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Over the past two decades, the U.S. stock market has undergone notable trans-
formations. Technological changes and regulatory reforms have significantly influ-
enced the way stocks are traded. This paper uses market microstructure invariance
to define benchmarks for examining how changing market frictions are reflected in
cross-sectional and time-series variation in the number and size of trades reported
in public transaction data feeds.
Large variation in transaction data makes such analysis challenging. Relying

on the benchmarks imposed by the market microstructure invariance of Kyle and
Obizhaeva (2016) enables us to filter out the substantial “natural” variation in
trading activity across markets and analyze properties of the data due to effects of
market frictions.
The invariance hypothesis is based on the intuition that trading in securities mar-

kets can be modeled as trading games played at different speeds. Asset managers
place bets or meta-orders, which approximately represent uncorrelated decisions
to buy or sell specific numbers of shares. A bet may be executed as many smaller
orders. The speed with which business time passes is the speed with which new
bets are made. In markets for liquid stocks, trading occurs at fast speeds and
bets arrive over short horizons, perhaps only a few minutes. In markets for illiquid
stocks, trading takes place slowly and bets arrive over longer horizons, perhaps a
few months.
The invariance hypothesis conjectures that the dollar risk transferred by bets and

the dollar costs of executing bets are the same across markets when measured in
business-time units corresponding to the rate at which bets occur. This hypothesis
implies a specific decomposition of the order flow. Trading activity—a measure of
aggregate risk transfer—is defined as the product of dollar volume and return
volatility. In frictionless markets, invariance implies that the number of bets is
proportional to the 2/3 power of trading activity, and the distribution of bet sizes
as a fraction of daily volume is proportional to the negative 2/3 power of trading
activity. These invariance principles define frictionless market benchmarks for
examining the number of trades and the distribution of trade sizes in the Trades
and Quotes (TAQ) dataset that contains tick-by-tick transactions between 1993
and 2014 for the stocks listed in the U.S. market.
Microstructure invariance is ultimately an empirical hypothesis. Over the 1993–

2001 subperiod, a time series of month-by-month regression coefficients of the
log of trade arrival rates on the log of trading activity shows that the estimated
coefficients remained virtually constant. The estimated coefficient of 0.666 is indeed
strikingly close to the benchmark invariance prediction of 2/3. After 2001, the
monthly estimates increase from about 0.690 in 2001 to about 0.77 in 2014; this

provided excellent research assistance. Kyle has worked as a consultant on finance topics for
companies, banks, stock exchanges, and various U.S. federal agencies including the Securities
and Exchange Commission, the Commodity Futures Trading Commission, and the Department
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breakdown in the invariance relationships is both statistically and economically
significant.
For the years 1993, 2001, and 2014, the empirical distributions of logs of scaled

print sizes for stocks sorted into 10 dollar-volume groups and 4 price-volatility
groups tell a similar story (see figures 6–10). In 1993, consistent with invariance,
all 40 empirical distributions resemble a bell-shaped normal density function with
common mean and variance across the 40 subgroups. In 2001 and 2014, the shape
of the distributions looks much less like the shape of a normal distribution than
in 1993. Furthermore, average scaled trade sizes decrease during the 1993–2014
period by a factor of about 2. Statistical tests clearly reject the hypothesis that
scaled trade sizes are distributed as a common log-normal random variable. The
rejection arises due to clearly visible microstructure effects such as the one-cent
tick size, censoring of trades at the minimum round-lot threshold, and clustering
of trades at round-lot sizes such as 100, 1,000, and 5,000 shares, consistent with
O’Hara, Yao and Ye (2012) and Alexander and Peterson (2007).
Invariance explains a substantial fraction of the variation in trade arrival rates

and average trade sizes across stocks, especially in the first half of the sample.
Specifically, when the slope coefficient is restricted to be ±2/3 as implied by the
invariance hypothesis and only intercepts are estimated in separate month-by-
month regressions, the time series of R2 fluctuates around 0.88. Glosten and
Harris (1988) find that average trade size (in shares) is negatively related to market
depth. Brennan and Subrahmanyam (1998) regress average trade sizes on return
volatility, standard deviation of trading volume, market capitalization, number of
analysts following a stock, number of institutional investors holding a stock, and
the proportion of shares institutional investors hold. The R2 of 0.92 in their cross-
sectional regressions with multiple explanatory variables is only modestly larger
than the average R2 of 0.88 in our restricted regressions. This small difference
suggests that other variables offer only limited improvement in explanatory power
over the invariance hypothesis.
We attribute the remaining variation to differences in market frictions resulting

from how lot size and tick size are related to volume, volatility, and stock price.
These market frictions are studied by Harris (1994), Angel (1997), Goldstein and
Kavajecz (2000), and Schultz (2000).
A new perspective on these market frictions results from examining the data

through the lens of the invariance hypothesis. We introduce two new measures that
take into account that trading games run at different speeds in different financial
markets. Effective tick size is defined as the ratio of tick size to price volatility in
business time. Effective lot size is defined as a ratio of lot size to a median bet,
or equivalently to volume in business time. Both measures are closely related to
effective price volatility, defined as price volatility in business time. In addition
to the 88 percent of the variation in print arrival rates and average print sizes
explained by the invariance benchmark, an additional 4.5 percent and 5.5 percent
can be attributed to variations in effective price volatility during the 1993–2000



3

and 2001–14 periods, respectively. It is difficult to further disentangle the effects
of lot size and tick size because the effects go in opposite directions.
The invariance hypotheses of Kyle and Obizhaeva (2016) make predictions about

bets rather than actual trades or prints resulting from shredding bets into smaller
pieces over time and over trading venues via order execution algorithms. Because
there is an important distinction between bets and trades, we do not expect esti-
mates based on prints to precisely match the predictions of the invariance hypoth-
esis for bets. Conceptually, the invariance-implied benchmarks are appropriate
only under assumptions that the ratio of bet size to trade size and the ratio of
intermediate volume to bet volume remain constant across stocks and time. Our
results suggest that order shredding and the degree of intermediation may have in-
creased over time, with bets in more liquid stocks recently generating more trades
and perhaps more intermediation trades per bet than bets in illiquid stocks.
Our results supplement the findings of Kyle and Obizhaeva (2016), who pro-

vide evidence in favor of the invariance hypothesis using a sample of portfolio
transitions. Portfolio transition orders are better suited for testing the invariance
hypothesis, as they can be thought of as good proxies for bets, but they represent
only a small subset of transactions in the U.S. stock market. In contrast, this
study is based on a much broader sample that includes all reported transactions in
the U.S. stock market; the advantage comes at the expense of having to deal with
transaction data affected by order shredding and intermediation.
The remainder of this paper states the implications of the invariance hypothesis,

discusses the design of our empirical tests, and presents our results.

1. Testable Implications of the Invariance
Hypothesis.

An Invariance Hypothesis. We first review the empirical hypothesis of market
microstructure invariance developed in Kyle and Obizhaeva (2016). Market mi-
crostructure invariance is based on the intuition that trading in speculative markets
can be thought of as the same trading game being played out in different markets
at different speeds. This game takes place at a fast speed in active, liquid markets
and at a slow speed in inactive, illiquid markets. Asset managers buy and sell se-
curities by placing bets that represent decisions to acquire a long-term position of
a specific size, distributed approximately independently from other such decisions.
Intermediaries with short-term trading strategies clear markets by taking the other
side of bets.
Suppose bets arrive at an expected rate of γjt bets per day and their size is

Q̃jt shares in asset j and time t. The bet arrival rate γjt measures the speed of
the market. The random variable Q̃jt has a zero mean; positive values represent
buying, and negative values represent selling. Let Pjt denote the share price in
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dollars, and let Vjt denote expected daily volume in shares:

(1) Vjt =
ζjt
2

· γjt · E|Q̃jt|.

In this equation, expected daily volume is equal to the product of the expected
number of bets per day γjt and their average size E|Q̃jt|, adjusted for the volume
multiplier ζjt.
The parameter ζjt in equation (1) measures the short-term intermediation trad-

ing as the ratio of total volume to bet volume. Non-bet intermediation volume
includes trading by market makers, high-frequency traders, and other arbitragers
who intermediate among long-term bets. The parameter ζjt intuitively reflects the
typical length of intermediation chains in the market; the longer the intermediation
chains, the larger the ζjt. Volume is divided by 2 because each unit of volume has
both a buy side and a sell side. If there is no intermediation, then ζjt = 1. For
example, if each bet is intermediated by a single market maker, similar to a New
York Stock Exchange (NYSE) specialist intermediating every bet, then ζjt = 2. If
each bet is intermediated by two market makers, who lay off positions trading with
one another, similar to Nasdaq dealers in the early 1990s, then ζjt = 3. If each
bet goes through the hands of multiple short-term intermediaries before finding its
place in portfolios of long-term traders, then ζ > 3.
Let Wjt denote trading activity, defined as the product of daily returns volatility

σjt and expected daily dollar volume Pjt · Vjt:

(2) Wjt = σjt · Pjt · Vjt.

Trading activity measures aggregate risk transfer taking place in the market during
the day. It can be easily calculated, as there are usually data available for prices,
volume, and volatility. Plugging equation (1) into equation (2) shows that trading
activity may be written in terms of less easily observable characteristics of order
flow, such as bet arrival rates γjt and bet sizes E|Q̃jt|:

(3) Wjt =
ζjt
2

· σjt · Pjt · γjt · E|Q̃jt|.

The invariance hypothesis predicts how these characteristics γjt and Q̃jt vary across
markets with different levels of trading activity Wjt.
Business time is measured by the expected arrival rate of bets γjt, and the dollar

risks transferred by bets per unit of business time are the same across assets and
time. More specifically, the random variable Ĩjt, defined by

(4) Ĩjt :=
Pjt · Q̃jt · σjt

γ
1/2
jt

d
= Ĩ ,

has an invariant probability distribution Ĩ. Here, the risk transferred by a bet per
unit of business time is the product of dollar bet size PjtQ̃jt and returns volatility

per unit of business time σjt · γ
−1/2
jt .
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The invariance hypothesis (4) and equation (3) yield the following testable pre-
dictions concerning how bet arrival rate γjt and bet size Q̃jt vary with trading
activity:

(5) γjt = µγ ·W
2/3
jt ,

(6)
˜|Qjt|

Vjt

d
= µq ·W

−2/3
jt · Ĩ,

where µγ and µq parameters depend on the volume multiplier ζjt and the moments
of |Ĩ|.1 In these equations, the distribution of the random variable Ĩ is the same
across assets and time. In what follows, we make an identifying assumption that
the volume multiplier ζjt is an invariant constant, and therefore µγ does not have
indices j and t. Under this assumption, the equations imply that the scaled bet

arrival rate W
−2/3
jt · γjt and distributions of scaled bet sizes W

2/3
jt · ˜|Qjt|/Vjt—

that is, all of its percentiles—are invariant across markets. For example, Kyle
and Obizhaeva (2016) find that the distribution of logs of scaled bet sizes, 2/3 ·
ln(Wjt) + ln(|Qjt|/Vjt), is close to a normal with log-variance 2.53.
Equations (5) and (6) fully describe the composition of the order flow. Changes

in trading activity come from both changes in bet sizes and changes in bet arrival
rates. Specifically, if ζ and Ĩ are invariant and σjt is constant by assumption, then
a 1 percent increase in trading activity Wjt is associated with an increase by 2/3 of
one percent in the bet arrival rate γjt and an upward shift by 1/3 of one percent of
the entire distribution of unsigned bet sizes Pjt|Q̃jt|. The latter is also equivalent
to a downward shift by 2/3 of one percent in the distribution of unsigned bet sizes
as a fraction of share volume |Q̃jt|/Vjt.
Kyle and Obizhaeva (2016) also discuss an invariance hypothesis related to trans-

action costs. In this paper, we focus only on order flow and leave testing the
implications for market impact and bid-ask spreads for future research.

Invariance Implications for TAQ Print Data. The TAQ dataset reports
transaction prices and share quantities for all trades in stocks listed in the United
States from 1993 to 2014. Each report of a trade execution is called a “print.” We
test implications of the invariance hypothesis using data on TAQ print sizes and
the number of TAQ prints recorded per day.
Testing invariance this way is not straightforward because prints are different

from bets. One bet may generate multiple prints. To minimize transaction costs,
traders often break bets or meta-orders into smaller pieces—as documented in
Keim and Madhavan (1995), among others—and execute them at several venues,
trading with multiple counterparties at multiple prices.

