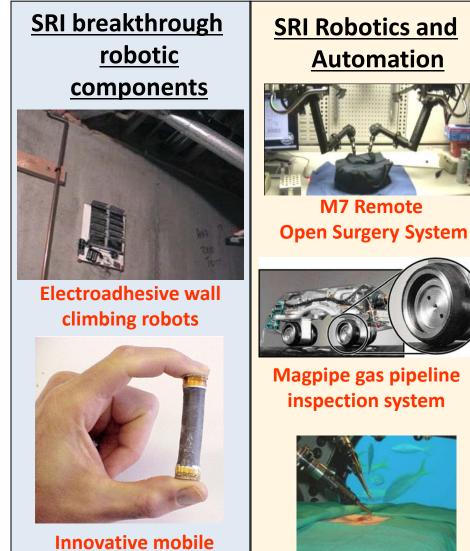
SRI International



Microrobot Inspectors

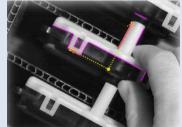
Electroadhesive wall Climbing Robots and more

Ron Pelrine Chief Scientist, Robotics Program

SRI robotics : well-positioned for developing innovative and effective structural inspection tools



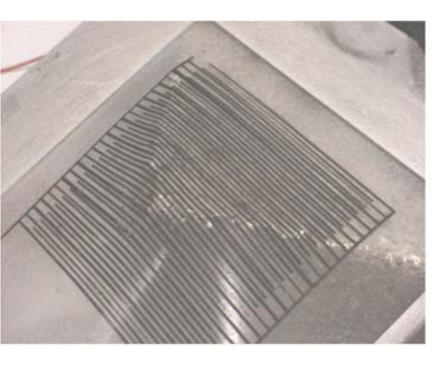
robot actuation and

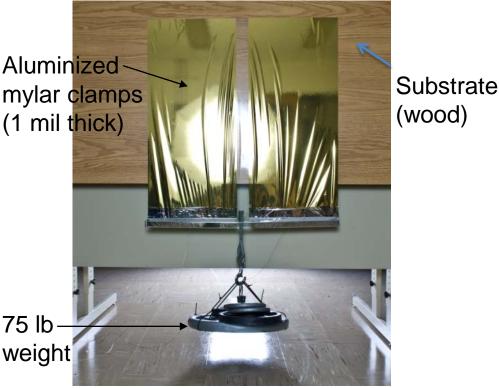

sensing

Extreme-Environment Telerobotics

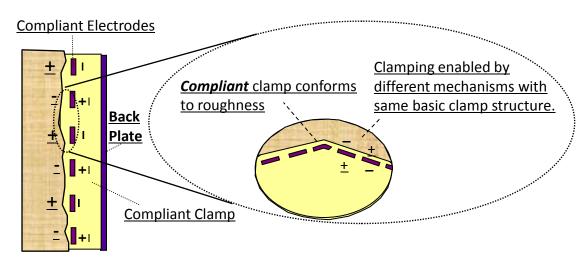
SRI Machine vision

Space shuttle tile inspection experience

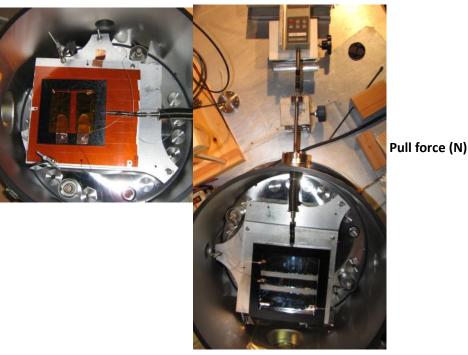


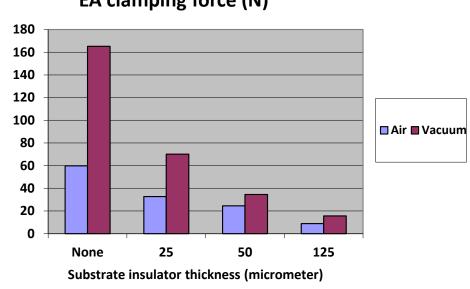

Object recognition

Video OCR


Electroadhesion : Electrically Controllable Adhesion

- Electrically controllable, reusable adhesion Works by inducing electrostatic forces
- High clamping forces on glass, wood, metal, concrete, drywall, brick, granite etc.
- Compliance helps conform to irregular, curved or rough surfaces
- Robust clamping through dust and moisture
- Ultra-low power consumption (~0.02 mW/N of weight supported).


