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Chapter 1

Network Parameters of a Two-Port Filter

Figure 1.1: S parameter representation of a linear, loss-less and reciprocal (LLR) device.

1.1 S Parameters in the s-domain
For a LLR device, if the scattering parameter S11 is given in s = (σ + jω) domain as1

S11 (s) =
1

εR

F (s)

E (s)
, (1.1)

then, from the unitary property of scattering matrices of LLR devices,

S21 (s)S21 (s)∗ = 1− S11 (s)S11 (s)∗ = 1− 1

|εR|2

∣∣∣∣F (s)

E (s)

∣∣∣∣2
=
|εR|2 |E (s)|2 − |F (s)|2

|εR|2 |E (s)|2
. (1.2)

If S21 (s) can be written as 1
ε
P (s)
E(s)

, then

|P (s)|2

|ε|2
=
|εR|2 |E (s)|2 − |F (s)|2

|εR|2
. (1.3)

1All polynomials we are dealing in this section are assumed to be normalized (by ε and εR) such that their
highest degree coefficients are equal to 1.
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Also, re-arranging (1.2) and (1.3) gives

|S21 (s)|2 =
1

1 +
∣∣∣ εεR ∣∣∣2 ∣∣∣F (s)

P (s)

∣∣∣2 , (1.4)

whereF (s)
P (s)

is referred to as characteristic function. Before proceeding further, some important
properties of the polynomials E (s), F (s) and P (s) are given2 here.

1. E (s) is a Hurwitz polynomial of degree N . All its roots lie in the left half-plane of s.

2. The roots of F (s) lie on the imaginary axis where the degree is N . These roots are known
as reflection zeros.

3. Zeros of the polynomial P (s) are known as transmission zeros (TX zeros). All TX zeros
lie on the imaginary axis or appear as pairs of zeros located symmetrically with respect to
the imaginary axis.3

As a result, the polynomials E (s), F (s) and P (s) have the forms

E (s) = sN + eN−1s
N−1 + eN−2s

N−2 + eN−3s
N−3 + · · ·+ e0,

F (s) = sN + jfN−1s
N−1 + fN−2s

N−2 + jfN−3s
N−3 + · · ·+ f0 and

P (s) = snfz + jpnfz−1s
nfz−1 + pnfz−2s

nfz−2 + jpnfz−3s
nfz−3 + · · ·+ p0. (1.5)

In the above equations, all the coefficients ei are complex. Except f0 and p0, all other parameters
fi and pi are real. Since the coefficients of F (s) and P (s) alternate between real and imaginary
numbers, f0 and p0 are real if N and nfz are even (and imaginary if their orders are odd).

Also, the following statements can be proved without much difficulty.

at s = 0 :

{
S11 = 1

εR

f0
e0

S21 = 1
ε
p0
e0

(1.6)

at s = ±j∞ :


S11 = 1

εR

S21 = 0, if nfz < N

S21 = 1
ε
, if nfz = N

(1.7)

1.1.1 Relation between ε and εR
As mentioned before, ε and εR are just some complex numbers for normalizing all the polyno-
mials. The relation between these two parameters can be derived from the equation

S11 (s)S11 (s)∗ + S21 (s)S21 (s)∗ = 1

⇒ 1

|εR|2
F (s)F (s)∗

E (s)E (s)∗
+

1

|ε|2
P (s)P (s)∗

E (s)E (s)∗
= 1. (1.8)

2For the time being, these properties are stated without any proof.
3If nfz , the degree of the polynomial P (s) is zero, then all transmission zeros are located at s = ±j∞ (e.g.,

conventional Butterworth, Chebyshev, etc.).
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At s = 0, (1.8) becomes

S11 (s)S11 (s)∗ + S21 (s)S21 (s)∗ = 1

⇒ 1

|εR|2

∣∣∣∣f0e0
∣∣∣∣2 +

1

|ε|2

∣∣∣∣p0e0
∣∣∣∣2 = 1. (1.9)

Similarly, at s = ±j∞, {
|εR| = 1, if nfz < N

1
|εR|2

+ 1
|ε|2 = 1, if nfz = N

. (1.10)

So, from (1.9) and (1.10)

if nfz < N :

{
|εR| = 1,

|ε|2 = |p0|2

|e0|2−|f0|2
.