1The specific parameter values are µγ := E
[

ζjt
2

· |Ĩ|
]−2/3

and µq := E
[

ζjt
2

· |Ĩ|
]−1/3

.
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Let Xjt denote the unsigned number of shares in a single print for asset j and at
time t. Let ξjt denote the ratio of the average size of a bet to the average size of a
print, so that ξjt represents the average number of prints per bet. In practice, we
expect tiny orders (for example, for the minimum round-lot size of 100 shares) to
be executed as one print and gigantic orders to be executed as thousands of small
prints or as one print of a gigantic block trade. This multiplier depends on specific
details of order-shredding algorithms used by traders—as modeled by Almgren and
Chriss (2000) and Obizhaeva and Wang (2013)—and may potentially vary across
stocks in a complex and systematic manner that depends on tick size, lot size, and
perhaps other factors.
The distribution of average print sizes X̃jt differs from the distribution of average

bet sizes Q̃jt by a factor ξjt:

(7) X̃jt = ξjt · |Q̃jt|.

Let Njt denote the expected number of prints per day for asset j at time t. Each
bet Q̃jt results on average in ξjt prints and its execution inflates volume by a factor
of ζjt/2 due to induced intermediation volume. The expected number of prints Njt

differs from the expected number of bets γjt by a factor of ξjt · ζjt/2:

(8) Njt = ξjt ·
ζjt
2

· γjt.

It is easy to show that equations (5) and (6) imply the following testable impli-
cations for the number of prints and their sizes:

(9) Njt = µn ·W
αn
jt ,

(10)
|X̃jt|

Vjt

d
= µx ·W

αx
jt · Ĩ ,

where αn = −αx = 2/3 and parameters µn and µx depend on the volume multiplier
ζjt, the order-shredding multiplier ξjt, and moments of |Ĩ|.2

As a benchmark for interpreting our empirical results, we make two identifying
assumptions. First, assume that there exists an invariant order-shredding multi-
plier ξ such that ξjt = ξ for any asset j and time t. Second, assume that there
exists an invariant volume multiplier ζ such that ζjt = ζ for any asset j and time
t. For simplicity of exposition, results may be interpreted under the identifying
assumptions that ξ = 1 and ζ = 2. This case corresponds to the hypothesis that
each bet is executed as one print against a single intermediary, which makes µn

2Specific parameter values are µn := (ξjt · ζjt/2) · E
[

ζjt
2

· |Ĩ|
]−2/3

and µx := ξjt ·

E
[

ζjt
2

· |Ĩ|
]−1/3

.
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and µx in equations (9) and (10) constant across markets with no indices j and t.
It is also straightforward to write these predictions in the form of regressions.
In actual markets, ξ may certainly deviate from ξ = 1 and ζ may also deviate from

ζ = 2. The order-shredding algorithms that determine ξ may potentially depend on
order sizes and tick size. The amount of intermediation may potentially fluctuate
with volatility and trading volume. The effect of relaxing these assumptions is
discussed later.

Alternative Hypotheses. We also consider two alternative benchmark hy-
potheses that make different predictions about the implied exponents on trading
activity in equations (9) and (10).
The first alternative hypothesis, invariance of print frequency, asserts that the

expected number of prints is the same for all stocks, implying αn = −αx = 0 in
equations (9) and (10). Of course, this hypothesis is empirically unrealistic; it
is well known that actively traded stocks have more prints than inactively traded
stocks. This benchmark is potentially interesting because the illiquidity measure of
Amihud (2002) is based on the assumption that order imbalances are proportional
to trading volume. This proportionality only holds if the number of bets is constant
across markets.
The second alternative hypothesis, invariance of print sizes, asserts that the

number of prints is proportional to trading activity, implying that αn = −αx = 1
in equations (9) and (10). Related models are discussed in Tauchen and Pitts
(1983), Harris (1987), Jones, Kaul and Lipson (1994), Hasbrouck (1999) and Ané
and Geman (2000), among others.
Although extreme, these two hypotheses provide convenient benchmarks for

thinking about the relationship between invariance and the existing literature on
trade size and trade frequency.

Institutional Details Related to the Microstructure of TAQ Data. Al-
though we make the identifying assumptions that the order-shredding multiplier
is invariant (ξit = ξ) and the volume multiplier is invariant (ζit = ζ), we do not
expect these assumptions to perfectly describe prints in the U.S. equity market.
Instead, these assumptions generate benchmarks that can be used to evaluate the
economic significance of deviations resulting from changes in various institutional
arrangements related to tick size, lot size, and intermediation.
We next discuss how changing institutional arrangements may have affected the

order-shredding multiplier and volume multiplier over the 1993–2014 sample pe-
riod.
Progress in computing technology and regulatory changes have significantly af-

fected trading patterns. As a result, the degree of order shredding varies with order
size, ticker symbol, and time.
At the NYSE in the early 1990s, traders typically executed large bets as block

trades in the “upstairs” market, in which case at least one side of a reported block
trade might correspond precisely to a bet. Prior to the changes in order handling
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rules in 1997, Nasdaq dealers often took the other side of entire bets because
customers themselves could not place their own orders into a central limit order
book and Nasdaq dealers were unhappy if customers “bagged” them by dumping
many blocks into the market one after another. As the use of the NYSE’s Direct
Order Transfer (DOT) system became more commonly used by professional traders
in the 1990s, the use of electronic order submission strategies and order shredding
increased. For Nasdaq stocks, this practice accelerated after new order handling
rules were implemented in the late 1990s. Bets were shredded more in the second
half of our sample (2001–14) than in the second half (1993–2000).
In 2001, the tick size was cut from 6.25 cents (1/16 of a dollar) to one cent. As a

result, quoted bid-ask spreads decreased, and fewer shares were shown at the best
bid and best offer. Traders used electronic interfaces to place scaled limit orders
of small size at adjacent price points separated by one cent, and this led to smaller
print sizes for bets of the same size.
Regulation National Market System (NMS), introduced in 2005, further encour-

aged market fragmentation and competition among multiple trading venues based
on speed and efficiency of electronic interfaces, which led to significant order shred-
ding across both time and trading venues. In the past decade, continued improve-
ments in computer technology have widened the use of electronic order handling
systems and have made it practical to shred bets for many thousands of shares
into tiny pieces of 100 shares or fewer.
To summarize, we expect prints to more closely resemble bets in the earlier part

of our sample but to become less representative of bets more recently. We also
expect that large bets may result in more prints than small bets.
Several institutional details associated with trade reporting may have further

influenced order shredding:

• Although traders may have increasingly shredded orders into “odd lots” of
fewer than 100 shares, some traders probably resist shredding orders into
numerous odd lots.

• Under NYSE Rule 411(b), broker-dealer member firms have an obligation
to consolidate a customer’s odd-lot orders if the share amount of such or-
ders exceeds 100 shares. Other exchanges have similar provisions and have
brought enforcement cases against member firms that did not comply with
those rules.

• During the sample period, odd-lot transactions were executed through a sep-
arate odd-lot trading system, and these small trades were not reported for
dissemination on the consolidated tape, as discussed by O’Hara, Yao and Ye
(2012).

• “Tape shredding” affects trading patterns. As suggested by Caglio and May-
hew (2012), large orders may be broken up into more trades than small
orders to generate additional revenue from sales of consolidated trade and
quote data.
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• There is some asymmetry in the treatment of buy and sell orders. Large bets
are likely to be matched against multiple bets of smaller sizes, also resulting
in more TAQ prints for large bets than for smaller ones. According to the
Consolidated Tape Association (CTA), the exchanges are required to collect
and report last sale data (CTA Plan (1992) Section VII). At the NYSE, for
example, it is the duty of the member representing the seller to ensure that
a trade has been reported. Because the rules required reporting of “sales”
and not “trades,” order splitting may be intrinsically more important for
intended buy orders than intended sell orders.

The volume multiplier may also vary with intended order size, ticker symbol,
and time. In the beginning of our sample, for example, the volume multiplier
was probably larger for orders traded on Nasdaq than for orders traded on the
NYSE. Atkyn and Dyl (1997) claim that because Nasdaq dealers were either buyers
or sellers in almost every trade at the Nasdaq, the Nasdaq trading volume was
inflated by at least a factor of 2 relative to the number of trades actually occurring
between end investors. Over time, these patterns may have changed, as dealers’
participation rate in trade facilitation has decreased and trades from other trading
systems have begun to be reported on the consolidated tape through the Nasdaq
system.
Technological developments have most likely increased the amount of intermedi-

ation in securities markets in the second half of the sample. The number of TAQ
prints has soared because of order shredding and intermediation by high-frequency
traders, who now account for a significant share of volume as described in Chor-
dia, Roll and Subrahmanyam (2011) and Hendershott, Jones and Subrahmanyam
(2011). For example, Kirilenko et al. (2015) find that high-frequency traders ac-
count for more than 30 percent of stock index futures trading volume but hold
their inventories for only a few minutes.
Another important market friction is the tick size. The tick size was reduced

from 12.5 cents (1/8 of a dollar) to 6.25 cents (1/16 of a dollar) in 1997 and
to one cent in 2001. Changes in tick size affect trading decisions by changing
incentives to provide liquidity and shred orders, as discussed in Harris (1994).
When volatility is high and stock price is high, the tick size is small relative to
a typical day’s trading range, and thus there are better opportunities for order
shredding and making intermediation trades. Although firms can implement stocks
splits to adjust percentage tick sizes, these adjustments occur infrequently and with
long time lags, as noted in Angel (1997).
As we discuss later, the invariance hypothesis suggests that it is necessary to take

into account differences in the speed of trading games across markets to properly
analyze the effects of market frictions.
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2. Data.

2.1. Data Description

The NYSE TAQ database, which is accessed through Wharton Research Data
Services (WRDS), contains trades and quotes reported on the consolidated tape by
each participant in the Consolidated Tape Association (CTA) for all stocks listed
on all exchanges during the entire 1993–2014 sample period. Because we do not
attempt to sign trades as buys or sells based on whether they are executed at the
bid or ask price, our analysis employs only data on trades, not quotes. For each
trade, the data record the time, exchange, ticker symbol, number of shares traded,
execution price, trade condition, and other parameters. The data set contains
about 50 billion records with the number of data entries exponentially increasing
over time from over 5 million records per month in 1993 to over 400 million records
per month in 2014.
We transform the very large raw data files into a smaller dataset convenient for

subsequent analysis. First, bad records are removed using standard filters. The
TAQ database provides information about the quality of recorded trades using
condition and correction codes. We eliminate prints with condition codes 8, 9, A,
C, D, G, L, N , O, R, X , Z or with correction codes greater than 1. The correction
code 8 indicates, for example, that the trade was canceled.
The remaining prints are aggregated in a specific way to reduce the size of the

data set while preserving information about the monthly distributions of trade
sizes. For each ticker symbol and each day, each print is placed into one of 55 bins
constructed based on the number of shares traded. Letting X denote the size of
a print in shares, “even” bins correspond to prints of the following exact “even”
sizes of X = 100, X = 200, X = 300, X = 400, X = 500, X = 1, 000, X = 2, 000,
X = 3, 000, X = 4, 000, X = 5, 000, X = 10, 000, X = 15, 000, X = 20, 000,
X = 25, 000, X = 30, 000, X = 40, 000, X = 50, 000, X = 60, 000, X = 70, 000,
X = 75, 000, X = 80, 000,X = 90, 000, X = 100, 000,X = 200, 000, X = 300, 000,
X = 400, 000, and X = 500, 000 shares. “Odd” bins correspond to prints with
trade sizes X between adjacent even bins—that is, X < 100, 100 < X < 200,
. . ., 400, 000 < X < 500, 000, and 500, 000 < X . Note that the size of bins
grows approximately at a log-rate. Prints with even sizes are considered separately
because trades tend to cluster in round-lot sizes.
The result is a much smaller dataset storing the number of trades by day, ticker

symbol, and bin. To simplify the subsequent analysis, we make the approximate
assumption that the assumed average print size in a bin (in shares) is equal to
a midpoint of that bin. If print size is larger than 500,000 shares, we assign
it to the 55th bin and assume its size to be 1,000,000 shares. This simplified
aggregation makes it possible to capture the most important properties of print-
size distributions while implementing our analysis efficiently. The convenience
comes, however, at the expense of introducing some additional noise, which may
slightly affect results.
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For each day and each ticker symbol, the small database also stores the open
price; the close price; the number of trades per day; the dollar volume per day; the
share volume per day; the close-to-close return; and the volatility, defined as the
daily standard deviation of returns over the past 20 trading days from the TAQ
data.
For each stock, each bin, and each month, the number of prints is summed over

all the days in the month to calculate the frequency of trade sizes. Later we
average the frequency distributions of scaled print sizes to construct an empirical
distribution of print sizes (in shares) for each stock and each month in the sample.
Aggregation by month makes it possible to build better empirical approximations
to theoretical distributions for the many inactively-traded stocks with few daily
prints.
In addition to calculating the average number of prints per day, we calculate

several statistics describing the possibly complicated shape of the distribution of
print sizes. We consider the average print size and various percentiles of trade-
size distributions. We refer to these percentiles as trade-weighted percentiles. For
example, the xth trade-weighted percentile corresponds to a print size such that
prints with sizes below this threshold constitute x percent of all prints for a given
stock in a given month. Note that trade-weighted percentiles effectively put the
same weight onto prints of different sizes, which tends to emphasize small trades.
For example, if there are 99 prints of 100-share lots and one print of 100,000 shares,
then the distribution of print sizes is mostly concentrated at a 100-share level. All
trade-weighted percentiles below the 99th percentile are equal to 100 shares. The
total trading volume and average print size, however, are largely determined by
one big print of 100,000 shares.
Because large trades are economically more important than small trades, we also

investigate the right tail of print-size distributions in more detail by examining
volume-weighted percentiles based on trades’ contributions to total volume. The
contribution to the total volume by trades from a given print-size bin is calculated
based on its midpoint. The volume-weighted distributions give the percentage of
trading volume resulting from prints of different sizes. The xth volume-weighted
percentile corresponds to a trade size such that trades with sizes below this thresh-
old constitute x percent of total trading volume. In the example in the previous
paragraph, percentiles 1–9 are 100 shares and percentiles 10–99 are 100,000 shares.
We report empirical results for both trade- and volume-weighted distributions.

