Contents

1 Network Parameters of a Two-Port Filter 1
1.1 S Parameters in the s-domain 1
1.1.1 Relation between ε and ε_{R} 2
1.1.2 Derivation of S_{22} 3
1.2 Network Parameters in the $j \omega$-domain 3
1.2.1 S Parameters in the $j \omega$-domain 3
1.2.2 $A B C D$ Parameters in the $j \omega$-domain 4
1.2.3 Y Parameters in the $j \omega$-domain 4
1.2.4 Z Parameters in the $j \omega$-domain 4
2 Lowpass Prototype Filters 5
2.1 Basic Components of a Lowpass Prototype Filter 5
2.2 Electric and Magnetic Couplings 5
2.3ε and ε_{R} Values for the Prototype Filters 7
2.4 Alternating Pole Method for Determination of $E(j \omega)$ 7
2.5 The N Coupling Matrix 10
2.5.1 Analysis of the General N Coupling Matrix 10
2.5.1.1 Series Type LPP 10
2.5.1.2 Shunt Type LPP 11
2.5.2 Synthesis of the General N Coupling Matrix 12
2.5.2.1 Series Type LPP 12
2.5.2.2 Shunt Type LPP 15
2.6 The $N+2$ Coupling Matrix 15
2.6.1 Analysis of the General $N+2$ Coupling Matrix 15
2.6.1.1 Series Type LPP 15
2.6.1.2 Shunt Type LPP 17
2.6.2 Synthesis of the General $N+2$ Coupling Matrix 17
2.6.2.1 Series Type LPP 17
2.6.2.2 Shunt Type LPP 18
2.6.3 Synthesis of the $N+2$ Transversal Matrix 18

Chapter 1

Network Parameters of a Two-Port Filter

Figure 1.1: S parameter representation of a linear, loss-less and reciprocal (LLR) device.

1.1 S Parameters in the s-domain

For a LLR device, if the scattering parameter S_{11} is given in $s=(\sigma+j \omega)$ domain as ${ }^{1}$

$$
\begin{equation*}
S_{11}(s)=\frac{1}{\varepsilon_{R}} \frac{F(s)}{E(s)} \tag{1.1}
\end{equation*}
$$

then, from the unitary property of scattering matrices of LLR devices,

$$
\begin{align*}
S_{21}(s) S_{21}(s)^{*} & =1-S_{11}(s) S_{11}(s)^{*}=1-\frac{1}{\left|\varepsilon_{R}\right|^{2}}\left|\frac{F(s)}{E(s)}\right|^{2} \\
& =\frac{\left|\varepsilon_{R}\right|^{2}|E(s)|^{2}-|F(s)|^{2}}{\left|\varepsilon_{R}\right|^{2}|E(s)|^{2}} . \tag{1.2}
\end{align*}
$$

If $S_{21}(s)$ can be written as $\frac{1}{\varepsilon} \frac{P(s)}{E(s)}$, then

$$
\begin{equation*}
\frac{|P(s)|^{2}}{|\varepsilon|^{2}}=\frac{\left|\varepsilon_{R}\right|^{2}|E(s)|^{2}-|F(s)|^{2}}{\left|\varepsilon_{R}\right|^{2}} \tag{1.3}
\end{equation*}
$$

[^0]Also, re-arranging (1.2) and (1.3) gives

$$
\begin{equation*}
\left|S_{21}(s)\right|^{2}=\frac{1}{1+\left|\frac{\varepsilon}{\varepsilon_{R}}\right|^{2}\left|\frac{F(s)}{P(s)}\right|^{2}} \tag{1.4}
\end{equation*}
$$

where $\frac{F(s)}{P(s)}$ is referred to as characteristic function. Before proceeding further, some important properties of the polynomials $E(s), F(s)$ and $P(s)$ are given 2 here.

1. $E(s)$ is a Hurwitz polynomial of degree N. All its roots lie in the left half-plane of s.
2. The roots of $F(s)$ lie on the imaginary axis where the degree is N. These roots are known as reflection zeros.
3. Zeros of the polynomial $P(s)$ are known as transmission zeros (TX zeros). All TX zeros lie on the imaginary axis or appear as pairs of zeros located symmetrically with respect to the imaginary axis. ${ }^{3}$

As a result, the polynomials $E(s), F(s)$ and $P(s)$ have the forms

$$
\begin{align*}
& E(s)=s^{N}+e_{N-1} s^{N-1}+e_{N-2} s^{N-2}+e_{N-3} s^{N-3}+\cdots+e_{0}, \\
& F(s)=s^{N}+j f_{N-1} s^{N-1}+f_{N-2} s^{N-2}+j f_{N-3} s^{N-3}+\cdots+f_{0} \text { and } \\
& P(s)=s^{n_{f z}}+j p_{n_{f z}-1} s^{n_{f z}-1}+p_{n_{f z}-2} s^{n_{f z}-2}+j p_{n_{f z}-3} s^{n_{f z}-3}+\cdots+p_{0} . \tag{1.5}
\end{align*}
$$

In the above equations, all the coefficients e_{i} are complex. Except f_{0} and p_{0}, all other parameters f_{i} and p_{i} are real. Since the coefficients of $F(s)$ and $P(s)$ alternate between real and imaginary numbers, f_{0} and p_{0} are real if N and $n_{f z}$ are even (and imaginary if their orders are odd).