(1.11)

if nfz = N :

|ε|
2 = |f0|2−|p0|2

|f0|2−|e0|2
,

|εR|2 = |f0|2−|p0|2

|e0|2−|p0|2
.

(1.12)

�
�

�


It is important to understand that only |εR| and |ε| are related to each other, but not ∠ε and ∠εR.
The phases can be changed arbitrarly by shifting the reference planes of the two ports.

1.1.2 Derivation of S22

Since S11, S12 and S21 are already known, one can derive S22 from the following S-parameter
unitary property:

S11 (s)S12 (s)∗ + S21 (s)S22 (s)∗ = 0

⇒ S22 = −
(
ε∗

εε∗R

)
F (s)∗

E (s)

P (s)

P (s)∗
. (1.13)

Further it can be showed thatS22 = −
(

ε∗

εε∗R

)
p0f∗0
e0p∗0

, at s = 0

S22 =
(

ε∗

εε∗R

)
(−1)N+nfz+1 , as s→ ±j∞

. (1.14)

1.2 Network Parameters in the jω-domain

1.2.1 S Parameters in the jω-domain
Till now, all the scattering parameters have been dealt in the s domain. Such an analysis provides
information regarding the physical realizability4 of the filter. Once the filtering functions are

4from the view point of placement of the roots of polynomials E (s), F (s) and P (s)
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made sure to be physically realizable, one needs to worry about the jω domain only. So, S
parameters can be written in jω domain as[

S11 (jω) S12 (jω)
S21 (jω) S22 (jω)

]
=

[
1
εR

F (jω)
E(jω)

1
ε
P (jω)
E(jω)

1
ε
P (jω)
E(jω)

(−1)1+nfz ε∗

εε∗R

F (jω)∗

E(jω)

]
. (1.15)

1.2.2 ABCD Parameters in the jω-domain
ABCD parameters of the device can be obtained from (1.15) and are as given below:[

A (jω) B (jω)
C (jω) D (jω)

]
=

ε

2P (jω)

 √
RS

RL
(EF+ + EF+∗)

√
RSRL (EF+ − EF+∗)

1√
RSRL

(EF− − EF−∗)
√

RL

RS
(EF− + EF−∗)

 ,
(1.16)

where

EF+ =

[
E (jω) +

F (jω)

εR

]
,

EF+∗ = (−1)nfz

(
ε∗

ε

)[
E (jω)∗ +

F (jω)∗

ε∗R

]
,

EF− =

[
E (jω)− F (jω)

εR

]
and

EF−∗ = (−1)nfz

(
ε∗

ε

)[
E (jω)∗ − F (jω)∗

ε∗R

]
.

1.2.3 Y Parameters in the jω-domain
Once ABCD parameters are known, Y parameters (for a reciprocal network) can be easily
obtained as shown below:[

Y11 (jω) Y12 (jω)
Y21 (jω) Y22 (jω)

]
=

1

B (jω)

[
D (jω) −1
−1 A (jω)

]
=

1

(EF+ − EF+∗)

[
1
RS

(EF− + EF−∗) − 1√
RSRL

2P
ε

− 1√
RSRL

2P
ε

1
RL

(EF+ + EF+∗)

]
(1.17)

1.2.4 Z Parameters in the jω-domain
Similarly, Z parameters also can be obtained from the ABCD parameters as shown below:[

Z11 (jω) Z12 (jω)
Z21 (jω) Z22 (jω)

]
=

1

C (jω)

[
A (jω) 1

1 D (jω)

]
=

1

(EF− − EF−∗)

[
RS (EF+ + EF+∗)

