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Overview

Image Formation: Diffraction and Interference

Limits to Resolution: Numerical Aperture and
Immersion Objectives

Light Path and Kohler Illumination
Getting Contrast: Phase Contrast
Getting Contrast: DIC

Bothersome Aberrations




Cross section of hair (100 microns)
Mammalian cell
/ (5-40 microns)
Bacteria

/(< 1 micron)
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James Carville Says:



James Carville Says:

“It’s the RESOLUTION,

J\
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stupid!!!”
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Diffraction, Interference and Image
Formation
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Diffraction and Spacing in the Specimen

Diffraction Patterns of Narrow and Wide Slits
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Complex Grid Diffraction Patterns

Figure &

e Abbe: The details of a specimen will be resolved
if the objective capture the Ot and 15t diffracted
orders (or any two orders).



Resolution Between Two Objects

Figure 3
Airy Discs
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Intensity Distributions

Different criteria specify different spacings between
the 1images to achieve “resolution”



Resolution is Dictated by Numerical Aperture

Numerical Aperture and Airy Disc Size

Figure 4

The smaller the NA, the bigger the focal spot,
And the less resolution obtained



Numerical Aperture

A measure of the angle of the cone of
illumination captured by the objective

NA=n(sind)
@ is the angular aperture

n is the refractive index of the
immersion medium

Angular
Aperture

Figure 1



NA = (n)sin{p)

Figure 2 -
4) (c) u = 60°NA =0.87
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 In practice 1t 1s difficult to achieve N.A.s above
0.95 with dry objectives.

e The refractive index of the medium between the

objective and the specimen is increased by using
oils (n=1.51) or water (n=1.33)




Immersion Medium
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Light Paths for Qil and Water Immersion Objectives
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Oi1l immersion objectives can have higher NA, and hence resolution

Spherical aberrations at micron distances from the coverglass can be
problematic



Criteria for Maximum Resolution

R=A/2NA
R=0.61A/NA (Rayleigh Criterion)
R=1.22 A/(NA(obj) + NA(cond))

So at NA=0.95

360 nm R=0.19 micrometers
450 nm R=0.24

550 nm R=0.29

700 nm RG IRV



Resolution of light microscopy

Horizontal

1.22 X A/(N.A. +N.A._. )
c.g. 488 nm light, N.A. 1.4 =213 nm

objective

Vertical

2 X A X0 /(NA. i)
¢.g. 488 nm light, o1l, N.A. 1.4 =754 nm

where:
A 1s the wavelength of light
N.A. is numerical aperture

n is the refractive index of the sample medium



Markings on the Objective
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Aberrations/Corrections

Substage Condenser
Chromatic Aberration

e Chromatic aberrations:

 Achro, Achromat,
Apochromat (wider range of
wavelengths), Fluor




Aberrations/Corrections

* Spherical Aberrations

* Light passing through the
periphery of lens not
brought to focus with light
through center

e Lenses are well corrected
for standard 17 mm cover
glass, or have adjustment
collar

Longitudinal and Transverse Spherical Aberration
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Aberrations/
Corrections

* Flat Field Corrections
 Plan

(c) Center in Focus

Figure 2



Mechanical Tube Length

Infinity-Corrected Objective System
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Kohler Illumination

is Absolutely Required
for Good Transmitted
Light Contrast.

There are two sets of conjugate
Optical planes in the microscope:

1. Aperture or Illumination Plane
2. Focus (Object), Image Plane

These two are Fourier transforms
of each other -- This means that
they are related in specific ways.
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Proper Alignment of the Condensor

Focus and Center the Illumination

Field Diaphragm Alignment

Figure 6

1. Close diaphragm

2. Focus diaphragm in image field

3. Center diaphragm 1n field

4. Open the diaphragm to fill the field



Contrast

» Unstained biological specimens usually have low contrast
in bright field images

 Phase contrast and differential interference contrast use
different optical tricks to introduce contrast based on

changes in the refractive index across the specimen
Transmitted Light Contrast Modes




Biological Specimens as Phase Objects

Diffracted Light Gathered
by an Objective

* Visibility of light after
interference 1s a function of
coherence

e Can be maximized by
decreasing the size of the
conenser diaphragm, but at //
cost to resolution (decrease uaconscmt, |
NA)

Information / / /
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< Diffracted
light

Object -" |



Contrast and Resolution Vary with Illumination

Condenser Aperture Size and Image Quality

Figure 4
NA = 100% NA =75% NA =25%

Note! For many contrast methods, including DIC, Hoffman and
Fluorescence, resolution 1s given by the smallest NA 1n the system



Optical Path Difference

Optical Path Difference in Phase Objects

o ‘.—‘  OPD=t(n(s)-n(m))

n(s)  Phase Difference

r -
l OP = tn(s)

ol 5 = (2n/1)(OPD)

" - -

njmj
Medium

OP = tn{m)

*Optical path differences in
unstained specimens are small
but give phase differences
that are exploited in the phase
contrast microscope.



Constructive and Destructive
Interference
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Phase Contrast

» Unstained specimens that do not absorb light retard 1ts
phase by ~1/4 wavelength compared to undeviated light

» Direct zeroth order light passes through specimen
undeviated, diffracted light lags behind by ~1/4
wavelength, but in interference this is not sufficient to
observably reduce intensity

* Phase microscope speeds up direct light by %4 wavelength,
so that it ends up 2 wavelength out of phase with the
diffracted light, giving destructive interference (black)



Phase Contrast (most common method)

Phase Contrast Light Pathways
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Phase Contrast illuminates a ring, but in this case the ring 1s in
the aperture plane. Unscattered light 1s “phase delayed” for
maximum interference.



Annular Phase Plates
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[Limitations

 Halos

e Phase annuli limit working NA, hence
resolution

» Poor for thick specimens due to phase shifts
from planes above and below focus



Phase and DIC

Transparent Specimens in Phase Contrast and DIC




Phase and DIC

« Phase: intensity based on optical path variation- high
OPD=dark, low OPD=light

« DIC: intensity variation based on magnitude of gradients in
OPD. Sharp gradients give pseudo relief shading. Shallow
gradients appear with similar intensity to background

Specimen Optical Path Difference and DIC Amplitude Profile
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Differential Interference Contrast Schematicf DIC Microscope Optical Configuration
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DIC Image Plane Wavefront Interference
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DIC Allows Optical Sectioning

Angles 1n back aperture correspond to positions in the object/image

0 /
V-
I Large Path
Difference
d
Wollaston Prisms e
Separate Two Polarizations Similar Paths \

To Different Angles



Advantages and Disadvantages of DIC

» Capable of high resolution, no halos, optical
sectioning 1s possible.

» Cannot image through tissue culture
plastics, harder to set up, requires well-
corrected objectives
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