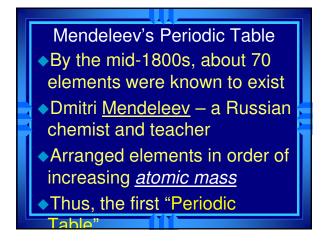
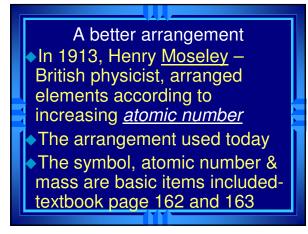


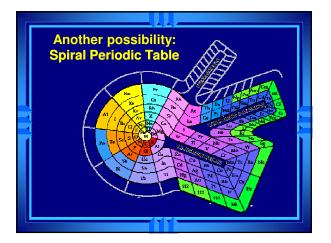
Section 6.1 Organizing the Elements • **OBJECTIVES:** • <u>Compare</u> early and modern periodic tables.

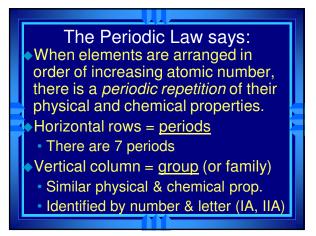

Section 6.1 Organizing the Elements •OBJECTIVES: • Identify three broad classes of elements.

Section 6.1 Organizing the Elements


- A few elements, such as gold and copper, have been known for *thousands* of years - since ancient times
- Yet, only about 13 had been identified by the year 1700.
- As more were discovered, chemists realized they needed a way to <u>organize</u> the elements.

Section 6.1 Organizing the Elements • Chemists used the *properties* of elements to sort them into groups. • In 1829 J. W. Dobereiner arranged elements into <u>triads</u> – groups of three elements with similar properties • One element in each triad had


properties intermediate of the other two elements



Mendeleev • <u>He left blanks</u> for yet undiscovered elements • When they were discovered, he had made good predictions • But, there were problems: • Such as Co and Ni; Ar and K; Te and I

	4 1 ⁶ ۱۸	Nkalin earth n	e netals													Falo		Noble gases 18 8A	
	H.	2 2A											13 3A	14 4A	15 5A	16 EA	17 7A	He	
Í	3 Li	4 Be											ŝ	ê C	7 N	8 0	9 F	10 Ne	
	11 Na	12 Mg	3	4	5	6	7 Fransi	tion m	9 ietals	10	11	12	13 A	14:07	15 D	ío <i>ci</i>	17 Cl	18 År	
metals	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Č0	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
Alkali metals	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	60 Sn	61 SB	52 Te	63 	54 Xe	
	50 CS	59 B8	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Qs	77 r	70 Pt	79 Au	00 Hg	81 TI	82 Pb	86	84 PO	05 AL	89 Rri	
	87 Fr	88 Ra	89 AC1	104 Unq	105 Unp	106 Unn	107 Uns	ายช Uno	109 Une	110 Uun	ni Uuu								
	*Lantharides			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	83 Eu	64 Gd	65 Tb	66 Dy	67 Ho	88 Er	69 Tm	70 Yb	71 Lu		
	* Actinides				90 Th	91 Pa	92 U	аз Np	94 Pu	95 Am	96 Cm	97 Bk	8.Q	99 Es	100 Fm	101 Md	102 No	103 Lr	

Areas of the periodic table

- Three classes of elements are:
- 1) metals, 2) nonmetals, and
- 3) metalloids
- Metals: electrical conductors, have luster, ductile, malleable
- Nonmetals: generally brittle and non-lustrous, poor conductors of heat and electricity

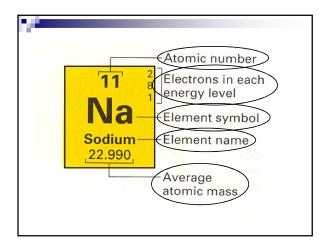
Areas of the periodic table

- Some nonmetals are gases (O, N, Cl); some are brittle solids (S); one is a fuming dark red liquid (Br)
- Notice the heavy, stair-step line?
- 3) Metalloids: border the line-2 sides
 - Properties are *intermediate* between metals and nonmetals

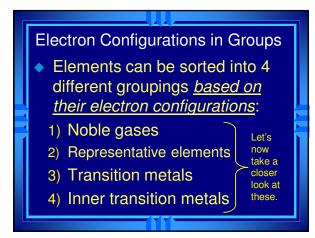
Section 6.2 Classifying the Elements • OBJECTIVES:

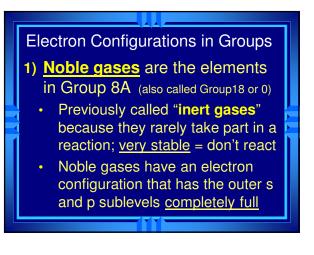
• <u>Describe</u> the information in a periodic table.