Also, the following statements can be proved without much difficulty.

$$
\begin{gather*}
\text { at } s=0:\left\{\begin{array}{l}
S_{11}=\frac{1}{\varepsilon_{R}} \frac{f_{0}}{e} \\
S_{21}= \\
\frac{1}{\varepsilon} \frac{p_{0}}{e_{0}}
\end{array}\right. \tag{1.6}\\
\text { at } s= \pm j \infty:\left\{\begin{array}{l}
S_{11}=\frac{1}{\varepsilon_{R}} \\
S_{21}=0, \text { if } n_{f z}<N \\
S_{21}=\frac{1}{\varepsilon}, \text { if } n_{f z}=N
\end{array}\right. \tag{1.7}
\end{gather*}
$$

1.1.1 Relation between ε and ε_{R}

As mentioned before, ε and ε_{R} are just some complex numbers for normalizing all the polynomials. The relation between these two parameters can be derived from the equation

$$
\begin{align*}
S_{11}(s) S_{11}(s)^{*}+S_{21}(s) S_{21}(s)^{*} & =1 \\
\Rightarrow \frac{1}{\left|\varepsilon_{R}\right|^{2}} \frac{F(s) F(s)^{*}}{E(s) E(s)^{*}}+\frac{1}{|\varepsilon|^{2}} \frac{P(s) P(s)^{*}}{E(s) E(s)^{*}} & =1 \tag{1.8}
\end{align*}
$$

[^1]At $s=0,(1.8)$ becomes

$$
\begin{align*}
& S_{11}(s) S_{11}(s)^{*}+S_{21}(s) S_{21}(s)^{*}=1 \\
& \Rightarrow \frac{1}{\left|\varepsilon_{R}\right|^{2}}\left|\frac{f_{0}}{e_{0}}\right|^{2}+\frac{1}{|\varepsilon|^{2}}\left|\frac{p_{0}}{e_{0}}\right|^{2}=1 . \tag{1.9}
\end{align*}
$$

Similarly, at $s= \pm j \infty$,

$$
\left\{\begin{array}{ll}
\left|\varepsilon_{R}\right|=1, & \text { if } n_{f z}<N \tag{1.10}\\
\frac{1}{\left|\varepsilon_{R}\right|^{2}}+\frac{1}{|\varepsilon|^{2}}=1, & \text { if } n_{f z}=N
\end{array} .\right.
$$

So, from (1.9) and (1.10)

$$
\begin{align*}
& \text { if } n_{f z}<N:\left\{\begin{array}{l}
\left|\varepsilon_{R}\right|=1, \\
|\varepsilon|^{2}=\frac{\left|p_{0}\right|^{2}}{\left|e_{0}\right|^{2}-\left|f_{0}\right|^{2}}
\end{array}\right. \tag{1.11}\\
& \text { if } n_{f z}=N:\left\{\begin{array}{l}
|\varepsilon|^{2}=\frac{\left|f_{0}\right|^{2}-\left|p_{0}\right|^{2}}{\left|f_{0}\right|^{2}-\left|e_{0}\right|^{2}} \\
\left|\varepsilon_{R}\right|^{2}=\frac{\left|f_{0}\right|^{2} \mid}{\left|e_{0}\right|^{2}-\left|p_{0}\right|^{2}}
\end{array}\right. \tag{1.12}
\end{align*}
$$

It is important to understand that only $\left|\varepsilon_{R}\right|$ and $|\varepsilon|$ are related to each other, but not $\angle \varepsilon$ and $\angle \varepsilon_{R}$. The phases can be changed arbitrarly by shifting the reference planes of the two ports.

1.1.2 Derivation of S_{22}

Since S_{11}, S_{12} and S_{21} are already known, one can derive S_{22} from the following S-parameter unitary property:

$$
\begin{align*}
S_{11}(s) S_{12}(s)^{*}+S_{21}(s) S_{22}(s)^{*} & =0 \\
\Rightarrow S_{22} & =-\left(\frac{\varepsilon^{*}}{\varepsilon \varepsilon_{R}^{*}}\right) \frac{F(s)^{*}}{E(s)} \frac{P(s)}{P(s)^{*}} . \tag{1.13}
\end{align*}
$$

Further it can be showed that

$$
\begin{cases}S_{22}=-\left(\frac{\varepsilon^{*}}{\varepsilon \varepsilon_{R}^{*}}\right) \frac{p_{0} f_{0}^{*}}{e_{0}^{*} p_{0}^{*}}, & \text { at } s=0 \tag{1.14}\\ S_{22}=\left(\frac{\varepsilon^{*}}{\varepsilon \varepsilon_{R}^{*}}\right)(-1)^{N+n_{f z}+1}, & \text { as } s \rightarrow \pm j \infty\end{cases}
$$

1.2 Network Parameters in the $j \omega$-domain

1.2.1 S Parameters in the $j \omega$-domain

Till now, all the scattering parameters have been dealt in the s domain. Such an analysis provides information regarding the physical realizability ${ }^{4}$ of the filter. Once the filtering functions are

[^2]made sure to be physically realizable, one needs to worry about the $j \omega$ domain only. So, S parameters can be written in $j \omega$ domain as
\[

\left[$$
\begin{array}{cc}
S_{11}(j \omega) & S_{12}(j \omega) \tag{1.15}\\
S_{21}(j \omega) & S_{22}(j \omega)
\end{array}
$$\right]=\left[$$
\begin{array}{cc}
\frac{1}{\varepsilon_{R}} \frac{F(j \omega)}{E(j \omega)} & \frac{1}{\varepsilon} \frac{P(j \omega)}{E(j \omega)} \\
\frac{1}{\varepsilon} \frac{P(j \omega)}{E(j \omega)} & \frac{(-1)^{1+n} f z \varepsilon^{*} \varepsilon^{*}}{\varepsilon \varepsilon_{R}^{*}} \frac{F\left(j \omega \omega^{*}\right.}{E(j \omega)}
\end{array}
$$\right] .
\]