√
RSRL

2P
ε√

RSRL
2P
ε

RL (EF− + EF−∗)

]
(1.18)
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Chapter 2

Lowpass Prototype Filters

2.1 Basic Components of a Lowpass Prototype Filter
It is customary in the filter design to synthesize the lowpass prototype (LPP) first. From the de-
signed LPP, components of the actual filter can be obtained by using frequency transformations.
Two general LPP configurations are shown in Fig. 2.1 and 2.2. In these figures, the colored
components are assumed to be frequency invariant (i.e., do not change with frequency transfor-
mations). All the other components change according to the actual filter response required (such
as bandpass, bandstop, etc) and their transformed values are shown in Fig. 2.4. Also, charac-
teristics of the immittance inverters (both K & J) used in the LPPs are shown in Fig. 2.5. For
impedance and admittance inverters, Zin = K2

ZL
and Yin = J2

YL
, respectively.

2.2 Electric and Magnetic Couplings1

The concept of immittance inverters has been mentioned briefly in the previous section. One
can physically realize immittance inverters in several ways. Out of all the possible ways, two
methods namely electric and magnetic coupling methods are very important in filter designing.
These two coupling phenomenas are described in Fig. 2.6 and 2.7. KVL and KCL equations
related to both electric as well as magnetic coupling are as given below:

Magnetic coupling :

(
jωL+

1

jωC

)
i1 + jKi2 = 0, where K = −ωLm

Electric coupling :

(
jωC +

1

jωL

)
v1 + jJv2 = 0, where J = −ωCm (2.1)

In Fig. 2.6 and 2.7, if each resonator is isolated from the other, then their resonant frequencies
are equal

(
f0 = 1

2π
√
LC

)
. However, when these two resonators are brought closer to each other,

coupling between them yields two distinct resonant frequencies, usually known as feven and fodd
(see Table 2.1).

1All the theory given in this section is related to synchronous coupling (i.e., the two isolated resonators resonate
at the same frequency). For mixed and asynchronous couplings, see [J. S. Hong].
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Figure 2.1: A series type LPP

Figure 2.2: A shunt type LPP

Figure 2.3: Normalized, equivalent circuit of Fig. 2.1.
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2.3 ε and εR Values for the Prototype Filters
In chapter 1, the relationship between the magnitudes of ε and εR was given (1.10). In addition, it
was said that for a general two-port device, no such relation can be derived for the phases of ε and
εR. However, if the device under consideration is restricted to be one of the LPP configurations
considered in this chapter (e.g., Fig. 2.1 and 2.2), then a more relaxed relation exists between
these two parameters.

For example, consider the LPP configuration shown in Fig. 2.1. As s → ±∞, it can be
showed that both S11 and S22 tends to the value 1. Therefore, from (1.7) and (1.14),{

εR = 1, and
ε
ε∗

= (−1)(N+nfz+1) . (2.2)

From the above equation, it can be seen that{
ε = ±εre, when (N + nfz + 1) is even

ε = ±jεre, when (N + nfz + 1) is odd
(2.3)

where εre is some real number (when (N + nfz + 1) is odd, (N − nfz) is even).
Similarly, for the LPP configuration shown in Fig. 2.2, ε and εR values are given as

εR = −1

ε = ±εre, when (N + nfz + 1) is even

ε = ±jεre, when (N + nfz + 1) is odd

. (2.4)

Similar results can be obtained for fully canonical filter configurations.