Section 6.2 Classifying the Elements •OBJECTIVES: •Classify elements based

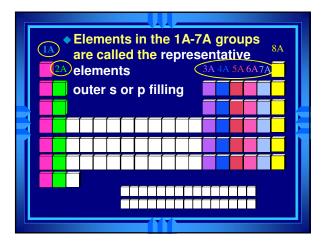

on electron configuration.

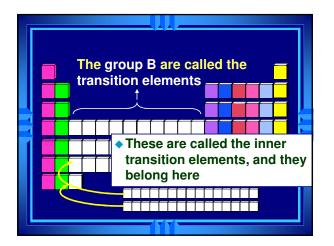
Section 6.2 Classifying the Elements

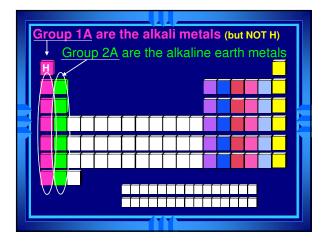

- OBJECTIVES:
 - <u>Distinguish</u> representative elements and transition metals.

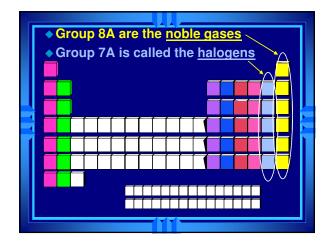

Squares in the Periodic Table

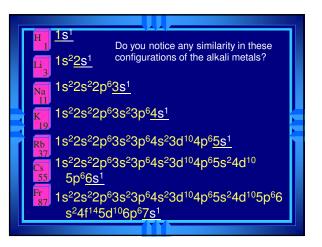
- The periodic table displays the <u>symbols</u> and <u>names</u> of the elements, along with information about the structure of their atoms:
 - Atomic number and atomic mass
 - Black symbol = solid; red = gas; blue = liquid (from the Periodic Table on our classroom wall)

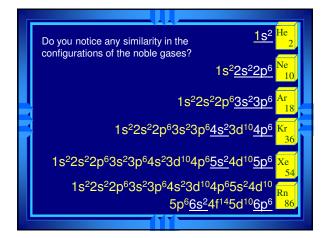

Electron Configurations in Groups

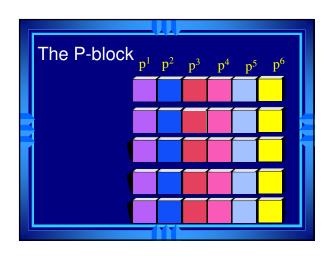

- 2) <u>Representative Elements</u> are in Groups 1A through 7A
 - Display <u>wide range</u> of properties, thus a good "representative"
 - Some are metals, or nonmetals, or metalloids; some are solid, others are gases or liquids
 - Their outer s and p electron configurations are <u>NOT filled</u>


Electron Configurations in Groups 3) <u>Transition metals</u> are in the "B" columns of the periodic table Electron configuration has the outer s sublevel full, and is now filling the "<u>d</u>" sublevel A "transition" between the metal area and the nonmetal area