1.2.2 $A B C D$ Parameters in the $j \omega$-domain

$A B C D$ parameters of the device can be obtained from (1.15) and are as given below:

$$
\left[\begin{array}{cc}
A(j \omega) & B(j \omega) \tag{1.16}\\
C(j \omega) & D(j \omega)
\end{array}\right]=\frac{\varepsilon}{2 P(j \omega)}\left[\begin{array}{cc}
\sqrt{\frac{R_{S}}{R_{L}}}\left(\mathbb{E F}_{+}+\mathbb{E F}_{+*}\right) & \sqrt{R_{S} R_{L}}\left(\mathbb{E F}_{+}-\mathbb{E F}_{+*}\right) \\
\frac{1}{\sqrt{R_{S} R_{L}}}\left(\mathbb{E F}_{-}-\mathbb{E F}_{-*}\right) & \sqrt{\frac{R_{L}}{R_{S}}}\left(\mathbb{E F}_{-}+\mathbb{E} \mathbb{F}_{-*}\right)
\end{array}\right]
$$

where

$$
\begin{aligned}
\mathbb{E F}_{+} & =\left[E(j \omega)+\frac{F(j \omega)}{\varepsilon_{R}}\right] \\
\mathbb{E F}_{+*} & =(-1)^{n_{f z}}\left(\frac{\varepsilon^{*}}{\varepsilon}\right)\left[E(j \omega)^{*}+\frac{F(j \omega)^{*}}{\varepsilon_{R}^{*}}\right] \\
\mathbb{E F}_{-} & =\left[E(j \omega)-\frac{F(j \omega)}{\varepsilon_{R}}\right] \text { and } \\
\mathbb{E F}_{-*} & =(-1)^{n_{f z}}\left(\frac{\varepsilon^{*}}{\varepsilon}\right)\left[E(j \omega)^{*}-\frac{F(j \omega)^{*}}{\varepsilon_{R}^{*}}\right] .
\end{aligned}
$$

1.2.3 Y Parameters in the $j \omega$-domain

Once $A B C D$ parameters are known, Y parameters (for a reciprocal network) can be easily obtained as shown below:

$$
\begin{align*}
{\left[\begin{array}{cc}
Y_{11}(j \omega) & Y_{12}(j \omega) \\
Y_{21}(j \omega) & Y_{22}(j \omega)
\end{array}\right] } & =\frac{1}{B(j \omega)}\left[\begin{array}{cc}
D(j \omega) & -1 \\
-1 & A(j \omega)
\end{array}\right] \\
& =\frac{1}{\left(\mathbb{E P}_{+}-\mathbb{E} \mathbb{F}_{+*}\right)}\left[\begin{array}{ccc}
\frac{1}{R_{S}}\left(\mathbb{E} \mathbb{F}_{-}+\mathbb{E} \mathbb{F}_{-*}\right) & -\frac{1}{\sqrt{R_{S} R_{L}}} \frac{2 P}{\varepsilon} \\
-\frac{1}{\sqrt{R_{S} R_{L}}} \frac{2 P}{\varepsilon} & \frac{1}{R_{L}}\left(\mathbb{E} \mathbb{F}_{+}+\mathbb{E} \mathbb{F}_{+*}\right)
\end{array}\right] \tag{1.17}
\end{align*}
$$

1.2.4 $\quad Z$ Parameters in the $j \omega$-domain

Similarly, Z parameters also can be obtained from the $A B C D$ parameters as shown below:

$$
\begin{align*}
{\left[\begin{array}{cc}
Z_{11}(j \omega) & Z_{12}(j \omega) \\
Z_{21}(j \omega) & Z_{22}(j \omega)
\end{array}\right] } & =\frac{1}{C(j \omega)}\left[\begin{array}{cc}
A(j \omega) & 1 \\
1 & D(j \omega)
\end{array}\right] \\
& =\frac{1}{\left(\mathbb{E} \mathbb{F}_{-}-\mathbb{E} \mathbb{F}_{-*}\right)}\left[\begin{array}{cc}
R_{S}\left(\mathbb{E}_{+}+\mathbb{E} \mathbb{F}_{+*}\right) & \sqrt{R_{S} R_{L}} \frac{2 P}{\varepsilon} \\
\sqrt{R_{S} R_{L} \frac{2 P}{\varepsilon}} & R_{L}\left(\mathbb{E} \mathbb{F}_{-}+\mathbb{E} \mathbb{F}_{-*}\right)
\end{array}\right] \tag{1.18}
\end{align*}
$$

Chapter 2

Lowpass Prototype Filters

2.1 Basic Components of a Lowpass Prototype Filter

It is customary in the filter design to synthesize the lowpass prototype (LPP) first. From the designed LPP, components of the actual filter can be obtained by using frequency transformations. Two general LPP configurations are shown in Fig. 2.1 and 2.2. In these figures, the colored components are assumed to be frequency invariant (i.e., do not change with frequency transformations). All the other components change according to the actual filter response required (such as bandpass, bandstop, etc) and their transformed values are shown in Fig. 2.4. Also, characteristics of the immittance inverters (both $\mathrm{K} \& \mathrm{~J}$) used in the LPPs are shown in Fig. 2.5. For impedance and admittance inverters, $Z_{\text {in }}=\frac{K^{2}}{Z_{L}}$ and $Y_{\text {in }}=\frac{J^{2}}{Y_{L}}$, respectively.