Electroadhesion



- Compliant films induce electrostatic charges on a wall using a low-power supply connected to the film electrode
- Space rated materials (e.g. gold coated kapton, aluminzed mylar etc.) can be used, further material optimization with funded efforts can dramatically improve performance
- Can be switched on or off quickly (<50 ms)
- Basic mechanism is electrostatic attraction, but it is powered
- Clamps onto both conductive and non-conductive substrates with same clamp geometry but with different mechanisms
 - With conductive substrates \rightarrow clamping through Lorentz forces

• With non-conductive substrates \rightarrow clamping through polarization forces

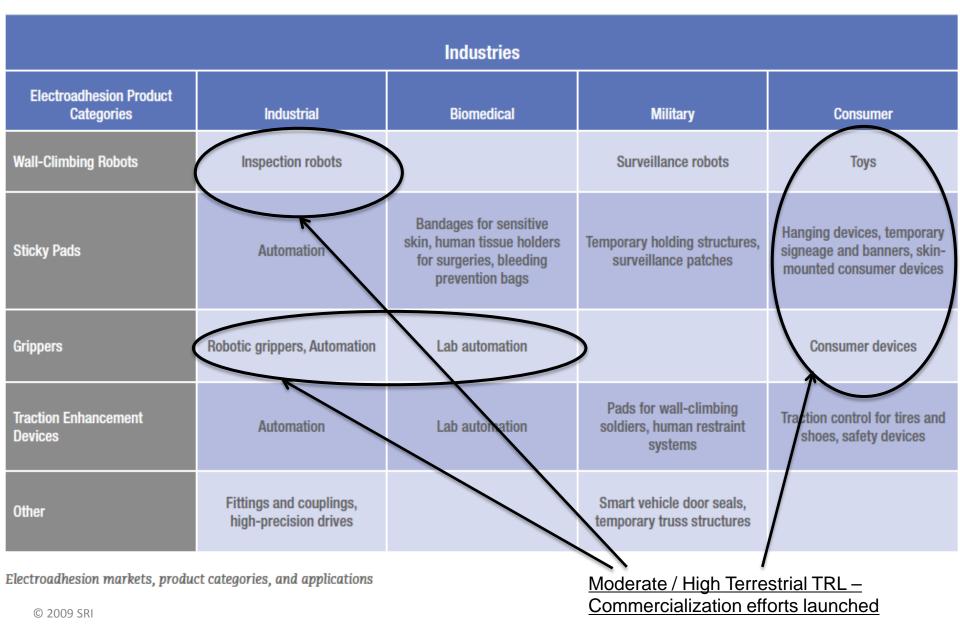
Space Readiness Testing

EA clamping force (N)

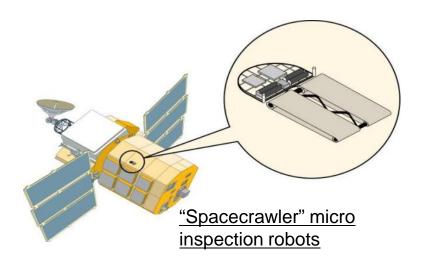
- So far, EA clamps have been successfully demonstrated in thermal vacuum (-40 to 150C, 10⁻⁶ torr), with UV exposure (1-5 suns) and with electron source
- Testing with substrate materials commonly found on spacecraft (Anodized or bare aluminum, Kapton, Polyimide, Mylar etc.)
- •Results are showing consistently better clamping forces under vacuum conditions than in air ~5x10⁻⁵ Torr
- Demonstration in LEO plasma is pending, modeling suggests that clamping forces will be similar but may may need special electrodes or electronics