2.4 Alternating Pole Method for Determination of E (jω)

Now that ε, εR, F (jω) and P (jω) are known2, one needs to evaluate E (jω). Re-writing (1.8)
in the jω domain gives

|ε|2 |εR|2 E (jω)E (jω)
∗
= |εRP (jω)|2 + |εF (jω)|2 =

[εRP (jω) + εF (jω)]
[
ε∗RP (jω)

∗
+ ε∗F (jω)

∗]− ε∗ε∗R

[
εR
ε∗R

P (jω)F (jω)
∗
+

ε

ε∗
F (jω)P (jω)

∗
]
. (2.5)

For the LPP configurations shown in Fig. 2.1 and 2.2, εR is a real number and ε
ε∗

= (−1)(N+nfz+1).
So, the second term on the right hand side of the above equation becomes

ε∗ε∗R

[
εR
ε∗R
P (jω)F (jω)∗ +

ε

ε∗
F (jω)P (jω)∗

]
= ε∗ε∗RP (jω)F (jω)∗

[
1 + (−1)(N+nfz+1) F (jω)

F (jω)∗
P (jω)∗

P (jω)

]
= ε∗ε∗RP (jω)F (jω)∗

[
1 + (−1)(N+nfz+1) (−1)(N+nfz)

]
= 0. (2.6)

2F (jω) and P (jω) are given from the desired filter responce.
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Figure 2.4: Frequency transformation from LPP to bandpass, bandstop, etc.
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Figure 2.5: Immittance inverters: (a) Impedance inverter and (b) Admittance inverter

Figure 2.6: Magnetic coupling; (a), (b) and (c) are equivalent.

Figure 2.7: Electric coupling; (a), (b) and (c) are equivalent.

Electric Coupling Magnetic Coupling

feven
1

2π
√
C(L+Lm)

1

2π
√
C(C−Cm)

fodd
1

2π
√
C(L−Lm)

1

2π
√
C(C+Cm)

Lm

L
or Cm

C

f2odd−f
2
even

f2odd+f
2
even

f2even−f2odd
f2even+f

2
odd

Table 2.1: Equations related to electric and magnetic couplings
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So,

|ε|2 |εR|2E (jω)E (jω)∗ = [εRP (jω) + εF (jω)] [ε∗RP (jω)∗ + ε∗F (jω)∗] . (2.7)

On the imaginary axis (i.e., s = jω), (2.7) is equivalent to

|ε|2 |εR|2E (s)E (s)∗ = [εRP (s) + εF (s)] [ε∗RP (s)∗ + ε∗F (s)∗] . (2.8)

Rooting (in s domain) one of the two terms on the RHS of (2.8) results in a pattern of singularities
alternating between left-half and right-half planes. Also, rooting the other term will give the
complementary set of singularities. So, it is sufficient to find roots of only one term and then
reflect the right-half plane zeros to the left side.

2.5 The N Coupling Matrix

2.5.1 Analysis of the General N Coupling Matrix

2.5.1.1 Series Type LPP

KVL equations corresponding to Fig. 2.1 are given in matrix form as
v1
0
...
−vN

 = j


ωL1 +X1 K1,2 · · · K1,N

K1,2 ωL2 +X2 · · · K2,N
...

...
...

...
K1,N K2,N · · · ωLN +XN


︸ ︷︷ ︸

[Z]


i1
i2
...
iN

 . (2.9)

After multiplying the first row by 1√
L1

, the above matrix representation becomes


v1√
L1

0
...
−vN

 = j


ω
√
L1 + X1√

L1

K1,2√
L1

· · · K1,N√
L1

K1,2 ωL2 + jX2 · · · K2,N
...

...
...

...
K1,N K2,N · · · ωLN +XN



i1
i2
...
iN

 .

Now, multiplying the first column by 1√
L1

gives


v1√
L1

0
...
−vN

 = j


ω + X1

L1

K1,2√
L1

· · · K1,N√
L1

K1,2√
L1

ωL2 +X2 · · · K2,N

...
...

...
...

K1,N√
L1

K2,N · · · ωLN +XN



i1
√
L1

i2
...
iN

 .
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Thus all elements in the above matrix are normalized with respect to L1. After several similar
steps, the final normalized matrix representation is given as


v1√
L1

0
...
−vN√
LN

 = j


ω + X1

L1

K1,2√
L1L2

· · · K1,N√
L1LN

K1,2√
L1L2

ω + X2

L2
· · · K2,N√

L2LN
...

...
...