• Examples are gold, copper, silver

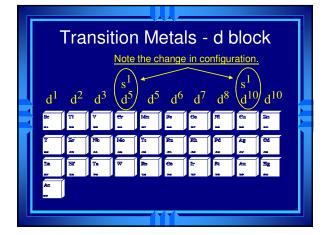


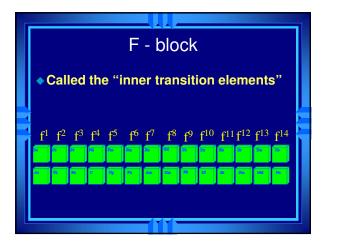


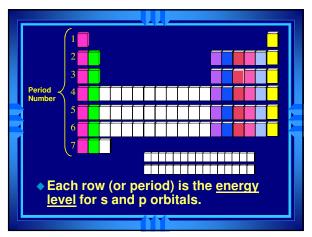


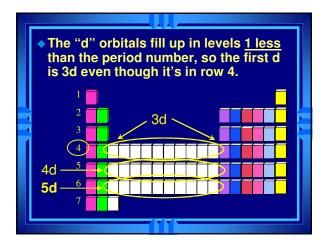
Elements in the s - blocks

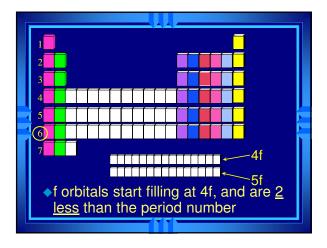
Alkali metals all end in s¹

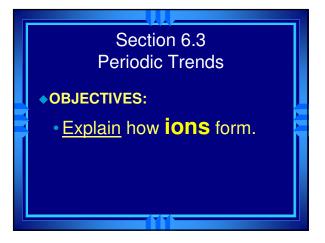

of electrons.

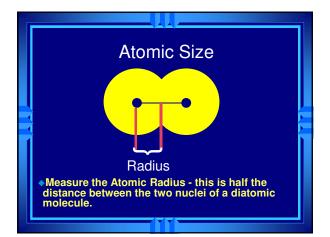

Alkaline earth metals all end in <u>s</u>² • really should include He, but it fits

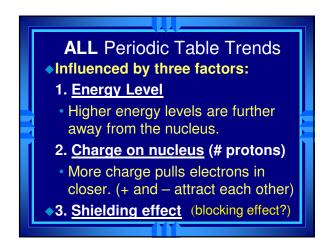

better in a different spot, since He has the properties of the noble

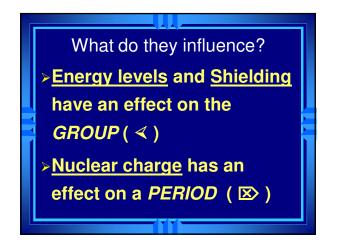

gases, and has a full outer level


He

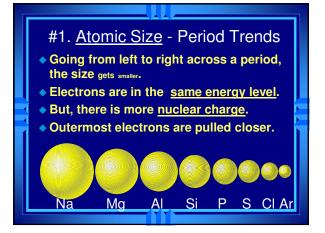


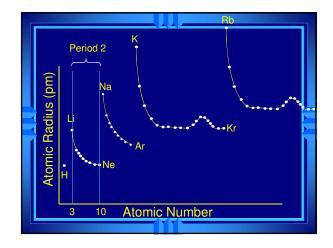



Section 6.3 Periodic Trends


- OBJECTIVES:
 - <u>Describe</u> periodic *trends* for first ionization energy, ionic size, and electronegativity.

Trends in Atomic Size


- First problem: Where do you start measuring from?
- The electron cloud doesn't have a definite edge.
- They get around this by measuring more than 1 atom at a time.



lons

- Some compounds are composed of particles called "ions"
 - An ion is an atom (or group of atoms) that has a positive or negative charge
- <u>Atoms</u> are neutral because the number of protons equals electrons
 - Positive and negative ions are formed when electrons are <u>transferred</u> (lost or gained) between atoms

lons

Metals tend to LOSE electrons, from their outer energy level

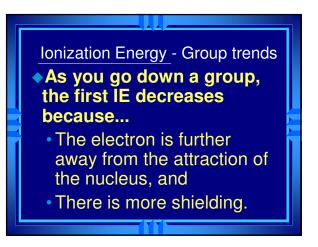
- Sodium loses one: there are now more protons (11) than electrons (10), and thus a positively charged particle is formed = "**cation**"
- The charge is written as a number followed by a plus sign: Na¹⁺
- Now named a "sodium ion"

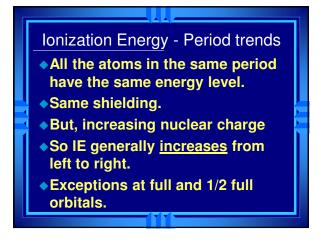
lons

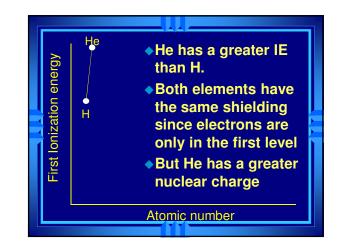
- <u>Nonmetals tend to GAIN</u> one or more electrons
 - Chlorine will gain one electron
 - Protons (17) no longer equals the electrons (18), so a charge of -1
 - Cl1- is re-named a "chloride ion"
 - Negative ions are called "anions"