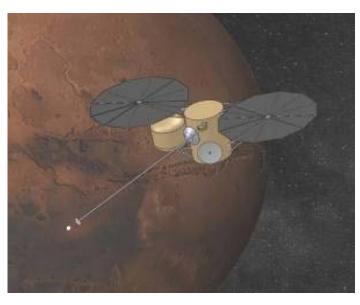
Versatile Clamping

Material	Measured Lateral Force per Unit Area P _L (N/cm ²)	Measured Frictional Coefficient	Estimated Normal Pressure P _N (N/cm ²)	
Finished wood	0.55	0.40	1.38	
Drywall	0.21	0.4*	0.52	
Paper	0.24	0.46	0.52	
Glass	0.41	0.45	0.84	
Concrete (dry)	0.17	0.57	0.30	
Concrete (damp)	0.08	0.4*	0.20	
Steel	.40	0.33	4.24	

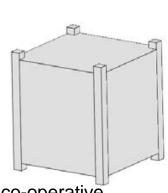

* estimated

Wall Climbing Technologies - Comparison

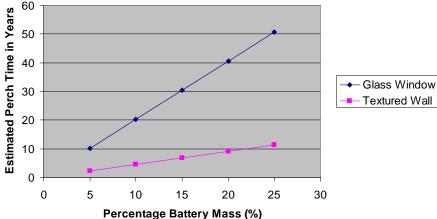

Technology	High forces ?	Repeated use on dusty surfaces ?	Works on rough AND smooth surfaces ?	Energy cost to peel / move	Energy cost for perching	Non- damaging / no residue ?	Space Rated Materials ?	Current Space TRL (Current terrestrial TRL)
Chemical adhesion (sticky feet)								2/3 (4/5)
Suction cups								0 (8/9)
Synthetic Gecko feet								2/3 (4/5)
Claws, microspines								2/3 (5/6)
Electroadhe sion								4/5 (7/8)
	Excellent	-			erate / Good rmance		Poor	performance


<u>Electroadhesion allows robust electrically controlled adhesion that works on a variety of materials,</u> <u>surface morphologies and roughness and in the presence of dust.</u>

EA Terrestrial Applications : Overview


Potential Space Applications

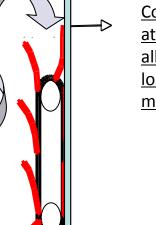
Gripper for applications such as Mars Sample Return (Courtesy: Altius Space Machines)


Docking of cubesats or to co-operative

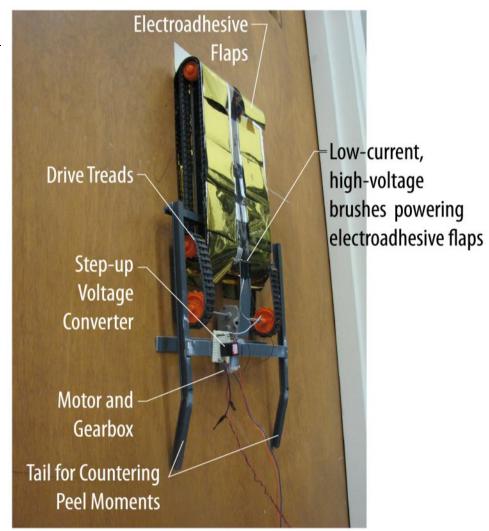
Anchoring tools for human EVA or internal to shuttle activities (traction enhancement in space station environments)

Wall Climbing Robot : DARPA Program

- Past DARPA program
- First generation climbing robots
- Showed basic technology, low power


Commercial Application : Structural Inspection

- Field application to inspection and cleaning of civil structures, especially concrete
- Current field robot weighs ~1.3kg, can carry payload of 1-1.5 Kg
- Ongoing commercial programs, primarily in Asia
- Useful Non Destructive Evaluation (NDE) payloads Video cameras, ultrasound crack detectors, laser range finders, wireless transmitters