...
K1,N√
L1LN

K2,N√
L2LN

· · · ω + XN

LN




i1
√
L1

i2
√
L2

...
iN
√
LN



= j


ω +X ′ K ′1,2 · · · K ′1,N
K ′1,2 ω +X ′2 · · · K ′2,N

...
...

...
...

K ′1,N K ′2,N · · · ω +X ′N


︸ ︷︷ ︸

[Znorm]=j[[M]+ω[I]]


i1
√
L1

i2
√
L2

...
iN
√
LN

 , (2.10)

where X ′, K ′1,2, etc are the normalized values. From (2.9) and (2.10), it is evident that Fig. 2.1
and 2.3 are equivalent. Re-writing (2.10) gives


i1
√
L1

i2
√
L2

...
iN
√
LN

 = [Znorm]−1


v1√
L1

0
...
−vN√
LN


⇒
[
i1
√
L1

iN
√
LN

]
=

[
[Znorm]−111 [Znorm]−11N

[Znorm]−1N1 [Znorm]−1NN

][ v1√
L1−vN√
LN

]

⇒
[

i1
−iN

]
=

 [Znorm]−1
11

L1
− [Znorm]−1

1N√
L1LN

− [Znorm]−1
N1√

L1LN

[Znorm]−1
NN

LN

[ v1
vN

]
. (2.11)

2.5.1.2 Shunt Type LPP

KCL equations corresponding to Fig. 2.2 are given in matrix form as


i1
0
...
−iN

 = j


ωC1 +B1 J1,2 · · · J1,N

J1,2 ωC2 +B2 · · · J2,N
...

...
...

...
J1,N J2,N · · · ωCN +BN


︸ ︷︷ ︸

[Y]


v1
v2
...
vN

 . (2.12)
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Normalizing the above matrix gives


i1√
C1

0
...
−iN√
CN

 = j


ω + B1

C1

J1,2√
C1C2

· · · J1,N√
C1CN

J1,2√
C1C2

ω + B2

C2
· · · J2,N√

C2CN
...

...
...

...
J1,N√
C1CN

J2,N√
C2CN

· · · ω + BN

CN




v1
√
C1

v2
√
C2

...
vN
√
CN



= j


ω +B′ J ′1,2 · · · J ′1,N
J ′1,2 ω +B′2 · · · J ′2,N

...
...

...
...

J ′1,N J ′2,N · · · ω +B′N


︸ ︷︷ ︸

[Ynorm]=j[[M]+ω[I]]


v1
√
C1

v2
√
C2

...
vN
√
CN

 , (2.13)

where B′, J ′1,2, etc are the normalized values. Re-writing (2.13) gives
v1
√
C1

v2
√
C2

...
vN
√
CN

 = [Ynorm]−1


i1√
C1

0
...
−iN√
CN


⇒
[
v1
√
C1

vN
√
CN

]
=

[
[Ynorm]−111 [Ynorm]−11N

[Ynorm]−1N1 [Ynorm]−1NN

][ i1√
C1
−iN√
CN

]

⇒
[
v1
vN

]
=

 [Ynorm]−1
11

C1

[Ynorm]−1
1N√

C1CN

[Ynorm]−1
N1√

C1CN

[Ynorm]−1
NN

CN

[ i1
−iN

]
. (2.14)

2.5.2 Synthesis of the General N Coupling Matrix

2.5.2.1 Series Type LPP

From (2.11),

[Znorm]−111 = L1y11

⇒ [[M] + ω [I]]−111 = jL1y11. (2.15)

Since, [M] is a real and reciprocal matrix, all of its eigenvalues are real. So, using the eigenvalue
decomposition, the above equation can be written as[

[T] [Λ] [T]t + ω [I]
]−1
11

= jL1y11, (2.16)

where [Λ] = diag [λ1, λ2, · · · , λN ], λi are the eigenvalues of [M] and [T] is an orthogonal matrix
(i.e., [T] [T]t = [I]). In addition, the columns of [T] are eigenvectors of [M]. The general solution
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for (i, j)th element of the left-hand side matrix of (2.16) is given as[
[T] [Λ] [T]t + ω [I]