2.2 Electric and Magnetic Couplings ${ }^{1}$

The concept of immittance inverters has been mentioned briefly in the previous section. One can physically realize immittance inverters in several ways. Out of all the possible ways, two methods namely electric and magnetic coupling methods are very important in filter designing. These two coupling phenomenas are described in Fig. 2.6 and 2.7. KVL and KCL equations related to both electric as well as magnetic coupling are as given below:

$$
\begin{align*}
\text { Magnetic coupling : }\left(j \omega L+\frac{1}{j \omega C}\right) i_{1}+j K i_{2}=0, \text { where } K=-\omega L_{m} \\
\text { Electric coupling : }\left(j \omega C+\frac{1}{j \omega L}\right) v_{1}+j J v_{2}=0, \text { where } J=-\omega C_{m} \tag{2.1}
\end{align*}
$$

In Fig. 2.6 and 2.7, if each resonator is isolated from the other, then their resonant frequencies are equal $\left(f_{0}=\frac{1}{2 \pi \sqrt{L C}}\right)$. However, when these two resonators are brought closer to each other, coupling between them yields two distinct resonant frequencies, usually known as $f_{\text {even }}$ and $f_{\text {odd }}$ (see Table 2.1).

[^3]

Figure 2.1: A series type LPP

Figure 2.2: A shunt type LPP

Figure 2.3: Normalized, equivalent circuit of Fig. 2.1.

2.3ε and ε_{R} Values for the Prototype Filters

In chapter 1 , the relationship between the magnitudes of ε and ε_{R} was given (1.10). In addition, it was said that for a general two-port device, no such relation can be derived for the phases of ε and ε_{R}. However, if the device under consideration is restricted to be one of the LPP configurations considered in this chapter (e.g., Fig. 2.1 and 2.2), then a more relaxed relation exists between these two parameters.

For example, consider the LPP configuration shown in Fig. 2.1. As $s \rightarrow \pm \infty$, it can be showed that both S_{11} and S_{22} tends to the value 1. Therefore, from (1.7) and (1.14),

$$
\left\{\begin{array}{l}
\varepsilon_{R}=1, \text { and } \tag{2.2}\\
\frac{\varepsilon}{\varepsilon^{*}}=(-1)^{\left(N+n_{f z}+1\right)}
\end{array}\right.
$$

From the above equation, it can be seen that

$$
\begin{cases}\varepsilon= \pm \varepsilon^{\mathrm{re}}, & \text { when }\left(N+n_{f z}+1\right) \text { is even } \tag{2.3}\\ \varepsilon= \pm j \varepsilon^{\mathrm{re}}, & \text { when }\left(N+n_{f z}+1\right) \text { is odd }\end{cases}
$$

where $\varepsilon^{\mathrm{re}}$ is some real number (when $\left(N+n_{f z}+1\right)$ is odd, $\left(N-n_{f z}\right)$ is even).
Similarly, for the LPP configuration shown in Fig. 2.2, ε and ε_{R} values are given as

$$
\left\{\begin{array}{l}
\varepsilon_{R}=-1 \tag{2.4}\\
\varepsilon= \pm \varepsilon^{\mathrm{re}}, \quad \text { when }\left(N+n_{f z}+1\right) \text { is even } \\
\varepsilon= \pm j \varepsilon^{\mathrm{re}}, \quad \text { when }\left(N+n_{f z}+1\right) \text { is odd }
\end{array}\right.
$$

Similar results can be obtained for fully canonical filter configurations.

2.4 Alternating Pole Method for Determination of $E(j \omega)$

Now that $\varepsilon, \varepsilon_{R}, F(j \omega)$ and $P(j \omega)$ are known ${ }^{2}$, one needs to evaluate $E(j \omega)$. Re-writing (1.8) in the $j \omega$ domain gives

$$
\begin{gather*}
|\varepsilon|^{2}\left|\varepsilon_{R}\right|^{2} E(j \omega) E(j \omega)^{*}=\left|\varepsilon_{R} P(j \omega)\right|^{2}+|\varepsilon F(j \omega)|^{2}= \\
{\left[\varepsilon_{R} P(j \omega)+\varepsilon F(j \omega)\right]\left[\varepsilon_{R}^{*} P(j \omega)^{*}+\varepsilon^{*} F(j \omega)^{*}\right]-\varepsilon^{*} \varepsilon_{R}^{*}\left[\frac{\varepsilon_{R}}{\varepsilon_{R}^{*}} P(j \omega) F(j \omega)^{*}+\frac{\varepsilon}{\varepsilon^{*}} F(j \omega) P(j \omega)^{*}\right] .} \tag{2.5}
\end{gather*}
$$

For the LPP configurations shown in Fig. 2.1 and 2.2, ε_{R} is a real number and $\frac{\varepsilon}{\varepsilon^{*}}=(-1)^{\left(N+n_{f z}+1\right)}$. So, the second term on the right hand side of the above equation becomes

$$
\begin{align*}
& \varepsilon^{*} \varepsilon_{R}^{*}\left[\frac{\varepsilon_{R}}{\varepsilon_{R}^{*}} P(j \omega) F(j \omega)^{*}+\frac{\varepsilon}{\varepsilon^{*}} F(j \omega) P(j \omega)^{*}\right] \\
& =\varepsilon^{*} \varepsilon_{R}^{*} P(j \omega) F(j \omega)^{*}\left[1+(-1)^{\left(N+n_{f z}+1\right)} \frac{F(j \omega)}{F(j \omega)^{*}} \frac{P(j \omega)^{*}}{P(j \omega)}\right] \\
& =\varepsilon^{*} \varepsilon_{R}^{*} P(j \omega) F(j \omega)^{*}\left[1+(-1)^{\left(N+n_{f z}+1\right)}(-1)^{\left(N+n_{f z}\right)}\right] \\
& =0 . \tag{2.6}
\end{align*}
$$