Of course, if we know a trade-weighted distribution of print sizes, then we can
easily calculate a volume-weighted distribution as well. For the purpose of com-
paring trade-weighted and volume-weighted distributions, the log-normal is a use-
ful benchmark. It is a straightforward exercise (involving a change in probability
measure) to show that that if the log of trade-weighted print size is distributed as
N(µ, σ2), then the log of volume-weighted print size is distributed as N(µ+σ2, σ2).
The only difference between the two distributions is the shift in mean; the log-
variance remains the same.
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To acquire share and exchange codes for stocks in our sample, the monthly data
are matched with the Center for Research and Security Prices (CRSP) data, which
is accessed through WRDS. Only common stocks listed on the NYSE, American
Stock Exchange (AMEX), and Nasdaq from 1993 through 2014 are included in
our study. Stocks that had splits or reverse splits in a given month are eliminated
from the sample for that month. For each stock and each month, the data are
also augmented by adding average daily volume (in dollars and in shares), average
price, and the historical volatility. Our final sample includes 1,383,857 stock-month
observations. For each of the 263 months between February 1993 and December
2014, there are, on average, observations for about 5,262 stocks.

2.2. Descriptive Statistics

Table 1 describes the data. Panel A reports statistics for the 1993–2000 sub-
period. Panel B reports statistics for the 2001–14 subperiod. These statistics
are reported separately because the properties of the data changed substantially
following decimalization in 2001. Statistics are calculated for all securities in aggre-
gate as well as separately for 10 groups of stocks sorted by average dollar volume.
Instead of dividing the securities into 10 deciles with the same number of securi-
ties, volume break points are set at the 30th, 50th, 60th, 70th, 75th, 80th, 85th,
90th, and 95th percentiles of dollar volume for the universe of stocks listed on the
NYSE with CRSP share codes of 10 and 11. Group 1 contains stocks in the bot-
tom 30th percentile. Group 10 contains stocks in the top 5th percentile. Group 10
approximately corresponds to the universe of S&P 100 stocks. The top five groups
approximately cover the universe of S&P 500 stocks. Smaller percentiles for the
more active stocks make it possible to focus on the stocks that are the most eco-
nomically important. For each month, the thresholds are recalculated and stocks
are reshuffled across groups.

Summary Statistics before 2001. Panel A of table 1 reports statistical prop-
erties of securities and prints in the sample before 2001. For the entire sample of
stocks, the average trading volume is $6.186 million per day, ranging from $0.15
million for the lowest volume decile to $176.99 million for the highest volume
decile. The average volatility for the entire sample is equal 4 percent per day. The
volatility tends to be higher for smaller stocks. The volatility is 4.5 percent for
the lowest-volume decile and 2.9 percent for the highest-volume group. Thus, the
measure of trading activity, equal to the product of dollar volume and volatility,
increases from 0.15 · 0.045 to 176.99 · 0.029—that is, by a factor of 760 from the
lowest- to the highest-volume group.
Before 2001, the average print size is equal to $23, 629, ranging from $11, 441

for low-volume stocks to $89, 338 for high-volume stocks. This corresponds to a
decrease from 7.6 percent to 0.05 percent of daily volume from the lowest- to the
highest-volume group. The median is much lower than the mean, as large prints
make the distribution of print sizes positively skewed. The trade-weighted median
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ranges from $5, 682 for low-volume stocks to $28, 567 for high-volume stocks, corre-
sponding to a decrease from 3.8 percent to 0.016 percent of daily volume. Note that
the invariance hypothesis predicts that the shape of the distributions of trade sizes
as a fraction of daily volume must be similar across stocks, with the only difference
that their log-means are shifted downward by two-thirds of the increase in a log-
trading activity (equation (10)). Because trading activity increases by a factor of
760 from the lowest to the highest deciles, a back-of-the-envelope calculation sug-
gests that the distributions of trade sizes as a fraction of volume should be shifted
downward by a factor of 7602/3 ≈ 80. This estimate is less than the observed
differences in means of 7.6%/0.05% ≈ 150 and medians of 3.8%/0.016% ≈ 240
between the highest- and lowest-volume groups.
In the 1993–2001 subperiod, the average number of prints recorded per day is 142

for the entire sample, increasing monotonically from 17 to 2, 830 from the first to
the tenth volume group. The number of prints increases by a factor of 2, 830/17 ≈
166. The invariance hypothesis predicts that the expected number of prints should
increase by two-thirds of the increase in trading activity (equation (9))—that is,
7602/3 ≈ 80. This back-of-the envelope calculation suggests that the number of
prints increases more than predicted, potentially reflecting a more intensive order
shredding in high-volume groups, but further investigation is certainly warranted.
Some print sizes are unusually common in the TAQ data. Before 2001, even-

sized trades account for over 61 percent of volume traded and 80 percent of trades
executed. The fraction of even-prints is stable across volume groups. The preva-
lence of these prints validates our choice of bins with even-share bins considered
separately. About 16 percent of all transactions and 2 percent of volume traded are
executed in 100-share prints. These trades represent 15 percent of transactions for
low-volume stocks and 25 percent of transactions for high-volume stocks. There is
also a significant number of 1,000-share prints. The large fraction of 1,000-share
prints for low-volume stocks relative to high-volume stocks—18 percent versus 14
percent—probably reflects the regulatory rule according to which the Nasdaq mar-
ket makers had to post quotes for at least 1,000 shares prior to 1997.

Summary Statistics after 2001. Panel B of table 1 describes statistical prop-
erties of the sample after 2001. Daily volume more than tripled from $6.18 million
before 2001 to over $24.4 million after 2001. Volatility decreased from 4 to 3.1
percent per day. These numbers imply that trading activity doubled from the
1993–2001 to 2001–14 subperiods. The average number of prints increased by a
factor of 21 from 143 to 3, 013, and the average print size decreased by more than
a factor of 3 from $23, 629 to $6, 424. Back-of-the-envelope calculations implied by
the invariance hypothesis suggest that the changes in print arrival rates and print
sizes cannot be explained only by differences in levels of trading activity between
the two subperiods but must be attributed to other factors. One of these factors is
the order shredding that became increasingly prevalent over time, especially after
the reduction in tick size to one cent on January 29, 2001, for NYSE stocks and
on April 9, 2001, for Nasdaq stocks. During the 2001–14 subperiod, for example,
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100-share trades account for 57 percent of all transactions and 25 percent of vol-
ume traded, with these numbers reaching their peaks at 73 percent and 41 percent,
respectively, in 2013. Trades of 1,000 shares became less important in this half of
the sample. Evident order shredding will significantly affect tests of the invariance
hypothesis using TAQ data after 2001.

Frequency and Sizes of TAQ Prints during the 1993–2014 Period. For
the period from February 1993 to December 2014, figure 1 plots the 263 monthly
values of the scaled mean of the number of prints per month, calculated as N̄m,i ·

W
−2/3
i , where N̄m,i is the number of prints per month and Wi is trading activity.

Figure 1 also plots the averages of the 20th, 50th, and 80th percentiles of the
trade- and volume-weighted distributions of logs of scaled print sizes, calculated

as ln(|X̃i|/Vi ·W
2/3
i ), where |X̃i| is the print size. To facilitate comparison across

stocks and across time, all variables are scaled by W
−2/3
i and W

2/3
i as implied

by the invariance hypothesis. The left panel shows the scaled variables averaged
across low-volume stocks (group 1). The right panel shows the scaled variables
averaged across high-volume stocks (groups 9 and 10).
Trading patterns differ significantly across the 1993–2000 and 2001–14 subpe-

riods. For high-volume stocks, the percentiles of print sizes and print rates do
not change much prior to the beginning of decimalization in 2001. Afterward,
percentiles of print size decrease steadily, and the average number of prints corre-
spondingly increases. For low-volume stocks, similar changes started to occur even
before 2001. Because most low-volume stocks are Nasdaq stocks, the pre-2001 de-
crease in print sizes and increase in print arrival rates may be explained by the
reduction in tick size from 12.5 cents (1/8 of a dollar) to 6.25cents (1/16 of a dol-
lar) announced at Nasdaq in 1997. With the exception of the largest print sizes in
high-volume stocks, the downward trend in scaled print sizes and the upward trend
in scaled number of prints seems to end at around 2007, and all variables stabilize
at some constant levels. A similar pattern can be found in figures of Hendershott,
Jones and Subrahmanyam (2011). In the following sections, we will examine these
patterns in more detail.

3. Empirical Results

The invariance hypothesis and two alternative models make distinctively different
predictions—all three nested in equations (9) and (10)—concerning the differences
in the distributions of print sizes and their frequencies across stocks and time. We
run our tests based on both the number of prints and distributions of their sizes to
determine which of the models provides a more reasonable description of the data.

3.1. Tests Based on Print Frequency

Comparison of Three Models. According to each model, the scaled number
of prints W−a

i · N̄i per day is constant across stocks. The three models differ only
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in the exponent a used to normalize the average number of prints. The invariance
hypothesis implies a = 2/3, the model of invariant print size implies a = 0, and
the model of invariant print frequency implies a = 1.
Figure 2 has three columns and four rows. Each of the three columns contains

plots of the log of the average number of prints per day N̄ against the log of trading
activity W , where the average number of prints is scaled according to each of the
three models, respectively. The four rows present results for April 1993 (NYSE and
Nasdaq), April 2001, and April 2014. Results are presented for different periods
because trading has changed dramatically over time. Also, trading patterns of
the NYSE- and Nasdaq-listed stocks differed historically because of differences in
regulatory rules across exchanges during the earlier part of the sample, so our
results are presented separately for the NYSE- and Nasdaq-listed stocks in April
1993. We choose the month of April to avoid seasonality, as trades tend to cluster
much less before the end of the calendar quarter, as shown by Moulton (2005).
Each observation corresponds to the average number of prints per day for a given
stock in a given month. There are about 6,000 observations on each subplot. If the
model is correctly specified, the points are expected to line up along a horizontal
line.
In subplots for the invariance hypothesis, observations are scattered around hori-

zontal lines for each of the three years. The invariance hypothesis explains the data
very well, especially for the NYSE stocks traded in April 1993. The levels of the
horizontal lines move up from the top to bottom figures, showing that the average
number of prints has increased over time. For April 1993, the average number of
prints is slightly higher for the NYSE stocks than for the Nasdaq stocks. Some
Nasdaq stocks with low trading activity have outliers with a very small number
of prints. A few of the most illiquid Nasdaq stocks also have outliers with a very
high number of prints in April 1993.
In subplots for the model of invariant print frequency, observations are lined up

across a line with a positive slope. The model attributes all differences in trading
activity entirely to differences in print sizes. Because changes in trading activity
are also partially explained by changes in print arrival rates, the model tends to
underestimate the number of prints for high-volume stocks and overestimate it for
low-volume stocks.
In subplots for the model of invariant print size, observations are lined up along

a line with a negative slope. The model attributes all differences in trading activity
entirely to differences in trading rates. Because some part of these differences is
actually explained by differences in print sizes, the model tends to overestimate
the number of prints for high-volume stocks and underestimate it for low-volume
stocks.

OLS Estimates of the Number of TAQ Prints. The distinctly different



16

predictions of the models can be nested into a simple linear regression

(11) ln
[

N̄i

]

= µn + an · ln

[

Wi

W∗

]

+ ǫ̃.