]−1
ij

=
[
[T] [Λ] [T]t + [I]ω [I]

]−1
ij

=
[
[T] [Λ] [T]t + [T] [T]t ω [T] [T]t

]−1
ij

=
[
[T]
[
[Λ] + [T]t ω [T]

]
[T]t
]−1
ij

=
[
[T] [[Λ] + ω [I]] [T]t

]−1
ij

=
[
[T] [[Λ] + ω [I]]−1 [T]t

]
ij

=
N∑
k=1

TikTjk
ω + λk

, i, j = 1, 2, · · · , N. (2.17)

Therefore from (2.17) and (1.17),

N∑
k=1

T 2
1k

ω + λk
= jL1y11

⇒
N∑
k=1

T 2
1k

ω + λk
=

jL1

RS

(EF− + EF−∗)
(EF+ − EF+∗)

. (2.18)

In the above equation, it can be observed that the numerator is always one degree less than the
denominator (i.e., there wont be any constant term when (2.18) is expanded as partial fractions).
Similarly, from (2.11),

− [Znorm]−11N√
L1LN

= y21

⇒ [[M] + ω [I]]−11N = −j
√
L1LNy21

⇒ [[T] [Λ] [T] + ω [I]]−11N = −j
√
L1LNy21

⇒
N∑
k=1

T1kTNk
ω + λk

= j

√
L1LN
RSRL

2P

ε (EF+ − EF+∗)
. (2.19)

From (2.18) and (2.19) it can be said that −λk values are zeros of (EF+ − EF+∗), and T1k&TNk
values are related to the residues at those zeros.

Determination of RS

L1
and RL

LN

So far, the known parameters are ε, εR, F (jω) , P (jω) and E (jω). In addition, from the prop-
erties of orthogonal matrices, {∑N

k=1 T
2
1k = 1∑N

k=1 T
2
Nk = 1

. (2.20)
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If it is assumed that

N∑
k=1

G2
1k

ω + λk
= j

(EF− + EF−∗)
(EF+ − EF+∗)

,

then from (2.18),

T1k = G1k

√
L1

RS

. (2.21)

Combining (2.21) and (2.20) gives3

N∑
k=1

L1

RS

G2
1k = 1

⇒ RS

L1

=
N∑
k=1

G2
1k. (2.22)

Similarly, it can be showed that

TNk = GNk

√
LN
RL

, where

RL

LN
=

N∑
k=1

G2
Nk. (2.23)

So, for a given filter response, one can determine the matrix [Λ] and 1st and N th rows of the
matrix [T]. If the matrix [T] is a 3rd order matrix, then the remaining row (i.e., the second row)
can be easily determined. No such simple unique solution exists if the order of the filter is greater
than 3. So, usually those remaining rows are found by using the Gram-Schmidt orthonormaliza-
tion process with starting independent vectors4 as (T11, T12, · · · , T1N), (TN1, TN2, · · · , TNN),
(0, 0, 1, · · · , 0),· · · and (0, 0, 0, · · · , 1),. All these vectors are independent as long as T11 6= 0
and TN2 6= 0. Otherwise, a different set of vectors should be chosen.

3It is the ration between RS and L1 that is important, not their actual values. So, without loss of generality, many
authors simply assume that L1 = 1H.