[^4]| Transformation | LPP element | After Trans | ation |
| :---: | :---: | :---: | :---: |
| Lowpass $\Omega=\frac{\Omega_{c} \omega}{\omega_{c}}$ | | | $\begin{aligned} L^{\prime} & =\frac{\Omega_{c}}{\omega_{c}} L \\ C^{\prime} & =\frac{\Omega_{c}}{\omega_{c}} C \end{aligned}$ |
| Highpass $\Omega=-\frac{\omega_{c} \Omega_{c}}{\omega}$ | | | $\begin{aligned} C^{\prime} & =\frac{1}{\omega_{c} \Omega_{c}} \frac{1}{L} \\ L^{\prime} & =\frac{1}{\omega_{c} \Omega_{c}} \frac{1}{C} \end{aligned}$ |
| Bandpass $\Omega=\frac{\Omega_{c}}{\text { FBW }}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)$ | | | $\begin{array}{r} L_{s}=\frac{\Omega_{c}}{F B W \omega_{0}} L \\ C_{s}=\frac{1}{\omega_{0}^{2} L_{s}} \\ C_{p}=\frac{\Omega_{c}}{F B W \omega_{0}} C \\ L_{p}=\frac{1}{\omega_{0}^{2} C_{p}} \end{array}$ |
| Bandstop $\Omega=\frac{\Omega_{c} \mathrm{FBW}}{\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)}$ | | | $\begin{gathered} L_{p}=\frac{\mathrm{FBW} \Omega_{c}}{\omega_{0}} L \\ C_{p}=\frac{1}{\omega_{0}^{2} L_{p}} \\ C_{s}=\frac{\mathrm{FBW} \Omega_{c}}{\omega_{0}} C \\ L_{s}=\frac{1}{\omega_{0}^{2} C_{s}} \end{gathered}$ |
| Ω, ω represent normalized and unnormalized frequency domains, respectievely.$\omega_{0}=\sqrt{\omega_{1} \omega_{2}} \quad \mathrm{FBW}=\frac{\omega_{2}-\omega_{1}}{\omega_{0}}$ | | | |

Figure 2.4: Frequency transformation from LPP to bandpass, bandstop, etc.

Figure 2.5: Immittance inverters: (a) Impedance inverter and (b) Admittance inverter

(a)

(b)

(c)

Figure 2.6: Magnetic coupling; (a), (b) and (c) are equivalent.

(a)

(b)

(c)

Figure 2.7: Electric coupling; (a), (b) and (c) are equivalent.

	Electric Coupling	Magnetic Coupling
$f_{\text {even }}$	$\frac{1}{2 \pi \sqrt{C\left(L+L_{m}\right)}}$	$\frac{1}{2 \pi \sqrt{C\left(C-C_{m}\right)}}$
$f_{\text {odd }}$	$\frac{1}{2 \pi \sqrt{C\left(L-L_{m}\right)}}$	$\frac{1}{2 \pi \sqrt{C\left(C+C_{m}\right)}}$
$\frac{L_{m}}{L}$ or $\frac{C_{m}}{C}$	$\frac{f_{\text {odd }}^{2}-f_{\text {even }}^{2}}{f_{\text {odd }}^{2}+f_{\text {even }}^{2}}$	$\frac{f_{\text {even }}^{2}-f_{\text {odd }}^{2}}{f_{\text {even }}^{2}+f_{\text {odd }}^{2}}$

Table 2.1: Equations related to electric and magnetic couplings

So,

$$
\begin{equation*}
|\varepsilon|^{2}\left|\varepsilon_{R}\right|^{2} E(j \omega) E(j \omega)^{*}=\left[\varepsilon_{R} P(j \omega)+\varepsilon F(j \omega)\right]\left[\varepsilon_{R}^{*} P(j \omega)^{*}+\varepsilon^{*} F(j \omega)^{*}\right] . \tag{2.7}
\end{equation*}
$$

On the imaginary axis (i.e., $s=j \omega$), (2.7) is equivalent to

$$
\begin{equation*}
|\varepsilon|^{2}\left|\varepsilon_{R}\right|^{2} E(s) E(s)^{*}=\left[\varepsilon_{R} P(s)+\varepsilon F(s)\right]\left[\varepsilon_{R}^{*} P(s)^{*}+\varepsilon^{*} F(s)^{*}\right] \tag{2.8}
\end{equation*}
$$

Rooting (in s domain) one of the two terms on the RHS of (2.8) results in a pattern of singularities alternating between left-half and right-half planes. Also, rooting the other term will give the complementary set of singularities. So, it is sufficient to find roots of only one term and then reflect the right-half plane zeros to the left side.