The equation relates the log of the mean number of prints N̄i per month for stock
i to the level of trading activity Wi. The invariance hypothesis predicts an = 2/3,
the model of invariant print frequency predicts an = 0, and the model of invariant
print size predicts an = 1. For each month, we estimate the parameters µn and an
using an OLS regression, in which there is one observation per stock per month.
The constant term µn is scaled to represent the log of the expected number of
prints for a benchmark stock with trading activity W∗. The scaling constant W∗ =
(40)(106)(0.02) measures trading activity for an arbitrary benchmark stock with
a price of $40 per share, trading volume of 1 million shares per day, and daily
volatility of 2 percent per day.
Table 2 presents the results of the regression (11) pooled over time. The six

columns show the results for all stocks, the subsets of NYSE-/AMEX-listed stocks,
and the subset of Nasdaq-listed stocks, each shown during the 1993–2000 and 2001–
14 subperiods. The table reports Fama-MacBeth estimates of the coefficients. To
account for trends, Newey-West standard errors are calculated with three lags
relative to a linear time trend estimated by OLS regressions from the estimated
coefficients µ̂n,T and ân,T for each month. The specific equations from which the
linear time trend is estimated are µ̂n,T = µn,0+µn,t·(T−T̄ )/12+ǫ̃T and ân,T = an,0+
an,t · (T − T̄ )/12+ ǫ̃T , where T is the number of months from the beginning of the
subsample and T̄ is the mean month in the subsample. For the subperiod February
1993 to December 2000, T = 1 for February 1993 and T = 95 for December 2000—
that is, T̄ = 48. For the subperiod January 2001 to December 2014, T = 1 for
January 2001 and T = 168 for December 2014—that is, T̄ = 84.5.
For the 1993–2000 subperiod, the point estimate of an,0 is equal to 0.666, sta-

tistically indistinguishable from the predicted value of 2/3. For the subperiod
2001–2014, the point estimate of an,0 is equal to 0.79. The standard errors of these
estimates are 0.002 and 0.005, respectively. Note also that the alternative models
predicting an,0 = 0 and aγ,0 = 1 are clearly rejected. For the period 1993–2000, the
estimated time trend coefficient aN,t of −0.001 per year is statistically insignificant.
The estimates an,0 of 0.626 and 0.76 for NYSE stocks during the two sub-periods
1993–2000 and 2001–2014 are smaller than the corresponding estimates an,0 of
0.679 and 0.816 for Nasdaq stocks.
For the 2001–14 period, the estimated time trend coefficient an,t of 0.007 per

year is statistically significant; it approximately corresponds to the increase in an
by 0.11, from about 0.66 to about 0.77, over the 13-year period.
The point estimate of intercept µn,0 is equal to 6.147 for the 1993–2000 subperiod

and 8.513 for the 2001–14 subperiod, indicating an increase in the average number
of prints over time. The constant terms µn,t of 0.093 and 0.148 for those subperiods
also show statistically significant upward time trends, corresponding to growth
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rates in the number of prints per year of about 9.3 percent and 14.8 percent for
the two subperiods, respectively.
Figure 3 shows the time series of coefficients from the monthly regressions be-

tween February 1993 and December 2014. Panel A presents the time series of 263
month-by-month regression coefficients an from monthly regression equations (11).
The superimposed horizontal line represents an = 2/3, the value predicted by the
invariance hypothesis. The figure shows that there are two distinctive sub-periods,
1993–2000 and 2001–14. Both the constant term µn and the coefficient an change
over time and may have time trends that are different over the 1993–2000 and
2001–14 subperiods. Over the 1993–2000 subperiod, all estimated coefficients an
remained virtually constant. The average value of 0.666 is strikingly close to the
predicted values of 2/3. Over the 2001 − −14 subperiod, the estimates clearly
begin to drift up from the values implied by the invariance hypothesis, increasing
from about 0.65 to about 0.77 by the end of 2014.
The combined results for both subperiods are consistent with the following in-

terpretation: Over the 1993–2000 subperiod, the invariance hypothesis held be-
cause there was a reasonably close correspondence between TAQ prints and bets.
Over the 2001–14 subperiod, the invariance relationship broke down because order
shredding and intermediation have increased over time and affected high-volume
stocks more than low-volume stocks after decimalization in 2001. We discuss these
patterns further in section 3.3.

3.2. Tests Based on TAQ Print Sizes

Comparison of Three Models. Next, we examine the trade- and volume-
weighted distributions of print sizes scaled for differences in trading activity as
suggested by the three models. The three models predict that the distributions
of W a · |X̃|/V are constant across stocks and time, but the models make different
assumptions about the exponent a. The invariance model predicts a = 2/3, the
model of invariant print frequency predicts a = 0, and the model of invariant print
size predicts a = 1.
To approximate the distribution, we calculate print size |X| based on the mid-

point of a print-size bin where it was placed. For each month and for each volume
group, the empirical stock-level distributions of scaled print sizes are combined by
averaging across stocks in each volume group the frequency distributions of the
number of prints in each bin. The results are plotted in figures 4 and 5. For
illustrative purposes, only results for April 1993 are presented, but the data for
the entire 1993–2014 period are examined more closely below.
Figure 4 shows empirical distributions of logs of scaled print sizes for the NYSE

stocks. The figure has three rows and six columns. The three rows contain plots for
low-volume stocks in volume group 1, medium-volume stocks in volume groups 2
through 8, and high-volume stocks in volume group 9- 10, respectively. The first
three columns contain plots of the trade-weighted distributions, with the density
of logs of scaled print sizes on the vertical axis. The second three columns contain
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plots of the volume-weighted distributions, with the volume contribution of these
trades on the vertical axis. In each of the three columns, print sizes are scaled
according to the three models. If one of the three models is correct, then the three
distributions in the column corresponding to that model should be the same across
rows.
To make it easier to interpret results, we superimpose the bell-shaped densities

of a normal distribution with the common means and variances equal to the means
and variances of trade- and volume-weighted distributions of scaled print sizes
based on the entire sample. As previously discussed, if trade-weighted distributions
are log-normally distributed, then volume-weighted distributions are log-normally
distributed as well. If scaled sizes are distributed as a log-normal, then the three
plots in each column of plots are expected to coincide with the superimposed
common normal density.
The first column presents the three trade-weighted distributions implied by the

invariance hypothesis; they have similar means, variance, and supports. The shapes
of empirical distributions bear some resemblance to the superimposed normal den-
sity, but the fit is by no means exact. The low-volume group matches the super-
imposed normal better than the medium- and high-volume groups. The fourth
column presents the volume-weighted distributions implied by the invariance hy-
pothesis; they are even more similar to the superimposed common normal density.
Thus, the invariance hypothesis explains a substantial part of variation in the dis-
tribution of print sizes, especially in the distribution of economically important
large trades. The print sizes seem to be distributed similarly to a log-normal; Kyle
and Obizhaeva (2016) find that the distribution of portfolio-transition orders is
close to a log-normal as well.
For the model of invariant print frequency, the trade-weighted densities are in

the second column and the volume-based densities are in the fifth column; they
are much less stable across volume groups. In both columns, the distributions shift
to the left as trading volume increases, which suggests that the first alternative
model understates print sizes for high-volume stocks and overestimates them for
low-volume stocks. The model fails to account for the fact that some variation in
trading activity is explained by variation in the number of prints.
For the model of invariant print size, the trade-weighted densities are in the third

column and the volume-based densities are in the sixth column; they are clearly un-
stable across volume groups as well. In both columns, the distributions shift to the
right as trading volume increases. The second alternative model overstates print
sizes for high-volume stocks and underestimates them for low-volume stocks. The
alternative models clearly provide worse explanations for the observed variations
in print sizes than the invariance hypothesis.
Figure 5 shows our results for the sample of the Nasdaq stocks. Similar to the

NYSE stocks, the distributions of print sizes are more stable across volume groups
when print sizes are scaled according to the invariance hypothesis. Compared
with the NYSE distributions, the Nasdaq distributions are less smooth and have
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more spikes, especially the trade-based densities. We attribute these patterns to
a regulatory rule that required Nasdaq dealers to quote prices for at least 1,000
shares, leading to a disproportionably large number of 1,000-share Nasdaq trades
recorded on the consolidated tape before 1997.

Implications for Log-Normal Distributions. As previously discussed, if the
log of trade-weighted scaled print sizes is distributed as N(µ, σ2), then the log of
volume-weighted scaled print sizes is distributed as N(µ+ σ2, σ2). It is interesting
to examine how close the log-means and log-variances of the distributions super-
imposed in figures 4 and 5 for the invariance hypothesis come to satisfying this
constraint.
For NYSE stocks, the constraint implies that the volume-weighted mean of 0.97

should be the same as the sum of the trade-weighted mean of −1.15 and its variance
of 1.90. As −1.15 + 1.90 = 0.75 6= 0.97, we see that the constraint fails to hold by
a margin of only about 25 percent. The log-variance of 3.04 for the volume-based
distribution is much larger than the log-variance of 1.90 for the trade-weighted
distribution. This discrepancy is inconsistent with log-normality, which implies
that these log-variances should be the same.
For Nasdaq stocks, the volume-weighted mean of 1.2 should be the same as the

sum of the trade-weighted mean of−0.19 and its variance of 1.93. As−0.19+1.93 =
1.72 6= 1.2, we see that this constraint fails to hold by a margin of about 30
percent. The log-variance of 1.98 for the volume-based distribution is similar to
the log-variance of 1.93 for the trade-weighted distribution, as consistent with the
predictions of log-normality. Because these moment restrictions are not perfectly
satisfied in the data, the hypothesis of log-normality can be valid only as a very
rough approximation at best. Deviations from log-normality include clustering of
trades in even-lot sizes (especially prints of 1,000 shares on Nasdaq), censoring and
rounding of odd lots, clustering of 100-share trades, and the possibility that very
large trades follow a fatter-tailed power-law distribution rather than a log-normal.

OLS Regression Estimates of TAQ Print Sizes, February 1993 to De-

cember 2014. We test implications of the invariance hypothesis for print sizes
using OLS regressions in which the left-side variable is either a mean or a per-
centile of either the trade- or volume-weighted distributions of logs of print sizes.
For each stock in a given month, the empirical trade- and volume-weighted distri-
butions of logs of print sizes are constructed. Letting f(.) denote a functional that
corresponds to either the mean or the pth percentiles (20th, 50th, 80th) of these
distributions, these variables are regressed on logs of trading activity:

(12) f

(

ln

[

X̃i

Vi

])

= µx + ax · ln

[

Wi

W∗

]

+ ǫ̃i.

There is a clear connection between equations (11) and (12). The expected
trading volume is equal to the product of the expected number of prints and ex-
pected print size, V = N̄ · E{X̃}, implying that the left side of equation (11)
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is log N̄ = − log(E{X̃}/V ). Thus, the left-hand side variable in equation (12)
is similar to reversing the sign on the left-hand-side variable in the regression
equation (11). Note that the concavity of the log function implies by Jensen’s
inequality that the log of the expectation is less than the expectation of the
log: log(E{X̃/V }) < E{log(X̃/V )}. For example, if X̃i/Vi were distributed log-
normally with the same variance across stocks, then the coefficient estimates for
aγ and ax would be the same in absolute value but opposite in sign in all of the
regressions in equations (12) and (11), but the constant terms µγ and µx would
be different. In our data (as we show below), X̃i/Vi deviates from a log-normal
distribution sufficiently to make the coefficients aγ and ax vary across regression
specifications.
Figure 3 shows the time series of coefficients of the monthly regressions from

February 1993 to December 2014. There are the time series of 263 month-by-
month regression coefficients ax from regression equation (12) for the 20th, 50th,
and 80th percentiles of print sizes over the period 1993–2014. Panel B of fig-
ure 3 presents results for trade-weighted distributions. Panel C presents results for
volume-weighted distributions. Superimposed horizontal lines represent the level
of negative 2/3, the benchmark predicted by the invariance hypothesis.
Again, the figure shows that there are two distinct subperiods. Over the 1993–

2000, subperiod all estimated coefficients remained virtually constant. The esti-
mates of ax are slightly lower than the predicted value of −2/3 for the 20th, 50th,
and 80th percentiles of trade-weighted distributions; they fluctuate between −0.70
and −0.82, implying that small print sizes as a fraction of volume decrease faster
with trading activity than predicted by the invariance hypothesis. For the 50th
and 80th percentiles of volume-weighted distributions, the estimates of ax fluctuate
between −0.45 and −0.70, somewhat higher than predicted by the invariance hy-
pothesis, and all estimates for the 20th volume-weighted percentiles are very close
to negative 2/3.
Over the subperiod 2001–2014, the estimates begin to drift away from their

initial levels. For the volume-weighted percentiles, the estimates of ax decrease
from about −0.45 to −0.82 for the 80th percentile, from about −0.54 to −0.89
for the 50th percentile, and from −0.645 to −0.75 for the 20th percentile. For the
trade-weighted percentiles, the estimates for the 20th and 50th percentiles do not
exhibit any definite patterns, but the estimates for the 80th percentile decrease
from about −0.71 to −0.77. Overall, changes in the large print sizes (right tails)
are more significant than changes in the small print sizes (left tails).
Table 3 reports the estimates from regressions in equation (12) pooled over the