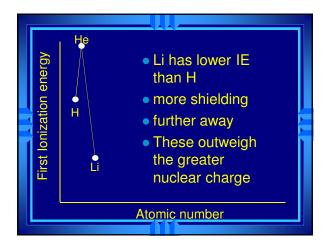
#2. Trends in Ionization Energy Ionization energy is the amount of energy required to *completely remove an electron* (from a gaseous atom). Removing one electron makes a 1+ ion. The energy required to remove only the first electron is called the <u>first ionization energy.</u>

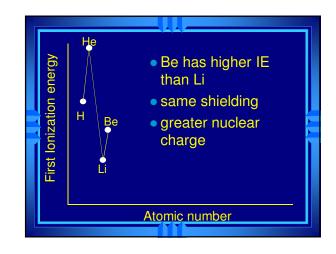

Ionization Energy The <u>second</u> ionization energy is the energy required to remove the second electron.

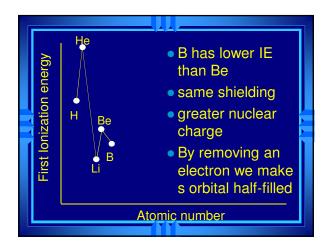

- Always greater than first IE.
- The <u>third</u> IE is the energy required to remove a third electron.
 - Greater than 1st or 2nd IE.

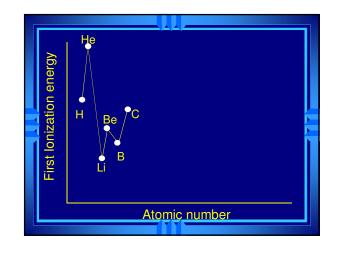

Table 6.1, p. 173						
<u>Symbol</u>	First	<u>Sécond</u>	<u>Third</u>			
H	1312					
He	2731	5247				
Li	520	7297	11810			
Be	900	1757	14840			
В	800	2430	3569			
С	1086	2352	4619			
N	1402	2857	4577			
0	1314	3391	5301			
F	1681	3375	6045			
Ne	2080	3963	6276			

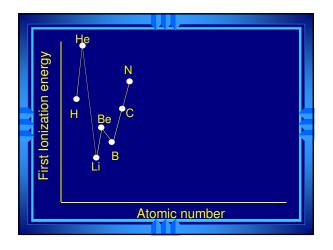

				1
<u>Symbol</u>	First	Second	Third	
Н	1312		y did these values	
He	2731	5247 inci	rease so much ?	
Li	520	7297	11810	
Be	900	1757	(14840)	
В	800	2430	3569	
С	1086	2352	4619	
Ν	1402	2857	4577	
0	1314	3391	5301	
F	1681	3375	6045	
Ne	2080	3963	6276	

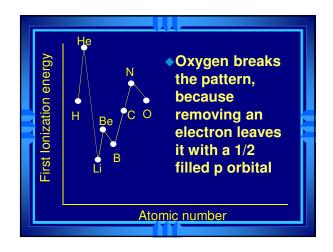

What factors determine IE The greater the nuclear charge, the greater IE. Greater distance from nucleus decreases IE Filled and half-filled orbitals have lower energy, so achieving them is easier, lower IE. Shielding effect

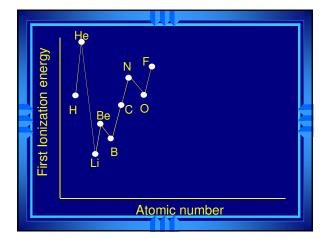


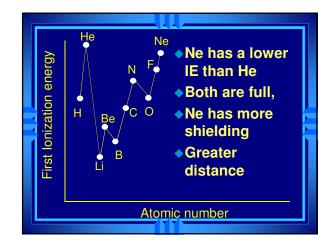


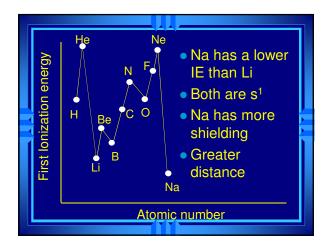


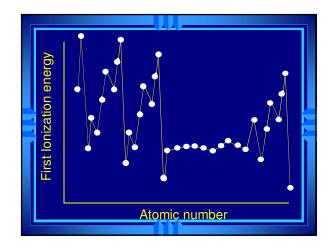












Driving Forces

- Full Energy Levels require lots of energy to remove their electrons.
 - Noble Gases have full orbitals.
- Atoms behave in ways to try and achieve a noble gas configuration.

