
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Measuring Microorganisms

\qquad

Ocular Micrometer

The ocular micrometers provided are calibrated so that when using 1000X oil immersion microscopy, the distance between any two lines on the scale represents a length of approximately one micrometer. Remember this does not hold true when using other magnifications.
The approximate size of a microorganism can be determined using an ocular micrometer, an eyepiece that contains a scale that will appear superimposed upon the focused specimen.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Microscopes
Resolving Power or Resolution - ability to distinguish between 2 adjacent objects. Magnification - restricted to the type of light source. Empty magnification - To increase magnification without increasing resolving power.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Microscopes

\qquad

- Simple Microscope - contains only 1 magnifying lens
- Anton van Leeuwenhoek first developed
- Limit of resolution is 300 x
- Compound Microscope - contains more than 1 magnifying lens (also called compound light microscope)
- Hans Jansen - first developed this microscope
- Limit of resolution is 1000 x
- Photomicrographs - photographs taken through microscope.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Microscopes

\qquad

- Brightfield - Used to observe morphology \qquad of bacteria, protozoa, fungi and algae.
0.2 uM resolution limit, 1000x magnification limit
\qquad
\qquad
\qquad
\qquad
\qquad

Types of Microscopes

- Darkfield - Used to observe organisms against a dark background.
0.2 uM resolution limit, 1000x magnification limit
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Prokaryote vs. Eukaryote

\qquad

- The cell is the basic unit of life. Based on the \qquad organization of their cellular structures, all living cells can be divided into two groups: \qquad
Prokaryotic - bacteria
- Do not have organelles,
- DNA is not surrounded by nuclear membrane \qquad
- Usually smaller than eukaryotes
- Eukaryotic - animal, plants, fungi, protozoan \qquad and algae
- Have organelles (i.e. mitochondria, ER, golgi)
- Have nuclear membrane \qquad
\qquad

BACTERIAL SHAPES AND

 ARRANGEMENTSThere are three common shapes of bacteria: \qquad

- Coccus
- Bacillus (rod)
- Spiral
- Binary Fission - method in which bacteria divide.
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How Big is a ...?

- The head of a pin is about 2 mm in diameter. Use this animation to compare the relative sizes of cells and organisms sitting on a pinhead. Nearly invisible without magnification, dust mites dwarf pollen grains and human cells. In turn, bacteria and viruses are even smaller.
- http://www.cellsalive.com/howbig.htm