1993–2000 period. The first four columns show estimates for the means and per-
centiles of the trade-weighted distributions. The last four columns show estimates
for the means and percentiles of the volume-weighted distributions. Because the
monthly estimates of µ̂x,T and âx,T for each month T are changing over time, we
add a linear time trend. The table reports Fama-MacBeth estimates of the coef-
ficients, with Newey-West standard errors calculated with three lags relative to a
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linear time trend estimated by OLS regressions from the estimated coefficients µ̂x,T

and âx,T for each month. As before, the equations estimated for the time trend
are µ̂x,T = µx,0 + µx,t · (T − T̄ )/12 + ǫ̃T and âx,T = ax,0 + ax,t · (T − T̄ )/12 + ǫ̃T ,
where T is the number of months from the beginning of the subsample and T̄ is
the median month in the subsample.
For the trade-weighted distributions, the estimate of ax,0 is equal to −0.741 for

the means. This estimate is larger in absolute value by 0.075 than the estimate of
0.666 for the number of prints in table 2. For the trade-weighted percentiles, the
estimated coefficients range from −0.781 for the 20th percentile to −0.725 for the
80th percentile. All of these estimates are larger in absolute value than the value of
negative 2/3 predicted by the invariance hypothesis, which implies that print sizes
as a faction of volume tend to decrease with trading activity faster than implied
by the theory. For the volume-weighted distributions, the estimated coefficient
ax,0 is equal to −0.56 for the means; the estimates range from −0.661 for the 20th
percentile to −0.481 for the 80th percentile. Across means and percentiles, the
standard errors of estimates ax,0 range from 0.002 to 0.003; these values are similar
in magnitude to the averages of standard errors of ax from the cross-sectional
monthly regressions (12), in which those values range from 0.002 to 0.065. The
data suggests that the invariance hypothesis ax,0 = −2/3 explains the data much
better than the alternatives ax,0 = 0 and ax,0 = −1, but all three models are
statistically rejected.
For the trade-weighted distributions, the estimated time trend coefficient ax,t

ranges from 0.008 to 0.012 per year and is statistically significant. For the volume-
weighted distributions, the time-trend coefficient is either statistically insignificant
or negative.
The estimated intercept µx,0 of −7.238 in the regression for the trade-weighted

means implies that the median print size for the benchmark stock is equal to
exp(−7.238), or 0.07% of daily volume. The estimated intercepts of −8.490 and
−6.260 in the regressions for the 20th and 80th percentiles suggest that the average
20th and 80th print-size percentiles are equal to 0.02 percent and 0.19 percent of
daily volume for the benchmark stock, respectively. Under the assumption of log-
normality, Kyle and Obizhaeva (2016) note that the fraction of volume generated
by trades larger than z standard deviations above the log-mean (which equals
the median) is given by 1 − N(z − σ), where σ is the standard deviation for
the distribution of the log of trade sizes; based on the trade-weighted variance
of 1.90 in figure 4, a log-normality would imply that about 91 percent of volume
occurs in print sizes larger than 0.07 percent of daily volume (median trade). The
standard errors of µx,0 in cross-sectional regressions are similar in magnitude and
range between 0.014 and 0.031, across means and percentiles. The negative and
statistically significant estimates of time trend µx,t indicate that the print sizes
have been gradually decreasing during the 1993–2000 subperiod, with a downward
drift that is especially pronounced in the right tails of the distributions.
The R2 is lower in regressions based on volume-weighted distributions than in
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regressions based on trade-weighted distributions. For the means, the values of
R2 are 0.90 and 0.69, respectively. The difference in R2 increases monotonically
from a difference between 0.87 and 0.83 for the 20th percentiles to a difference
between 0.88 and 0.52 for the 80th percentiles. These numbers show that there is
more unexplained variation in large print sizes than in small print sizes. Note that
some of this variation may result from the rounding of large odd-size trades to the
mid-point of bins or from the small number of observations in the largest bins.
Table 4 reports the estimates for regressions in equation (12) for the 2001–14

subperiod. For the means, the estimates of ax,0 are −0.779 for trade-weighted
distributions and −0.776 for volume-weighted distributions. These estimates are
larger in absolute value than the corresponding estimates of −0.741 and −0.560 for
the 1993–2000 subperiod in table 3. All but one of the estimates of −0.757, −0.769,
and −0.811 for the 20th, 50th, and 80th trade-weighted percentiles, respectively,
and −0.796, −0.843, and −0.779 for the 20th, 50th, and 80th volume-weighted
percentiles, respectively, are also higher in absolute values than the estimates of
−0.781, −0.750, −0.725, −0.661, −0.579, and −0.481 for the earlier subperiod.
The biggest changes occur in the estimates for the 80th percentile of trade-weighted
distributions and the 50th and 80th percentiles of volume-weighted distributions,
which suggests that recent technological and regulatory changes had the largest
effect on the right tail of print-size distributions. The standard errors of ax,0 are
between 0.003 and 0.004, similar to the averages of standard errors of ax in monthly
regressions (12). This fact validates the adjustment for time trend in the Fama-
McBeth procedure; without inclusion of a time trend, the standard errors would
have been higher.
The estimates of the intercept µx,0 for the 1993–2000 subperiod are lower than

for the 2001–14 subperiod for the means as well as for all percentiles. For the
pooled sample, for example, the estimate of −9.029 in table 4 is lower than the
corresponding estimate of −7.238 in table 3; these estimates imply that a typical
print size for the benchmark stock fell from 0.07 percent to 0.01 percent of daily
volume over the 1993–2000 subperiod. The estimated time trend µx,t is negative
and statistically significant in all columns, except for the 20th percentile of trade-
weighted distributions, also implying that the distributions of print sizes have been
shifting downward.

3.3. Detailed Analysis of Market Frictions over Time

We next study how market frictions such as tick size and lot size affect the
trading process. More specifically, we examine whether these market frictions can
help explain variations across markets in the number and size distribution of prints
that cannot be explained by the invariance hypothesis.
To facilitate our analysis, we introduce several new concepts that measure re-

strictiveness of market frictions in the spirit of the invariance hypothesis. We also
discuss why these measures are related to price volatility and share volume in
business time as well as to each other.
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Effective Price Volatility and Effective Tick Size. Tick size imposes a
restriction on the minimum price change. The tick size changed from 1/8 of a dollar
to 1/16 of a dollar in the late 1990s and then to one cent in 2001. To assess the
restrictiveness of this friction, it is reasonable to compare it with price volatility—
that is, with a typical price change. Based on the same intuition, practitioners
often measure price volatility in units of tick size. For example, if a $40 stock
has a volatility of 2 percent per day, then daily dollar price volatility is equal to
$0.80 = $40 · 0.02 and a tick size of $0.01 is equal to 1/80 of price volatility.
The invariance hypothesis further suggests that it is more natural to define rela-

tive tick size as a fraction of price volatility in business time, not in calendar time.
Because business time is proportional to the expected arrival rate of bets γjt, or, as

shown in equation (5), in terms of trading activity it is also proportional to W
2/3
jt ,

define effective price volatility in asset j and time t as

(13) Effective Price Volatilityjt := Pjt · σjt ·

(

Wjt

W∗

)−1/3

.

This measure is scaled by a constant W
−1/3
∗ , previously defined as trading activity

in the benchmark stock, so that effective price volatility is exactly equal to daily
price volatility for the benchmark stock. In comparison with calendar-time volatil-
ity, effective price volatility is lower for more liquid stocks and higher for less liquid
stocks to take into account that business time runs faster in more liquid securities.
Now define effective tick size as the ratio of the dollar tick size to effective price

volatility:

(14) Effective Tick Sizejt :=
Tick Sizejt

Pjt·σjt

P∗·σ∗

·
(

Wjt

W∗

)−1/3
.

The presence of P∗ ·σ∗ in the denominator scales the definition of relative tick size
so that it is exactly equal to the dollar tick size for the benchmark stock. A higher
effective price volatility makes the effective tick size lower. We conjecture that
lower effective tick size may encourage traders to shred meta-orders into a larger
number of trades and lead to a larger amount of intermediation.

Effective Share Volume and Effective Lot Size. The lot size imposes a
restriction on the minimum number of shares in prints on the tape. For most
stocks in the sample, the lot size is equal to 100 shares. An odd lot comprises
orders smaller than a round lot (for example, 30 shares) or the non-round-lot
portion of larger orders (for example, the 30-share portion of a 530-share order);
these odd-lot transactions are executed according to special, often less flexible
rules, and information about them is not disseminated to the tape, as described in
detail by Hasbrouck, Sofianos and Sosebee (1993).
To assess how restrictive this friction is, one can compare it with the size of a

median bet in the corresponding market. Equation (10) implies that median bet
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size is also proportional to share volume in business time, which we refer to as
effective share volume:

(15) Effective Share Volumejt := Vjt ·

(

Wjt

W∗

)−2/3

.

This measure takes into account that business time runs faster by a factor of W
2/3
jt

in more liquid securities. It is scaled by the constant W
−2/3
∗ so that effective share

volume is exactly equal to daily share volume for the benchmark stock.
Now define effective lot size as the ratio of the lot size to effective share volume:

(16) Effective Lot Sizejt :=
Lot Sizejt

Vjt

V∗

·
(

Wjt

W∗

)−2/3
.

Practitioners often measure order size as a fraction of daily volume and restrict
their trading rate to a fixed fraction—say, 5 percent—of volume in order to control
transaction costs. The presence of V∗ in the denominator scales the definition of
effective lot size so that it is exactly equal to the lot size for the benchmark stock.
A lower effective share volume makes the effective lot size larger and therefore more
binding, in the sense that a larger fraction of bets falls below that threshold. Some
small bets may be executed as odd lots and not recorded on the consolidated tape,
some may not be executed at all, and some may be rounded up to round-lot size.
The extent of such censoring and rounding is expected to be related to effective
lot size.
Because Wjt = Vjt · Pjt · σjt, the product of effective tick size (14) and effective

lot size (16) is a constant equal to the product of tick size and lot size—that is, the
dollar value of one tick on a lot-size trade. It reflects the minimum possible dollar
profit (and cost) per transaction in the market. For example, when tick size is one
cent and lot size is 100 shares, then this constant is equal to $1 dollar; if a trader
executes at least 100 shares and pays a half spread that is at least one cent, his or
her profit (and cost) is at least $0.50 dollar.
For a given month in the sample, dollar tick size and lot size are usually constant

across most of the U.S. stocks (for example, one cent and 100 shares, respectively),
implying that effective tick size and effective lot size are closely related to each other
and to effective price volatility. In the following analysis, we therefore examine how
trading patterns differ across stocks with different levels of effective price volatility.
The effects of the two market frictions on the number of prints and print-size

distributions are difficult to separate. For example, higher effective price volatility
makes effective tick size lower, but it also makes effective lot size higher; lower
effective share volume has similar implications. The first effect, operating through
lower effective tick size, probably encourages more intermediation and more order
shredding of bets into smaller trades placed at finer adjacent price points as a
strategy to avoid front-running, leading to more prints of smaller sizes. The sec-
ond effect, operating through higher effective lot size, probably encourages more
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censoring and rounding up of odd-lot trades, thus leading to fewer prints of larger
sizes in the data sample.

Distributions of Print Sizes over Time. We next examine how market
frictions affect trading in the U.S. equities market cross-sectionally and through
time. After sorting stocks into 10 volume groups and 4 effective price-volatility

groups, we analyze distributions of the logs of scaled print sizes ln(Xi

Vi
· W

2/3
i ),

with the scaling factor W
2/3
i implied by the invariance hypothesis. The invariance

hypothesis predicts that these 40 distributions are the same in frictionless markets.
To examine how these distributions change over the entire period, we examine the
shape of the distributions for the months April 1993, April 2001, and April 2014.
Because dollar tick size and lot size are constant during selected months, sort-

ing stocks into effective price-volatility groups allows us to study the effects of
variations in both effective tick size and lot size.