2nd Ionization Energy

- For elements that reach a filled or half-filled orbital by removing 2 electrons, 2nd IE is lower than expected.
- True for s²
- Alkaline earth metals form 2+ ions.

3rd IE

 Using the same logic s²p¹ atoms have an low 3rd IE.

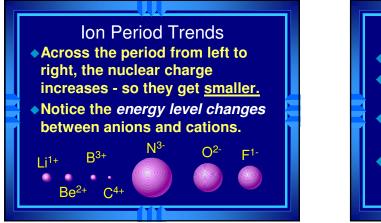
- Atoms in the aluminum family form 3+ ions.
- 2nd IE and 3rd IE are
- always higher than 1st IE!!!

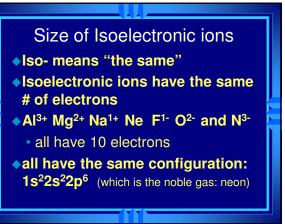
Trends in Ionic Size: Cations

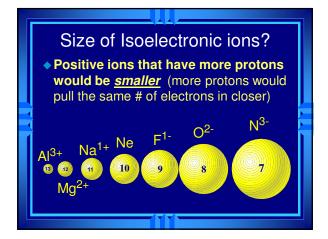
- Cations form by <u>losing</u> electrons.
- Cations are smaller than the atom they came from – not only do they lose electrons, they lose an entire energy level.
- Metals form cations.
- Cations of representative elements have the noble gas configuration <u>before</u> them.

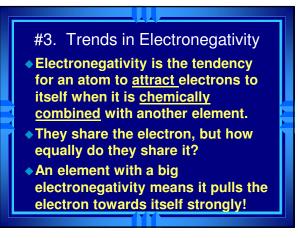
Ionic size: Anions Anions form by gaining electrons.

- Anions are bigger than the atom they came from – have the same energy level, but a greater area the nuclear charge needs to cover
- Nonmetals form anions.
- Anions of representative elements have the noble gas configuration <u>after</u> them.

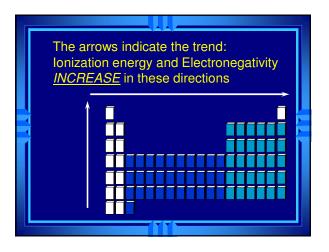

Configuration of Ions Ions always have noble gas

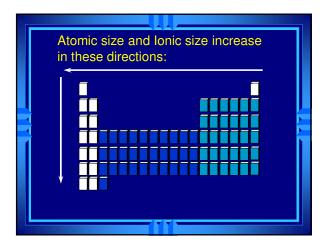

- configurations (= a full outer level)
- Na atom is: 1s²2s²2p⁶3s¹
- Forms a 1+ sodium ion: 1s²2s²2p⁶
- Same configuration as neon.
- Metals form ions with the configuration of the noble gas <u>before</u> them - they lose electrons.

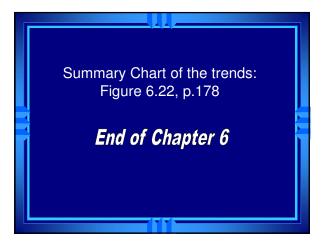

Configuration of lons


- Non-metals form ions by gaining electrons to achieve noble gas configuration.
- They end up with the configuration of the noble gas <u>after</u> them.

Ion Group trends • Each step down a group is adding an energy level • lons therefore get bigger as you go down, because of the additional energy level. • Cs¹⁺


 Electronegativity Group Trend
 The further down a group, the farther the electron is away from the nucleus, plus the more electrons an atom has.


 Thus, more willing to share.


Low electronegativity.

Electronegativity Period Trend • Metals are at the left of the table. • They let their electrons go easily • Thus, low electronegativity • At the right end are the nonmetals. • They want <u>more</u> electrons. • Try to take them away from others

High electronegativity.