4Except for the first and last, all the other independent vectors are chosen here (kind of) randomly. One can
choose any other combination of vectors if he/she wants!
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2.5.2.2 Shunt Type LPP

From (2.14) and (1.18),

[Ynorm]−111 = C1z11

⇒ [[M] + ω [I]]−111 = jC1z11

⇒
[
[T] [Λ] [T]t + ω [I]

]−1
11

= jC1z11

⇒
N∑
k=1

T 2
1k

ω + λk
= jC1z11

⇒
N∑
k=1

T 2
1k

ω + λk
= jRSC1

(EF+ + EF+∗)

(EF− − EF−∗)
. (2.24)

Once again, [Λ] = diag [λ1, λ2, · · · , λN ], λi are the eigenvalues of [M], and [T] is an orthogonal
matrix. Similarly, from (2.14) and (1.18),

[Ynorm]−11N =
√
C1CNz21

⇒ [[M] + ω [I]]−11N = j
√
C1CNz21

⇒ [[T] [Λ] [T] + ω [I]]−11N = j
√
C1CNz21

⇒
N∑
k=1

T1kTNk
ω + λk

= j
√
RSRLC1CN

2P

ε (EF− − EF−∗)
. (2.25)

2.6 The N + 2 Coupling Matrix
Till now, it is assumed that coupling is an intra resonator phenomena. In addition, if coupling
between source/load to inner resonators is allowed, then fully canonical filter responses (i.e.,
nfz = N ) too can be achieved. A LPP configuration with source/load to inner resonator cou-
plings is shown in Fig. 2.8.

2.6.1 Analysis of the General N + 2 Coupling Matrix
2.6.1.1 Series Type LPP

KVL equations corresponding to Fig. 2.8 are given in matrix form as

vS
0
0
...
0
−vL


= j



0 KS,1 KS,2 · · · KS,N KS,L

KS,1 ωL1 +X1 K1,2 · · · K1,N K1,L

KS,2 K1,2 ωL2 +X2 · · · K2,N K2,L
...

...
...

...
...

...
KS,N K1,N K2,N · · · ωLN +XN KN,L

KS,L K1,L K2,L · · · KN,L 0


︸ ︷︷ ︸

[Z]



iS
i1
i2
...
iN
iL


. (2.26)
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Figure 2.8: Series type LPP with source/load to inner resonator couplings.

Normalizing the above matrix gives



vS
0
0
...
0
−vL


= j



0
KS,1√
L1

KS,2√
L2

· · · KS,N√
LN

KS,L
KS,1√
L1

ω + X1

L1

K1,2√
L1L2

· · · K1,N√
L1LN

K1,L√
L1

KS,2√
L2

K1,2√
L1L2

ω + X2

L2
· · · K2,N√

L2LN

K2,L√
L2

...
...

...
...

...
...

KS,N
K1,N√
L1LN

K2,N√
L2LN

· · · ω + XN

LN

KN,L√
LN

KS,L
K1,L√
L1

K2,L√
L2

· · · KN,L√
LN

0


︸ ︷︷ ︸

[Znorm]=j[[M]+ω[I]]



iS
i1
√
L1

i2
√
L2

...
iN
√
LN

iL


. (2.27)

Re-writing (2.27) gives



iS
i1
√
L1

i2
√
L2

...
iN
√
LN

iL


= [Znorm]−1



vS
0
0
...
0
−vL


⇒
[
iS
iL

]
=

[
[Znorm]−11,1 [Znorm]−11,N+2

[Znorm]−1N+2,1 [Znorm]−1N+2,N+2

] [
vS
−vL

]

⇒
[

iS
−iL

]
=

[
[Znorm]−11,1 − [Znorm]−11,N+2

− [Znorm]−1N+2,1 [Znorm]−1N+2,N+2

] [
vS
vL

]
(2.28)
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Figure 2.9: Shunt type LPP with source/load to inner resonator couplings.

2.6.1.2 Shunt Type LPP

From the duality principle and (2.28),

[
vS
−vL

]
=

[
[Ynorm]−11,1 − [Ynorm]−11,N+2

− [Ynorm]−1N+2,1 [Ynorm]−1N+2,N+2

] [
iS
iL

]

⇒
[
vS
vL

]
=

[
[Ynorm]−11,1 [Ynorm]−11,N+2

[Ynorm]−1N+2,1 [Ynorm]−1N+2,N+2

] [
iS
−iL

]
, (2.29)

where

[Ynorm] = j



0
JS,1√
C1

JS,2√
C2

· · · JS,N√
CN

JS,L
JS,1√
C1

ω + B1

C1

J1,2√
C1C2

· · · J1,N√
C1CN

J1,L√
C1

JS,2√
C2

J1,2√
C1C2

ω + B2

C2
· · · J2,N√

C2CN

J2,L√
C2

...
...