Treaded Flap - Robots

Peeling torque due to offset in robot Center of Gravity away from wall


Compliant flaps attached at base allow tensile loading while minimizing peel

- Most successful and robust design implemented so far
- Compliant flaps and tail help resist peel moments, can be retrofitted on conventional treaded robots
- Typical robots weighed 150-300g with full onboard power and RC control

Climbing on Variety of Surfaces

Wood_Beam.avi

Fast Window.avi

GLASS

CONCRETE

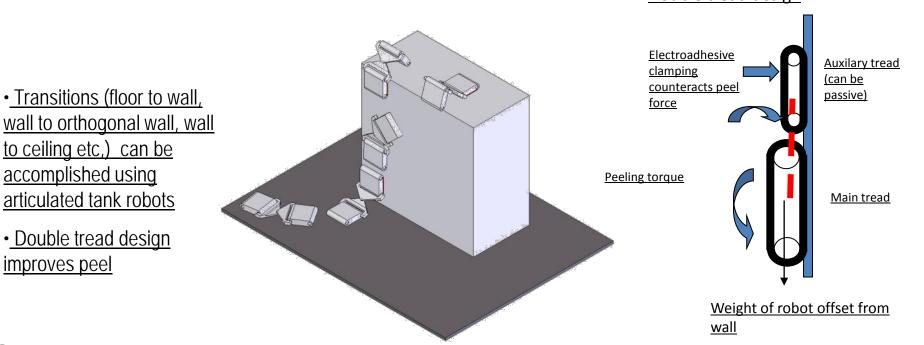
WOOD

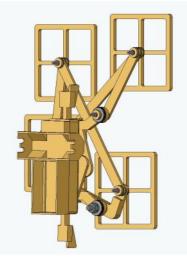
Coping with Real Surfaces : Dirt

<u>Video of robot on concrete wall after both robot and wall area coated</u> <u>with talcum powder</u>

Electroadhesion clamps through dust to the wall

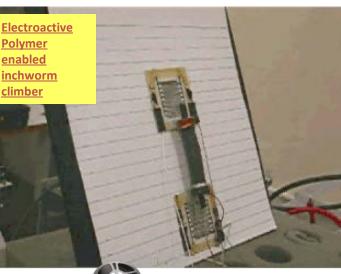
Obstacle Clearance and Advanced Mobility Tests




Mirror.avi

Wood_Bump.avi

Double tread design


Biomimetic Walking Robots

- In some designs that have been demonstrated (inchworm, skid designs), only inplane motion is required.
- In other designs, pads move out-of plane to come in contact with wall, but then move in-plane to drag the robot forward
- Pads can be switched off during movement to minimize energy for peeling
- Biomimetic designs are fundamentally sound and can be implemented with electroadhesion, but tracked robots were emphasized because of simplicity and speed

<u>Edited version of</u> Electro Gecko 29Mar.avi

Other applications : Electroadhesive Gripping

Application of electroadhesion to gripping complexshaped objects

- Ongoing program with DARPA (ARM-H)
- Business development activities with industrial robotics companies and energy / aerospace companies for material handling

Levitated Micro Robots – new systems for inspection (and repair?)

- Levitated using diamagnetic materials (graphite)
- Freely mobile within workspace; uses PCB or flex circuit for electromagnetic drive force
- 1 10 mm typical; larger sizes possible
- High performance (high speeds, excellent precision, etc.)
- Limited space-rated testing, but vacuum compatible and can use space-rated materials
- Applications as end effector on larger robot:
 - Surface mapping
 - Electrical probing
 - Repair processes

Robotics Laboratory SRI International

Conclusion

- Electroadhesion offers exciting opportunities for space-based inspection systems
 - More work to be done, but results to date on space compatibility are encouraging
 - Several earth-based systems demonstrated and in commercial development

• Various possible target applications in space

- Tile inspection
- Solar array inspection
- Also possible applications within spacecraft for temporary and semi-permanent adhesion, traction, etc.
- New early stage micro robot technology (mobile but not autonomous) is promising as an inspection and repair tool
 - Able to deploy multiple independent micro robots as end effectors

Thank You!