Trade-Weighted Distributions for NYSE-Listed Stocks, April 1993. In
April 1993, NYSE-listed stocks were priced in increments of 12.5 cents (1/8 of a
dollar). Most of the stocks were traded in multiples of 100-share lots, even though
some of them were traded in multiples of 10-share lots, as described in Hasbrouck,
Sofianos and Sosebee (1993).
Figure 6 shows the trade-weighted distributions of logs of scaled print sizes for

5 of the 10 volume groups and all 4 effective price-volatility groups for the NYSE-
listed stocks in April 1993. The 100-share trades are highlighted in light gray and
1,000-share trades in dark gray. The number of stocks in each subgroup and the
average number of trades per day for these stocks are also reported. On each
subplot, the density of a normal distribution with the mean of −1.15 and standard
deviation of 1.38 is superimposed, calculated for the pooled sample in April 1993. If
the invariance hypothesis holds, identification assumptions are valid, and bet sizes
are distributed as a log-normal, then all distributions are expected to be invariant
across 40 subplots and coincide with the superimposed normal density. For most
subgroups, distributions are indeed close to the superimposed normal.
There is, however, a clear truncation below the 100-share odd-lot boundary with

clustering of 100-share trades, shown in light gray, in the left tails of the distri-
butions. Because variation in levels of dollar volume within groups is small, the
100-share trades usually fall into the same bin or into two adjacent bins. The only
exception is the first volume group, where large variation in trading activity makes
the 100-share trades spread over more than four bins.
The empirical distributions have spikes because of clustering of trades at round-

lot levels. There are visible spikes at the 100-share level and the 1,000-share level,
marked by clustering of light gray and dark gray columns, as well as two spikes in
between, corresponding to the 200-share and 500-share levels. For example, there
are more trades of 5,000 shares than 4,000 or 6,000 shares, and far more than
4,900 or 5,100 shares. For the subsample of stocks with low volume and low price
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volatility, large variation in trading activity smooths out spikes in the distribution
of print sizes.
A visual inspection suggests that, holding effective price volatility fixed, the

supports of distributions stay relatively constant across volume groups, but their
shapes become more skewed to the right as volume increases, especially when price
volatility is low, consistent with large orders being shredded into smaller trades.
Holding dollar volume fixed, the distributions vary across effective price-volatility

groups in a systematic way as well. When effective price volatility increases, the
100-share boundary becomes more binding, the truncation threshold shifts to the
right, and the effects of censoring and rounding to the 100-share boundary become
more pronounced. At the same time, the relative tick size decreases, thus encourag-
ing more order shredding. The first effect seems to dominate, because the average
number of prints decreases with price volatility. For high-volume stocks, for ex-
ample, the average number of prints decreases monotonically from 1, 139 prints
recorded per day for low-volatility stocks to only 285 prints for high-volatility
stocks. In the absence of any market frictions, the number of trades is expected
to be relatively constant within a given volume group because volatility does not
vary much.

Volume-Weighted Distributions for NYSE-Listed Stocks, April 1993.

Figure 7 shows the volume-weighted distributions of logs of scaled print sizes for the
NYSE stocks in April 1993. In comparison with the trade-weighted distributions
in figure 6, the volume-weighted distributions put more weight onto larger trades
and allow us to see more clearly the distribution of large print sizes.
According to Hasbrouck, Sofianos and Sosebee (1993), a block of 10,000 shares

was not a particularly large trade in 1993. Some block trades (of 10,000 shares
or more), especially block trades in illiquid stocks, were executed in the upstairs
market. The average size of upstairs-facilitated blocks was about 43,000 shares.
In comparison with the trade-weighted distributions in figure 6, the volume-

weighted distributions are more stable across subgroups and more closely resemble
the superimposed normal distribution. On most plots, the space below the bell-
shaped density function is filled up. The truncation at the odd-lot boundary is
almost invisible, because the numerous 100-share trades almost “disappear” from
the left tail of the distribution, as they contribute little to overall volume.
Small gaps in the distributions relative to a log-normal can be seen in mid-range

print sizes between 1,000 shares and 10,000 shares. Perhaps these gaps represent
intended orders shredded into smaller trades. The strong visual resemblance of
the graphs to a log-normal, as in Kyle and Obizhaeva (2016), are consistent with
the interpretation that most of the largest orders in 1993 appear to have been
executed as single blocks, generating large print sizes. An exception is the low-
volume group for which the largest orders appear to be shredded because the
distributions are skewed to the right. Although the volume-weighted distributions
are much smoother than the trade-weighted distributions, small spikes are still
detectable. These spikes, which likely correspond to clusters of trades at the levels
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of 1,000 shares, 5,000 shares, and 10,000 shares, are clearly visible, for example, in
distributions for stocks with high volume and high effective price volatility. There
are also a few spikes in the far-right tails of several distributions, suggesting that a
few very large prints occur in the data more often than explained by log-normality.

Trade-Weighted Distributions for Nasdaq-Listed Stocks, April 1993.

In April 1993, the Nasdaq-listed stocks usually had the minimum lot size of 100
shares. Quotes were restricted to increments of 1/8 of a dollar if the bid price
exceeded $10.00, but trades were permitted in finer increments of 1/64 of a dollar
for all stocks, even though these prices were then rounded to the nearest eighths for
reporting, as described in Christie, Harris and Schultz (1994) and Smith, Selway
and McCormick (1998).
Also, in 1988, the Securities and Exchange Commission required Nasdaq market

makers to have a quotation size of at least 1,000 shares for most stocks. The
rule mostly affected large stocks, and, indeed, we observe larger spikes in subplots
for high-volume stocks. For small stocks, the rule was slightly different. For
example, orders smaller than 1,000 shares could be executed through the Small
Order Execution System (SOES) in stocks that were trading at prices lower than
$250 per share. After 1996, the minimum quote size restriction was gradually
removed. Under the Actual Size Rule, the minimum quote size was reduced from
1,000 to 100 shares, first for 50 pilot stocks in January 1997, then for an additional
104 stocks in November 1997, and finally for all others.
Figure 8 shows the trade-weighted distributions of logs of scaled print sizes for

the Nasdaq stocks in April 1993. The biggest difference between the trade-weighted
distributions of the Nasdaq stocks and the NYSE stocks is the very large fraction
of 1,000-share trades, shown as dark gray spikes, typically in the middle of the
Nasdaq distributions. These spikes can be attributed to the requirement to quote
at least 1,000 shares. In line with this explanation, we do not observe the clustering
at the 1,000-share level after 2001 (unreported). Apart from the clustering in the
1,000-share level and truncation at the 100-share level, the distributions bear some
resemblance to the superimposed normal distribution.

Trade-Weighted Distributions for All Stocks, April 2001 and 2014.

After decimalization in 2001, U.S. stocks traded in increments of one cent. The
round-lot size is 100 shares; odd-lot trades account for a large fraction of trades,
but they are not reported in the TAQ dataset. The U.S. stock market is fragmented
into multiple trading venues. Angel, Harris and Spatt (2011, 2015) discuss other
recent innovations in trading.
Figures 9 and 10 show the trade-weighted distributions of logs of scaled print

sizes for all stocks traded in April 2001 and April 2014, respectively. In 2001,
decimalization and use of electronic interfaces led to a significant increase in order
shredding, the effect of which is clearly seen in both figures.
The frequency of trades has increased significantly over time. For high-volume

and low-volatility stocks, for example, there were, on average, only 325 trades
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per day in April 1993, increasing to 16, 230 trades per day in April 2001 and
41, 295 trades per day in April 2014. The distributions of scaled print sizes have
shifted substantially to the left during the 1993–2014 period. Based on the means
of superimposed normals, for example, the median print size dropped from 0.11
percent of daily volume for the NYSE stocks in April 1993 and 0.08 percent for the
Nasdaq stocks to 0.003 percent in 2001 and only 0.001 percent in 2014. The market
for block trades seems almost to have disappeared, and trading is now dominated
by transactions of 100 shares. Indeed, trades of 100 shares constitute about 57
percent of trades executed and 38 percent of volume traded in 2014.
Note that the estimated log-variances of 2.05 in 1993, 1.78 in 2001, and 1.21

in 2014 for trade-weighted distributions of scaled print sizes are lower than the
variance of 2.50 for the distributions of portfolio-transition orders, reported by
Kyle and Obizhaeva (2016). A gradual decrease in log-variance is consistent with
the hypothesis that large bets in liquid stocks in 2014 result in disproportionately
more prints than small bets in illiquid stocks.

Regressions with Effective Price Volatility. Table 5 presents Fama-MacBeth
estimates of µγ and aσ from monthly regressions

(17) ln
[

N̄i

]

= µn +
2

3
· ln

[

Wi

W∗

]

+ aσ · ln

[

Pi · σi

P∗ · σ∗
·

(

Wi

W∗

)−1/3
]

+ ǫ̃i.

The regression effectively imposes the invariance restriction of an = 2/3 in regres-
sion (11) and adds effective price volatility as an additional explanatory variable to
capture the effect of both market frictions. The table reports Fama-MacBeth esti-
mates of the coefficients, with Newey-West standard errors calculated with three
lags relative to a linear time trend estimated by OLS regressions from the estimated
monthly coefficients µ̂n,T and âσ,T for each month. Specifically, the specification is
µ̂n,T = µn,0+µn,t · (T − T̄ )/12+ ǫ̃T and âσ,T = aσ,0+aσ,t · (T − T̄ )/12+ ǫ̃T , where T
is the number of months from the beginning of the subsample, and T̄ is the mean
month in the subsample. The six columns show the results for the entire sample
as well as subsets of NYSE/AMEX-listed stocks and Nasdaq-listed stocks during
the 1993–2000 and 2001–14 subperiods.
The point estimates for aσ,0 are negative and statistically significant for all sub-

samples. The estimates of−0.471,−0.338, and−0.497 for the 1993–2000 subperiod
are smaller in absolute terms than the corresponding estimates of −0.608, −0.475,
and −0.676 for the 2001–14 subperiod. The standard errors range from 0.003 to
0.001. The point estimates of aσ,t are equal to −0.007, −0.02, −0.007, −0.027,
−0.023, and −0.013, with standard errors between 0.001 and 0.003. There is an
inverse relationship between effective price volatility and the number of prints.
Higher effective volatility implies fewer prints in the context of the invariance hy-
pothesis. The estimates of µn,0 and µn,t are not too different from the corresponding
estimates in table 2.
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The significant increase in values of R2 in regressions (17) relative to values of
R2 in regression (11) constrained with an = 2/3 shows that the cross-sectional
variation in the number of prints, unexplained by the invariance hypothesis, can
be partially attributed to differences in effective price volatility. For the entire
sample, adding effective price volatility as an explanatory variable increases the
R2 from 0.873 to 0.918 for the 1993–2000 subperiod and from 0.899 to 0.955 for
the 2001–14 subperiod. For NYSE stocks, the R2 increases from 0.908 and 0.917
to 0.924 and 0.955; for Nasdaq stocks, the R2 increases from 0.857 and 0.881 to
0.917 and 0.959 during the two subperiods.
Finally, we analyze the R2 in the regression that imposes the invariance restric-

tion an = 2/3 in regression (11), but allows the coefficients on the three components
of trading activity Wi (volume Vi, price Pi, and volatility σi) to vary freely:

(18) ln
[

N̄i

]

= µn+
2

3
ln

[

Wi

W∗

]

+b1 · ln

[

Vi

(106)

]

+b2 · ln

[

Pi

(40)

]

+b3 · ln

[

σi

(0.02)

]

+ ǫ̃.

For the entire 1993–2014 period, the estimates are b̂1 = 0.20 for the coefficient
on volume Vi, b̂2 = −0.31 for the coefficient on price Pi, and b̂3 = −0.5 for the
coefficient on volatility σi (not reported). All coefficients are statistically different
from zero. Similar patterns are observed for other subperiods and subsamples
of the NYSE stocks and the Nasdaq stocks. The exponents for volatility behave
similarly to the exponents for price and differently from the exponents for volume,
thus implying that the rejection of the invariance hypothesis might depend in a
subtle manner on how effective price-volatility influences incentives to shred orders
and make intermediation trades. Note that for the pooled sample, the R2 increases
from 0.873 to 0.928 for the 1993–2000 subperiod and from 0.899 to 0.970 for the
2001–14 subperiod. The R2 of 0.928 and 0.970 are only slightly larger than theR2 of
0.918 and 0.955 in regressions (17), respectively. Although statistically significant,
the addition of two extra degrees of freedom beyond the effective price volatility
improves the R2 by only a small amount.