2.5 The N Coupling Matrix

2.5.1 Analysis of the General N Coupling Matrix

2.5.1.1 Series Type LPP

KVL equations corresponding to Fig. 2.1 are given in matrix form as

$$
\left[\begin{array}{c}
v_{1} \tag{2.9}\\
0 \\
\vdots \\
-v_{N}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
\omega L_{1}+X_{1} & K_{1,2} & \cdots & K_{1, N} \\
K_{1,2} & \omega L_{2}+X_{2} & \cdots & K_{2, N} \\
\vdots & \vdots & \vdots & \vdots \\
K_{1, N} & K_{2, N} & \cdots & \omega L_{N}+X_{N}
\end{array}\right]}_{[\mathrm{Z}]}\left[\begin{array}{c}
i_{1} \\
i_{2} \\
\vdots \\
i_{N}
\end{array}\right]
$$

After multiplying the first row by $\frac{1}{\sqrt{L_{1}}}$, the above matrix representation becomes

$$
\left[\begin{array}{c}
\frac{v_{1}}{\sqrt{L_{1}}} \\
0 \\
\vdots \\
-v_{N}
\end{array}\right]=j\left[\begin{array}{cccc}
\omega \sqrt{L_{1}}+\frac{X_{1}}{\sqrt{L_{1}}} & \frac{K_{1,2}}{\sqrt{L_{1}}} & \cdots & \frac{K_{1, N}}{\sqrt{L_{1}}} \\
K_{1,2} & \omega L_{2}+j X_{2} & \cdots & K_{2, N} \\
\vdots & \vdots & \vdots & \vdots \\
K_{1, N} & K_{2, N} & \cdots & \omega L_{N}+X_{N}
\end{array}\right]\left[\begin{array}{c}
i_{1} \\
i_{2} \\
\vdots \\
i_{N}
\end{array}\right] .
$$

Now, multiplying the first column by $\frac{1}{\sqrt{L_{1}}}$ gives

$$
\left[\begin{array}{c}
\frac{v_{1}}{\sqrt{L_{1}}} \\
0 \\
\vdots \\
-v_{N}
\end{array}\right]=j\left[\begin{array}{cccc}
\omega+\frac{X_{1}}{L_{1}} & \frac{K_{1,2}}{\sqrt{L_{1}}} & \cdots & \frac{K_{1, N}}{\sqrt{L_{1}}} \\
\frac{K_{1,2}}{\sqrt{L_{1}}} & \omega L_{2}+X_{2} & \cdots & K_{2, N} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{K_{1, N}}{\sqrt{L_{1}}} & K_{2, N} & \cdots & \omega L_{N}+X_{N}
\end{array}\right]\left[\begin{array}{c}
i_{1} \sqrt{L_{1}} \\
i_{2} \\
\vdots \\
i_{N}
\end{array}\right]
$$

Thus all elements in the above matrix are normalized with respect to L_{1}. After several similar steps, the final normalized matrix representation is given as

$$
\begin{align*}
{\left[\begin{array}{c}
\frac{v_{1}}{\sqrt{L_{1}}} \\
0 \\
\vdots \\
\frac{-v_{N}}{\sqrt{L_{N}}}
\end{array}\right]=} & j\left[\begin{array}{cccc}
\omega+\frac{X_{1}}{L_{1}} & \frac{K_{1,2}}{\sqrt{L_{1} L_{2}}} & \cdots & \frac{K_{1, N}}{\sqrt{L_{1} L_{N}}} \\
\frac{K_{1,2}}{\sqrt{L_{1} L_{2}}} & \omega+\frac{X_{2}}{L_{2}} & \cdots & \frac{K_{2, N}}{\sqrt{L_{2} L_{N}}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{K_{1, N}}{\sqrt{L_{1} L_{N}}} & \frac{K_{2, N}}{\sqrt{L_{2} L_{N}}} & \cdots & \omega+\frac{X_{N}}{L_{N}}
\end{array}\right]\left[\begin{array}{c}
i_{1} \sqrt{L_{1}} \\
i_{2} \sqrt{L_{2}} \\
\vdots \\
i_{N} \sqrt{L_{N}}
\end{array}\right] \\
= & \underbrace{\left[\begin{array}{c}
i_{1} \sqrt{L_{1}} \\
i_{2} \sqrt{L_{2}} \\
\vdots \\
i_{N} \sqrt{L_{N}}
\end{array}\right],}_{\left[\begin{array}{c}
\text { Znorm }]=j[[\mathrm{M}]+\omega[\mathrm{I}]]
\end{array}\left[\begin{array}{cccc}
\omega+X^{\prime} & K_{1,2}^{\prime} & \cdots & K_{1, N}^{\prime} \\
K_{1,2}^{\prime} & \omega+X_{2}^{\prime} & \cdots & K_{2, N}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
K_{1, N}^{\prime} & K_{2, N}^{\prime} & \cdots & \omega+X_{N}^{\prime}
\end{array}\right]\right.} \tag{2.10}
\end{align*}
$$

where $X^{\prime}, K_{1,2}^{\prime}$, etc are the normalized values. From (2.9) and (2.10), it is evident that Fig. 2.1 and 2.3 are equivalent. Re-writing (2.10) gives

$$
\begin{align*}
& {\left[\begin{array}{c}
i_{1} \sqrt{L_{1}} \\
i_{2} \sqrt{L_{2}} \\
\vdots \\
i_{N} \sqrt{L_{N}}
\end{array}\right]=\left[\mathrm{Z}^{\mathrm{norm}}\right]^{-1}\left[\begin{array}{c}
\frac{v_{1}}{\sqrt{L_{1}}} \\
0 \\
\vdots \\
\frac{-v_{N}}{\sqrt{L_{N}}}
\end{array}\right]} \\
& \Rightarrow\left[\begin{array}{c}
i_{1} \sqrt{L_{1}} \\
i_{N} \sqrt{L_{N}}
\end{array}\right]=\left[\begin{array}{cc}
{\left[\mathrm{Z}^{\text {norm }}\right]_{11}^{-1}} & {\left[\mathrm{Z}^{\text {norm }}\right]_{1 N}^{-1}} \\
{\left[\mathrm{Z}^{\text {norm }}\right]_{N 1}^{-1}} & {\left[\mathrm{Z}^{\text {norm }}\right]_{N N}^{-1}}
\end{array}\right]\left[\begin{array}{c}
\frac{v_{1}}{\sqrt{L_{1}}} \\
\frac{-v_{N}}{\sqrt{L_{N}}}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{c}
i_{1} \\
-i_{N}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\left[\mathrm{Z}^{\text {norm }}\right]_{11}^{-1}}{L_{1}} & -\frac{\left[\mathrm{Z}^{\text {norm }}\right]_{1 N}^{-1}}{\sqrt{L_{1} L} N_{N}} \\
-\frac{\left[\mathrm{Z}^{\text {norm }}\right]_{N 1}^{-1}}{\sqrt{L_{1} L_{N}}} & \frac{\left[\mathrm{Z}^{\text {norm }}\right]_{N N}^{1}}{L_{N}}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{N}
\end{array}\right] \text {. } \tag{2.11}
\end{align*}
$$

