrow 1 + 0xFFFF - 0x7A12 = 0x85EE

Accessing 16-bit registers in AVR

- TCNT1=0x05ff, we want to save the content of TCNT1 in R20 and R21
- Cannot read TCNT in one cycle
 - AVR is a 8-bit machine

IN	R20,TCNT1L	;R20 =	TCNT1L,	TEMP = TCNT1H
IN	R21, TCNT1H	;R21 =	TEMP of	Timer1

- Read TCNT1L (0xff) at t0, at the same cycle occurs TCNT=0x0600
- Read TCNT1H (0x06)
- The content is detected as 0x06ff instead of the correct value 0x05ff

Accessing 16-bit registers in AVR

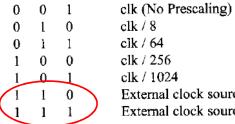
- Solution:
 - AVR buffers the high byte when the lower byte is read
 - When the higher byte is read, the buffered value is used
 - → first read the lowest byte and then the higher byte

IN	R20,TCNT1L	;R20 =	TCNT1L,	TEMP = TCNT1H
TN	DOI TONTIU	• P21 =	TEMP of	Timer1

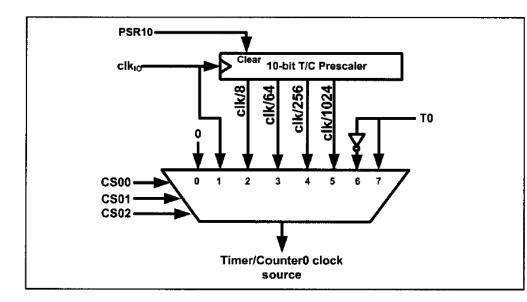
IN R21, TONTIH ;R21 = TEMP OF TIMETI

Counters in AVR

To count external events


Counter programming in AVR

CS02:00


0

D2 D1 D0 Timer0 clock selector

No clock source (Timer/Counter stopped) 0 0

External clock source on T0 pin. Clock on falling edge. External clock source on T0 pin. Clock on rising edge.

-		40 PIN DIP		
		\neg \square	40	PA0 (ADC0)
(T1) PB1	– 2	Ŭ	39	PA1 (ADC1)
(INT2/AIN0) PB2	– 3		38	PA2 (ADC2)
(OC0/AIN1) PB3	4	MEGA32	37	PA3 (ADC3)
(<u>SS</u>) PB4	= 5		36	PA4 (ADC4)
(MOSI) PB5	⊏ 6		35	PA5 (ADC5)
(MISO) PB6	d 7		34	PA6 (ADC6)
(SCK) PB7	= 8		33	PA7 (ADC7)
RESET	– 9		32	AREF
VCC	H 10		31	AGND
GND	d 11		30	AVCC
XTAL2	– 12		29	PC7 (TOSC2)
XTAL1	– 13		28	PC6 (TOSC1)
(RXD) PD0	H 14		27	PC5 (TDI)
(TXD) PD1	H 15		26	PC4 (TDO)
(INT0) PD2	– 16		25	PC3 (TMS)
(INT1) PD3	d 17		24	PC2 (TCK)
(OC1B) PD4	– 18		23	PC1 (SDA)
(OC1A) PD5	– 19		22	PC0 (SCL)
(ICP) PD6	= 20		21	PD7 (OC2)

Counter programming in AVR

- Configure T0 (PB0) or T1 (PB1) as input
- Set the other registers as in timers

Counter

Assuming that a 1 Hz clock pulse is fed into pin T0, use the TOV0 flag to extend Timer0 to a 16-bit counter and display the counter on PORTC and PORTD.

Solution:

```
#include "avr/io.h"
                                                                                    ATmega32
int main ( )
ł
                                                                                          PD
                                //activate pull-up of PB0
                                                                                                     to
      PORTB = 0x01;
                                                                                                     LEDs
                                 //PORTC as output
      DDRC = 0xFF;
                                                                                          PC
      DDRD = 0 \times FF;
                                 //PORTD as output
                                                                                      PB0
                                                                                   то
                                                                          1 \text{ Hz}
                                 //output clock source
      TCCR0 = 0x06;
      TCNTO = 0x00;
      while (1)
      ł
             do
             ł
                    PORTC = TCNT0;
             ) while((TIFR&(0x1<<TOV0))==0);//wait for TOV0 to roll over
                                        //clear TOV0
             TIFR = 0 \times 1 << TOV0;
                                        //increment PORTD
             PORTD ++;
      }
}
```