4. Conclusion

The distributions of TAQ print sizes (adjusted for trading activity as suggested
by invariance hypotheses) resemble a log-normal, with truncation below the 100-
share odd-lot boundary. The resemblance was stronger during the earlier 1993–
2001 period than during the later 2001–14 period, and it shows up more clearly in
volume-weighted distributions than in trade-weighted distributions.
The invariance hypothesis explains about 88 percent of variation across stocks

in the number of prints. The unexplained 10 percent can be most likely attributed
to other microstructure effects such as order shredding, intermediation activity,
and various market frictions like lot size and tick size. For example, subtle effects
of effective price volatility explain an additional 4.5 percent and 5.5 percent of
variations during the 1993–2000 and 2001–14 periods, respectively. An interesting
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topic for future research would be to analyze these effects at a deeper level by
designing more refined econometric tests.
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Table 1—Descriptive Statistics

Volume Groups: All 1 2 3 4 5 6 7 8 9 10
Panel A: 1993–2000

Avg. Print Size ($) 23,629 11,441 27,378 36,432 43,558 49,274 53,421 60,364 67,904 78,139 89,338
Med. (VW) Print Size ($) 111,195 48,999 158,303 190,228 218,529 218,038 250,510 255,284 291,867 317,847 373,248
Med. (TW) Print Size ($) 9,363 5,682 10,842 13,407 15,402 16,910 18,024 20,049 21,909 24,599 28,567

Avg # of Prints, γ 142 17 73 126 185 257 333 409 549 852 2,830
Avg. Daily Volume ($ 1,000) 6,186 151 1,197 2,808 5,051 7,999 11,263 15,847 23,901 42,408 176,985

Avg. Daily Volatility 0.040 0.045 0.031 0.032 0.030 0.030 0.030 0.029 0.029 0.029 0.029
Avg. Price ($) 17.58 10.25 20.38 24.50 27.84 31.57 34.73 38.34 43.03 49.98 64.43

100-Shares: % Prints/ %Vol 16/2 15/2 17/2 18/2 19/2 20/2 21/2 21/2 21/2 22/2 25/3
1,000-Shares: % Prints/ %Vol 18/14 18/15 18/13 17/12 16/12 15/11 15/11 14/10 14/10 13/10 13/10

Even Lots: %Prints/ % Vol 80/61 80/63 80/60 80/59 80/58 80/57 80/57 79/56 79/55 79/56 81/58

# Obs 634,322 391,611 93,732 37,272 33,145 14,896 14,155 13,039 12,276 11,831 12,365

Panel B: 2001–14

Avg. Print Size ($) 6,424 3,645 6,715 8,776 10,379 11,913 13,308 14,863 17,003 19,852 26,335
Med. (VW) Print Size ($) 29,900 27,916 23,464 26,460 29,278 27,822 41,432 36,663 42,728 53,538 83,227
Med. (TW) Print Size ($) 2,895 1,642 3,244 4,163 4,793 5,419 6,005 6,647 7,469 8,378 10,533

Avg # of Prints, γ 3,013 399 2,178 3,584 5,069 6,733 8,323 10,062 12,846 17,651 37,495
Avg. Daily Volume ($ 1,000) 24,408 937 8,295 16,961 27,429 40,200 54,090 72,872 102,484 162,619 503,229

Avg. Daily Volatility 0.031 0.035 0.026 0.025 0.024 0.024 0.023 0.022 0.022 0.022 0.022
Avg. Price ($) 21.16 12.56 26.77 32.00 34.92 37.81 40.92 44.46 48.24 51.77 63.33

100-Shares: % Prints/ %Vol 57/25 56/23 64/33 61/31 60/29 58/28 57/28 56/28 55/27 53/25 49/20
1,000-Shares: % Prints/ %Vol 3/6 4/6 2/4 2/4 2/4 2/4 2/4 2/4 2/4 3/4 3/5

Even Lots: %Prints/ % Vol 86/63 85/60 90/68 89/68 89/67 88/66 88/65 87/65 87/64 86/62 84/59

# Obs 749,535 477,127 97,347 39,485 36,846 17,455 16,780 16,222 15,858 15,815 16,600

This table reports descriptive statistics for securities and prints. Each observation represents averages for one security over one
month. Panel A reports statistics for data from February 1993 to December 2000. Panel B reports statistics for data from January
2001 to December 2014. Both panels show the average print size, the trade-weighted median print size, the volume-weighted
median print size (in dollars), the average number of prints per day, the daily dollar volume (in thousands of dollars), the average
volatility of daily returns, the average price, and the percentage of trades and the percentage of volume in the 100-share lot, in
the 1,000-share lot, and in the even lots for all samples as well as for 10 volume groups. Volume groups are based on average
dollar trading volume with thresholds corresponding to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of
the dollar volume for NYSE-listed common stocks. Volume group 1 has stocks with the lowest volume, and volume group 10 has
stocks with the highest volume.
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Table 2—OLS Estimates of Number of TAQ Prints.

All Stocks NYSE/AMEX Nasdaq

1993–2000 2001–14 1993–2000 2001–14 1993–2000 2001–14

µn,0 6.147 8.513 6.109 8.396 6.143 8.646
0.017 0.041 0.012 0.040 0.020 0.048

µn,t 0.093 0.148 0.042 0.178 0.141 0.115
0.007 0.013 0.005 0.012 0.008 0.015

an,0 0.666 0.790 0.626 0.760 0.679 0.816
0.002 0.005 0.001 0.005 0.002 0.006

an,t -0.001 0.007 0.002 0.006 0.003 0.003
0.001 0.001 0.000 0.001 0.001 0.002

Adj-R2 0.87 0.92 0.91 0.93 0.86 0.91
# of Obs 6,621 4,452 2,189 1,759 4,432 2,694

This table presents Fama-MacBeth estimates µn and an from monthly regressions

ln
[

N̄i

]

= µn + an · ln

[

Wi

W∗

]

+ ǫ̃i.

For each month, there is one observation for each stock i. The value of N̄i is the average number
of prints per day. Trading activity Wi is the product of average daily dollar volume Vi · Pi and
the percentage standard deviation σi of daily returns in a given month. The scaling constant
W∗ = (40)(106)(0.02) corresponds to the measure of trading activity for a benchmark stock
with a price of $40 per share, trading volume of 1 million shares per day, and daily volatility of
0.02. Newey-West standard errors are calculated with three lags relative to a linear time trend
estimated by OLS regressions from the estimated coefficients µ̂n,T and ân,T for each month:
µ̂n,T = µn,0 + µn,t · (T − T̄ )/12 + ǫ̃T and ân,T = an,0 + an,t · (T − T̄ )/12 + ǫ̃T , where T is
the number of months from the beginning of the sample and T̄ is the mean month. “Adj-R2”
denotes the adjusted R2 averaged over monthly regressions, and “# of Obs” denotes the number of
stocks averaged over monthly regressions. The estimates are reported for 1993–2000 and 2001–14
subperiods.
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Table 3—Regression Estimates of TAQ Print Sizes, February 1993 to December

2000

Trade-Weighted Distribution Volume-Weighted Distribution

Mean 20th 50th 80th Mean 20th 50th 80th

µx,0 -7.238 -8.495 -7.289 -6.260 -4.684 -6.364 -4.887 -3.326
0.020 0.027 0.031 0.014 0.020 0.016 0.019 0.026

µx,t -0.047 -0.039 -0.046 -0.064 -0.137 -0.101 -0.157 -0.153
0.008 0.011 0.012 0.006 0.008 0.006 0.008 0.011

ax,0 -0.741 -0.781 -0.750 -0.725 -0.560 -0.661 -0.579 -0.481
0.002 0.003 0.002 0.003 0.003 0.002 0.003 0.003

ax,t 0.008 0.012 0.007 0.005 -0.007 -0.001 -0.009 -0.009
0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Adj-R2 0.90 0.87 0.88 0.88 0.69 0.83 0.68 0.52
# of Obs 6,621 6,621 6,621 6,621 6,621 6,621 6,621 6,621

This table presents Fama-MacBeth estimates µx and ax from the monthly regressions of the mean
and percentiles of print size on trading activity W for the sample from February 1993 to December
2000. The coefficients µQ and aQ are based on monthly regressions

ln

[

|Xi|

Vi

]

= µx + ax · ln

[

Wi

W∗

]

+ ǫ̃i,

where the left-hand side is either the mean or the pth (20th, 50th and 80th) percentile of the
distribution of logarithms of (unsigned) print sizes |Xi|, expressed as a fraction of daily volume
Vi in a given month. The means and percentiles are calculated based on both trade-weighted
and volume-weighted distributions. For each month, there is one observation for each stock i,
with trading activity Wi defined as the product of the average daily dollar volume Vi · Pi and
the percentage standard deviation σi of daily returns. The scaling constant W∗ = (40)(106)(0.02)
corresponds to the trading activity of the benchmark stock with a price of $40 per share, trading
volume of 1 million shares per day, and volatility of 2 percent per day. Newey-West standard

errors are calculated with three lags relative to a linear time trend estimated by OLS regressions
from the estimated coefficients µ̂x,T and âx,T for each month: µ̂x,T = µx,0+µx,t · (T − T̄ )/12+ ǫ̃T
and âx,T = ax,0 + ax,t · (T − T̄ )/12 + ǫ̃T , where T is the number of months from the beginning of
the sample and T̄ is the mean month. “Adj-R2” denotes the adjusted R2 averaged over monthly
regressions, and “# of Obs” denotes the number of stocks averaged over monthly regressions.
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Table 4—Regression Estimates of TAQ Print Sizes, January 2001 to December

2014

Trade-Weighted Distribution Volume-Weighted Distribution

Mean 20th 50th 80th Mean 20th 50th 80th

µx,0 -9.029 -9.519 -9.268 -8.633 -7.420 -9.004 -8.123 -6.304
0.030 0.024 0.038 0.039 0.058 0.047 0.059 0.059

µx,t -0.097 -0.013 -0.084 -0.173 -0.192 -0.091 -0.251 -0.251
0.009 0.007 0.012 0.012 0.018 0.015 0.018 0.018

ax,0 -0.779 -0.757 -0.769 -0.811 -0.776 -0.796 -0.843 -0.779
0.003 0.003 0.003 0.004 0.007 0.006 0.009 0.010

ax,t 0.000 0.005 0.003 -0.006 -0.018 -0.005 -0.021 -0.026
0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.003

Adj-R2 0.907 0.866 0.884 0.913 0.892 0.892 0.862 0.760
# of Obs 4,452 4,452 4,452 4,452 4,452 4,452 4,452 4,452

This table presents Fama-MacBeth estimates µx and ax from the monthly regressions of the mean
and percentiles of print size on trading activity W for the sample from January 2001 to December
2014. The coefficients µx and ax are based on monthly regressions

ln

[

|Xi|

Vi

]

= µx + ax · ln

[

Wi

W∗

]

+ ǫ̃i,

where the left-hand side is either the mean or the pth (20th, 50th and 80th) percentile of the
distribution of logarithms of (unsigned) print sizes |Xi|, expressed as a fraction of daily volume
Vi in a given month. The means and percentiles are calculated based on both trade- and volume-
weighted distributions. For each month, there is one observation for each stock i, with trading
activity Wi defined as the product of the average daily dollar volume Vi · Pi and the percentage

standard deviation σi of daily returns. The scaling constant W∗ = (40)(106)(0.02) corresponds
to the trading activity of the benchmark stock with a price of $40 per share, trading volume of
1 million shares per day, and volatility of 2 percent per day. Newey-West standard errors are
calculated with three lags relative to a linear time trend estimated by OLS regressions from the
estimated coefficients µ̂x,T and âx,T for each month: µ̂x,T = µx,0 + µx,t · (T − T̄ )/12 + ǫ̃T and
âx,T = ax,0 + ax,t · (T − T̄ )/12 + ǫ̃T , where T is the number of months from the beginning of
the sample and T̄ is the mean month. “Adj-R2” denotes the adjusted R2 averaged over monthly
regressions, and “# of Obs” denotes the number of stocks averaged over monthly regressions.
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Table 5—OLS Estimates of Number of TAQ Prints with Effective Volatility.

All Stocks NYSE/AMEX Nasdaq

1993–2000 2001–14 1993–2000 2001–14 1993–2000 2001–14

µn,0 6.270 7.952 6.316 7.998 6.247 7.942
0.016 0.023 0.009 0.025 0.020 0.027

µn,t 0.087 0.116 0.024 0.151 0.125 0.093
0.007 0.007 0.004 0.007 0.009 0.008

aσ,0 -0.471 -0.608 -0.338 -0.475 -0.497 -0.676
0.003 0.009 0.005 0.008 0.003 0.010

aσ,t -0.007 -0.020 -0.007 -0.027 -0.023 -0.013

0.001 0.003 0.002 0.002 0.001 0.003

Adj-R2 0.918 0.955 0.924 0.955 0.917 0.959
# of Obs 6,621 4,452 2,189 1,759 4,432 2,694

Regression with Coefficient on Effective Price Volatility aσ = 0.

Adj-R2 0.873 0.899 0.908 0.917 0.857 0.881

Regression with Separate Coefficients for Price, Volume, and Volatility.

Adj-R2 0.928 0.970 0.940 0.974 0.923 0.975

This table presents Fama-MacBeth estimates µn and aσ from monthly regressions

ln
[

N̄i

]

= µn +
2

3
· ln

[

Wi

W∗

]

+ aσ · ln

[

Pi · σi

P∗ · σ∗

·
(Wi

W∗

)

−1/3
]

+ ǫ̃i.