2.5.1.2 Shunt Type LPP

KCL equations corresponding to Fig. 2.2 are given in matrix form as

$$
\left[\begin{array}{c}
i_{1} \tag{2.12}\\
0 \\
\vdots \\
-i_{N}
\end{array}\right]=j \underbrace{\left[\begin{array}{cccc}
\omega C_{1}+B_{1} & J_{1,2} & \cdots & J_{1, N} \\
J_{1,2} & \omega C_{2}+B_{2} & \cdots & J_{2, N} \\
\vdots & \vdots & \vdots & \vdots \\
J_{1, N} & J_{2, N} & \cdots & \omega C_{N}+B_{N}
\end{array}\right]}_{[\mathrm{Y}]}\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{N}
\end{array}\right]
$$

Normalizing the above matrix gives

$$
\begin{align*}
{\left[\begin{array}{c}
\frac{i_{1}}{\sqrt{C_{1}}} \\
0 \\
\vdots \\
\frac{-i j_{N}}{\sqrt{C_{N}}}
\end{array}\right]=} & j\left[\begin{array}{cccc}
\omega+\frac{B_{1}}{C_{1}} & \frac{J_{1,2}}{\sqrt{C_{1} C_{2}}} & \cdots & \frac{J_{1, N}}{\sqrt{C_{1} C_{N}}} \\
\frac{J_{1,2}}{\sqrt{C_{1} C_{2}}} & \omega+\frac{B_{2}}{C_{2}} & \cdots & \frac{J_{2, N}}{\sqrt{C_{2} C_{N}}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{J_{1, N}}{\sqrt{C_{1} C_{N}}} & \frac{J_{2, N}}{\sqrt{C_{2} C_{N}}} & \cdots & \omega+\frac{B_{N}}{C_{N}}
\end{array}\right]\left[\begin{array}{c}
v_{1} \sqrt{C_{1}} \\
v_{2} \sqrt{C_{2}} \\
\vdots \\
v_{N} \sqrt{C_{N}}
\end{array}\right] \\
= & \underbrace{\left[\begin{array}{cccc}
\omega+B^{\prime} & J_{1,2}^{\prime} & \cdots & J_{1, N}^{\prime} \\
J_{1,2}^{\prime} & \omega+B_{2}^{\prime} & \cdots & J_{2, N}^{\prime} \\
\vdots & \vdots & \vdots & \vdots \\
J_{1, N}^{\prime} & J_{2, N}^{\prime} & \cdots & \omega+B_{N}^{\prime}
\end{array}\right]}_{\left[\mathrm{Y}^{\text {norm }]=j[\mathrm{M}]+\omega[\mathrm{I}]]}\right.}\left[\begin{array}{c}
v_{1} \sqrt{C_{1}} \\
v_{2} \sqrt{C_{2}} \\
\vdots \\
v_{N} \sqrt{C_{N}}
\end{array}\right], \tag{2.13}
\end{align*}
$$

where $B^{\prime}, J_{1,2}^{\prime}$, etc are the normalized values. Re-writing (2.13) gives

$$
\begin{align*}
& {\left[\begin{array}{c}
v_{1} \sqrt{C_{1}} \\
v_{2} \sqrt{C_{2}} \\
\vdots \\
v_{N} \sqrt{C_{N}}
\end{array}\right] }=\left[\mathrm{Y}^{\text {norm }}\right]^{-1}\left[\begin{array}{c}
\frac{i_{1}}{\sqrt{C_{1}}} \\
0 \\
\vdots \\
\frac{-i_{N}}{\sqrt{C_{N}}}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{c}
v_{1} \sqrt{C_{1}} \\
v_{N} \sqrt{C_{N}}
\end{array}\right]=\left[\begin{array}{ll}
{\left[\mathrm{Y}^{\text {norm }}\right]_{11}^{-1}} & {\left[\mathrm{Y}^{\text {norm }}\right]_{1 N}^{-1}} \\
{\left[\mathrm{Y}^{\text {norm }}\right]_{N 1}^{-1}} & {\left[\mathrm{Y}^{\text {norm }}\right]_{N N}^{-1}}
\end{array}\right]\left[\begin{array}{c}
\frac{i_{1}}{\sqrt{C_{1}}} \\
\frac{-i_{N}}{\sqrt{C_{N}}}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{c}
v_{1} \\
v_{N}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\left[\mathrm{Y}^{\text {norm }}\right]_{11}^{-1}}{C_{1}} & \frac{\left[\mathrm{Y}^{\text {norm }}\right]_{1 N}^{-1}}{\sqrt{C_{1} C_{N}}} \\
\frac{\left[\mathrm{Y}^{\text {norm }}\right]_{N 1}^{1}}{\sqrt{C_{1} C_{N}}} & \frac{\left[\mathrm{Y}^{\text {norm }]_{N N}}\right.}{C_{N}}
\end{array}\right]\left[\begin{array}{c}
i_{1} \\
-i_{N}
\end{array}\right] . \tag{2.14}
\end{align*}
$$