...
...

...
...

JS,N
J1,N√
C1CN

J2,N√
C2CN

· · · ω + BN

CN

JN,L√
CN

JS,L
J1,L√
C1

J2,L√
C2

· · · JN,L√
CN

0


. (2.30)

2.6.2 Synthesis of the General N + 2 Coupling Matrix

2.6.2.1 Series Type LPP

From (2.28),

[Znorm]−111 = y11

⇒ [[M] + ω [I]]−111 = jy11. (2.31)
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Following the theory presented in Sec. 2.5.2.1,
N+2∑
k=1

T 2
1k

ω + λk
= jy11

⇒
N+2∑
k=1

T 2
1k

ω + λk
=

j

RS

(EF− + EF−∗)
(EF+ − EF+∗)

, (2.32)

where, [M] = [T] [Λ] [T]t. Similarly,

− [Znorm]−11,N+2 = y21

⇒
N+2∑
k=1

T1kTN+2,k

ω + λk
=

j√
RSRL

2P

ε (EF+ − EF+∗)
. (2.33)

2.6.2.2 Shunt Type LPP

From (2.29) and (1.18),

[Ynorm]−111 = z11

⇒
N+2∑
k=1

T 2
1k

ω + λk
= jz11

⇒
N+2∑
k=1

T 2
1k

ω + λk
= jRS

(EF+ + EF+∗)

(EF− − EF−∗)
. (2.34)

where, [M] = [T] [Λ] [T]t. Similarly,

[Ynorm]−11,N+2 = z21

⇒
N+2∑
k=1

T1kTN+2,k

ω + λk
= j

√
RSRL

2P

ε (EF− − EF−∗)
. (2.35)

2.6.3 Synthesis of the N + 2 Transversal Matrix
Till now, all the synthesis techniques needed the Gram-Schmidt orthonormalization step. This
step can be avoided if one starts with a simpler transversal LPP configuration shown in Fig.
2.10. In this configuration, no coupling exists between the resonators. Only coupling that exists
for each resonator is the corresponding interaction with source/load. ABCD parameter matrix
corresponding to the highlighted two port section is given as[

A B
C D

]
N

=

[
0 j

JS,N

jJS,N 0

] [
1 0

jωCN + jBN 1

] [
0 j

JN,L

jJN,L 0

]

= −

[
JN,L

JS,N

(
jωCN+jBN

JS,NJN,L

)
0

JS,N
JN,L

]
.
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Figure 2.10: Canonical transversal LPP configuration.

Converting ABCD parameters to Y parameters gives[
y11 y12
y21 y22

]
N

=
1

b

[
d −1
−1 a

]
=

1

jωCN + jBN

[
J

2

S,N JS,NJN,L
JS,NJN,L J2

N,L

]
.

Since all two port sections are connected parallely, overall Y parameter matrix is given as[
y11 y12
y21 y22

]
total

=

[
0 j

JS,L

jJS,L 0

]
+

N∑
k=1

1

jωCk + jBk

[
J

2

S,k JS,kJk,L
JS,kJk,L J2

k,L

]
. (2.36)

From (2.36) and (1.17)

(EF− + EF−∗)
RS (EF+ − EF+∗)

=
N∑
k=1

J
2

S,k

jωCk + jBk

and

− 1√
RSRL

2P

ε (EF+ − EF+∗)
=

j

JS,L
+

N∑
k=1

JS,kJk,L
jωCk + jBk

. (2.37)

So, one can obtain first and last rows (and columns), and all the diagonal elements of (2.30) by
equating poles and residues on both sides of (2.37). In addition, all other elements are zero for
transveresal prototype.
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