For each month, there is one observation for each stock i, with trading activity Wi defined as the
product of the average daily dollar volume Vi ·Pi and the percentage standard deviation σi of daily

returns. Effective price volatility is defined as Pi ·σi ·
(

Wi

W∗

)

−1/3
, with the effective price volatility

of the benchmark stocks P∗ ·σ∗ equal to 40 · 0.02. The value of N̄i is the average number of prints
per day. The scaling constant W∗ = (40)(106)(0.02) corresponds to the measure of trading activity
for the benchmark stock with a price of $40 per share, trading volume of 1 million shares per day,
and daily volatility of 2 percent. Newey-West standard errors are calculated with three lags relative
to a linear time trend estimated by OLS regressions from the estimated coefficients µ̂n,T and âσ,T
for each month: µ̂n,T = µn,0+µn,t ·(T−T̄ )/12+ ǫ̃T and âσ,T = aσ,0+aσ,t ·(T−T̄ )/12+ ǫ̃T , where
T is the number of months from the beginning of the sample and T̄ is the mean month. “Adj-R2”
denotes the adjusted R2 averaged over monthly regressions. The table also reports the average
R2 from the restricted regressions with aσ = 0 as well as the average R2 from unconstrained
regressions

(19) ln
[

N̄
]

= µn +
2

3
ln

[

Wi

W∗

]

+ b1 · ln

[

Vi

(106)

]

+ b2 · ln

[

Pi

(40)

]

+ b3 · ln

[

σi

(0.02)

]

+ ǫ̃.

“# of Obs” is the number of stocks averaged over monthly regressions. The estimates are reported
for 1993–2000 and 2001–14 subperiods.
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Figure 1. Time Series of Percentiles of Scaled TAQ Print Size and Mean Number

of Prints, 1993–2014.
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The figure shows the dynamics of the 20th, 50th, and 80th percentiles for logarithms of the pooled
scaled print sizes as well as the means of the scaled number of prints per month from 1993 to
2014. Volume groups are based on average dollar trading volume with thresholds corresponding
to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume
for common NYSE-listed stocks. Trade-weighted percentiles and volume-weighted percentiles are
shown for stocks in volume group 1 (low volume) and volume groups 9 and 10 (high volume).
For each print, the logarithm of scaled print size is calculated based on the midpoint of the print

size bin, scaled according to the model of trading game invariance—that is, ln(W
2/3
i · |Xi|/Vi),

where |Xi| is a midpoint of a print size bin in shares, Vi is the average daily volume in shares, and
Wi is the measure of trading activity equal to the product of dollar volume and returns standard

deviation. The scaled number of prints per month is calculated as N̄m,i · W
−2/3
i , where N̄m,i is

the number of trades per month. The stock-level distributions of scaled print sizes are averaged
across stocks for volume groups 1 and 9–10 in a given month. The trade- and volume-weighted
percentiles are plotted on this figure.
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Figure 2. The Scaled Number of TAQ Prints Relative to Trading Activity for

Three Models.
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The figure shows the logarithm of the scaled number of prints across different levels of the logarithm
of trading activity Wi. The scaled number of prints is defined by N̄i/W

α
i , with α = 2/3 for the

model of trading game invariance, α = 0 for the model of invariant bet frequency, and α = 1 for
the model of invariant bet size. Four subsamples are considered: NYSE-listed stocks in April 1993,
Nasdaq-listed stocks in April 1993, both NYSE and Nasdaq stocks in April 2001 and both Nasdaq
and NYSE stocks in April 2014. Trading activity Wi is calculated as the product of average daily
dollar Pi · Vi volume and the percentage standard deviation of daily returns σi for a given month.
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Figure 3. Time Series of Monthly OLS Coefficient Estimates for Number of

Trades, Trade-Weighted Percentiles, and Volume-Weighted Percentiles, 1993–

2014.
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The figure shows the dynamics of coefficients from regressions of number of prints and various
percentiles on the measure of trading activity Wi from 1993 to 2014. Panel A shows the coefficient
an from monthly regressions

ln
[

N̄i

]

= µn + an · ln

[

Wi

W∗

]

+ ǫ̃i,

where N̄i is the average number of prints per day in a given month. The model of trading game
invariance predicts an = 2/3, and alternative models predict that an = 0 or an = 1. Panel B
shows the coefficient ax from monthly regressions

ln

[

X̃i

Vi

]

= µx + ax · ln

[

Wi

W∗

]

+ ǫ̃i,

where the left-hand side is the pth (20th, 50th and 80th) percentiles of the distribution of loga-
rithms of print sizes X̃i. The model of trading game invariance predicts ax = −2/3, and alternative
models predict that ax = 0 or ax = −1. Panel C shows the coefficient ax from similar monthly
regressions, but these regressions are based on percentiles Qp

i , where percentiles are calculated
based on the contribution to total trading volume. The model of trading game invariance predicts
ax = −2/3, and alternative models predict that ax = 0 or ax = −1. Trading activity Wi is
defined as the product of dollar volume and daily percentage standard deviation of returns, and
W∗ measures trading activity of the benchmark stock.
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Figure 4. Trade-Weighted and Volume-Weighted Distributions of Scaled TAQ Print Size for Three Models, NYSE-Listed

Stocks, April 1993
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Panel A: Trade−Weighted Distributions Panel B: Volume−Weighted Distributions

This figure shows the distribution of the logarithm of scaled print sizes for three different models for NYSE-listed stocks traded in April 1993.
The print sizes are scaled as Wα

i · |Xi|/Vi, with α = 2/3 for the model of invariant bet frequency, α = 0 for the model of invariant bet frequency,
and α = 1 for the model of invariant bet size. Trading activity Wi is calculated as the product of dollar volume Pi · Vi and the daily percentage
standard deviation of returns σi. Panel A shows trade-weighted distributions, and panel B shows volume-weighted distributions. The subplots
show stock-level distributions averaged across stocks in volume group 1 (low volume), volume groups 2–8, and volume groups 9–10 (high volume).
Volume groups are based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th,
and 95th percentiles of the dollar volume for NYSE-listed common stocks.
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Figure 5. Trade-Weighted and Volume-Weighted Distributions of Scaled TAQ Print Size for Three Models, Nasdaq-

Listed Stocks, April 1993
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Panel A: Trade−Weighted Distributions Panel B: Volume−Weighted Distributions

This figure shows the distribution of the logarithm of scaled print sizes for three different models for Nasdaq-listed stocks traded in April
1993. The print sizes are scaled as Wα

i · |Xi|/Vi, with α = 2/3 for the model of invariant bet frequency, α = 0 for the model of invariant bet
frequency, and α = 1 for the model of invariant bet size. Trading activity Wi is calculated as the product of dollar volume Pi · Vi and the daily
percentage standard deviation of returns σi. Panel A shows trade-weighted distributions, and panel B shows volume-weighted distributions.
The subplots show stock-level distributions averaged across stocks in volume group 1 (low volume), volume groups 2–9, and volume groups 9–10
(high volume). Volume groups are based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th, 70th, 75th,
80th, 85th, 90th, and 95th percentiles of the dollar volume for Nasdaq-listed common stocks.
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Figure 6. Trade-Weighted Distributions of Scaled TAQ Print Sizes, NYSE-Listed Stocks, April 1993
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This figure shows distributions of the logarithms of scaled print sizes for NYSE stocks in April 1993. For each trade, the scaled print size

is calculated as ln(W
2/3
i · |Xi|/Vi) based on the invariance hypothesis, where |Xi| is the midpoint of the print size bin in shares, Vi is the

average daily volume in shares, and Wi measures trading activity as the product of dollar volume and the daily percentage standard deviation
of returns. Ten volume groups are constructed based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th,
70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for common NYSE-listed stocks. Four equally spaced volatility groups
are constructed based on effective price volatility, defined as Pi · σi · (Wi/W∗)

−1/3. The subplots show stock-level distributions averaged across
stocks for volume groups 1 (low volume), 4, 7, 9, and 10 (high volume) and for all four price volatility groups 1 (low price volatility), 2, 3, and
4 (high price volatility). The 100-share trades are highlighted in light gray; the 1,000-share trades are highlighted in dark gray. Each subplot
also shows a normal distribution with the pooled average print size mean of -1.15 and standard deviation of 1.38. M is the number of stocks,
and N is the average number of prints per day for the stocks in a given subgroup.
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Figure 7. Volume-Weighted Distributions of Scaled TAQ Print Sizes, NYSE-Listed Stocks, April 1993
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This figure shows distributions of total volume across different scaled print size bins for the NYSE stocks in April 1993. For each stock, the
volume distribution is calculated as the contribution to the total volume by trades from a given trade size bin. The x-axis is the log of scaled

print sizes, defined by ln(W
2/3
i · |Xi|

Vi
) according to the invariance hypothesis, where |Xi| is a print size in shares (midpoint of a bin), Vi is

the average daily volume in shares, and Wi is the measure of trading activity equal to the product of dollar volume and returns standard
deviation. Ten volume groups are constructed based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th,
70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for NYSE-listed common stocks. Four equally spaced volatility groups
are constructed based on effective price volatility, defined as Pi · σi · (Wi/W∗)

−1/3. The subplots show stock-level distributions averaged across
stocks for volume groups 1 (low volume), 4, 7, 9, and 10 (high volume) and for all four price volatility groups 1 (low price volatility), 2, 3, and 4
(high price volatility). The 100-share trades are highlighted in light gray, and the 1,000-share trades are highlighted in dark gray. Each subplot
also shows a normal distribution with the pooled average print size mean of 1.1 and standard deviation of 1.74. M is the number of stocks, and
N is the average number of prints per day for the stocks in a given subgroup.
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Figure 8. Trade-Weighted Distributions of Scaled TAQ Print Sizes, Nasdaq-Listed Stocks, April 1993
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This figure shows distributions of the logarithms of scaled print sizes for Nasdaq stocks in April 1993. For each trade, the scaled print size

is calculated as ln(W
2/3
i · |Xi|/Vi) based on the invariance hypothesis, where |Xi| is the midpoint of the print size bin in shares, Vi is the

average daily volume in shares, and Wi measures trading activity as the product of dollar volume and the daily percentage standard deviation
of returns. Ten volume groups are constructed based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th,
70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for common NYSE-listed stocks. Four equally spaced volatility groups
are constructed based on effective price volatility, defined as Pi · σi · (Wi/W∗)

−1/3. The subplots show stock-level distributions averaged across
stocks for volume groups 1 (low volume), 4, 7, 9, and 10 (high volume) and for all four price volatility groups 1 (low price volatility), 2, 3, and
4 (high price volatility). The 100-share trades are highlighted in light gray; the 1,000-share trades are highlighted in dark gray. Each subplot
also shows a normal distribution with the pooled average print size mean of -0.19 and standard deviation of 1.39. M is the number of stocks,
and N is the average number of prints per day for the stocks in a given subgroup.
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Figure 9. Trade-Weighted Distributions of Scaled TAQ Print Sizes, All Stocks, April 2001
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This figure shows distributions of the logarithms of scaled print sizes for NYSE and Nasdaq stocks in April 2001. For each trade, the scaled print

size is calculated as ln(W
2/3
i · |Xi|/Vi) based on the invariance hypothesis, where |Xi| is the midpoint of the print size bin in shares, Vi is the

average daily volume in shares, and Wi measures trading activity as the product of dollar volume and the daily percentage standard deviation
of returns. Ten volume groups are constructed based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th,
70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for common NYSE-listed stocks. Four equally spaced volatility groups
are constructed based on effective price volatility, defined as Pi · σi · (Wi/W∗)

−1/3. The subplots show stock-level distributions averaged across
stocks for volume groups 1 (low volume), 4, 7, 9, and 10 (high volume) and for all four price volatility groups 1 (low price volatility), 2, 3, and
4 (high price volatility). The 100-share trades are highlighted in light gray; the 1,000-share trades are highlighted in dark gray. Each subplot
also shows a normal distribution with the pooled average print size mean of −1.35 and standard deviation of 1.33. M is the number of stocks,
and N is the average number of prints per day for the stocks in a given subgroup.
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Figure 10. Trade-Weighted Distributions of Scaled TAQ Print Sizes, All Stocks, April 2014
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This figure shows distributions of the logarithms of scaled print sizes for NYSE and Nasdaq stocks in April 2014. For each trade, the scaled print

size is calculated as ln(W
2/3
i · |Xi|/Vi) based on the invariance hypothesis, where |Xi| is the midpoint of the print size bin in shares, Vi is the

average daily volume in shares, and Wi measures trading activity as the product of dollar volume and the daily percentage standard deviation
of returns. Ten volume groups are constructed based on average dollar trading volume with thresholds corresponding to the 30th, 50th, 60th,
70th, 75th, 80th, 85th, 90th, and 95th percentiles of the dollar volume for common NYSE-listed stocks. Four equally spaced volatility groups
are constructed based on effective price volatility, defined as Pi · σi · (Wi/W∗)

−1/3. The subplots show stock-level distributions averaged across
stocks for volume groups 1 (low volume), 4, 7, 9, and 10 (high volume) and for all four price volatility groups 1 (low price volatility), 2, 3, and
4 (high price volatility). The 100-share trades are highlighted in light gray; the 1,000-share trades are highlighted in dark gray. Each subplot
also shows a normal distribution with the pooled average print size mean of −2.25 and standard deviation of 1.10. M is the number of stocks,
and N is the average number of prints per day for the stocks in a given subgroup.