2.5.2 Synthesis of the General N Coupling Matrix

2.5.2.1 Series Type LPP

From (2.11),

$$
\begin{align*}
{\left[\mathrm{Z}^{\text {norm }}\right]_{11}^{-1} } & =L_{1} y_{11} \\
\Rightarrow[[\mathrm{M}]+\omega[\mathrm{I}]]_{11}^{-1} & =j L_{1} y_{11} . \tag{2.15}
\end{align*}
$$

Since, $[\mathrm{M}]$ is a real and reciprocal matrix, all of its eigenvalues are real. So, using the eigenvalue decomposition, the above equation can be written as

$$
\begin{equation*}
\left[[\mathrm{T}][\Lambda][\mathrm{T}]^{t}+\omega[\mathrm{I}]\right]_{11}^{-1}=j L_{1} y_{11} \tag{2.16}
\end{equation*}
$$

where $[\Lambda]=\operatorname{diag}\left[\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N}\right], \lambda_{i}$ are the eigenvalues of $[\mathrm{M}]$ and $[\mathrm{T}]$ is an orthogonal matrix (i.e., $[\mathrm{T}][\mathrm{T}]^{t}=[\mathrm{I}]$). In addition, the columns of $[\mathrm{T}]$ are eigenvectors of $[\mathrm{M}]$. The general solution
for $(i, j)^{\text {th }}$ element of the left-hand side matrix of (2.16) is given as

$$
\begin{align*}
{\left[[\mathrm{T}][\Lambda][\mathrm{T}]^{t}+\omega[\mathrm{I}]\right]_{i j}^{-1} } & =\left[[\mathrm{T}][\Lambda][\mathrm{T}]^{t}+[\mathrm{I}] \omega[\mathrm{I}]\right]_{i j}^{-1} \\
& =\left[[\mathrm{T}][\Lambda][\mathrm{T}]^{t}+[\mathrm{T}][\mathrm{T}]^{t} \omega[\mathrm{~T}][\mathrm{T}]^{t}\right]_{i j}^{-1} \\
& =\left[[\mathrm{T}]\left[[\Lambda]+[\mathrm{T}]^{t} \omega[\mathrm{~T}]\right][\mathrm{T}]^{t}\right]_{i j}^{-1} \\
& =\left[[\mathrm{T}][[\Lambda]+\omega[\mathrm{I}]][\mathrm{T}]^{t}\right]_{i j}^{-1} \\
& =\left[[\mathrm{T}][[\Lambda]+\omega[\mathrm{I}]]^{-1}[\mathrm{~T}]^{t}\right]_{i j} \\
& =\sum_{k=1}^{N} \frac{T_{i k} T_{j k}}{\omega+\lambda_{k}}, i, j=1,2, \cdots, N \tag{2.17}
\end{align*}
$$

Therefore from (2.17) and (1.17),

$$
\begin{align*}
\sum_{k=1}^{N} \frac{T_{1 k}^{2}}{\omega+\lambda_{k}} & =j L_{1} y_{11} \\
\Rightarrow \sum_{k=1}^{N} \frac{T_{1 k}^{2}}{\omega+\lambda_{k}} & =\frac{j L_{1}}{R_{S}} \frac{\left(\mathbb{E} \mathbb{F}_{-}+\mathbb{E} \mathbb{F}_{-*}\right)}{\left(\mathbb{E} \mathbb{F}_{+}-\mathbb{E} \mathbb{F}_{+*}\right)} . \tag{2.18}
\end{align*}
$$

In the above equation, it can be observed that the numerator is always one degree less than the denominator (i.e., there wont be any constant term when (2.18) is expanded as partial fractions). Similarly, from (2.11),

$$
\begin{align*}
-\frac{\left[\mathrm{Z}^{\text {norm }}\right]_{1 N}^{-1}}{\sqrt{L_{1} L_{N}}} & =y_{21} \\
\Rightarrow[[\mathrm{M}]+\omega[\mathrm{I}]]_{1 N}^{-1} & =-j \sqrt{L_{1} L_{N}} y_{21} \\
\Rightarrow[[\mathrm{~T}][\Lambda][\mathrm{T}]+\omega[\mathrm{I}]]_{1 N}^{-1} & =-j \sqrt{L_{1} L_{N}} y_{21} \\
\Rightarrow \sum_{k=1}^{N} \frac{T_{1 k} T_{N k}}{\omega+\lambda_{k}} & =j \sqrt{\frac{L_{1} L_{N}}{R_{S} R_{L}}} \frac{2 P}{\varepsilon\left(\mathbb{E} \mathbb{F}_{+}-\mathbb{E} \mathbb{F}_{+*}\right)} . \tag{2.19}
\end{align*}
$$

From (2.18) and (2.19) it can be said that $-\lambda_{k}$ values are zeros of $\left(\mathbb{E} \mathbb{F}_{+}-\mathbb{E} \mathbb{F}_{+*}\right)$, and $T_{1 k} \& T_{N k}$ values are related to the residues at those zeros.

Determination of $\frac{R_{S}}{L_{1}}$ and $\frac{R_{L}}{L_{N}}$

So far, the known parameters are $\varepsilon, \varepsilon_{R}, F(j \omega), P(j \omega)$ and $E(j \omega)$. In addition, from the properties of orthogonal matrices,

$$
\begin{cases}\sum_{k=1}^{N} T_{1 k}^{2} & =1 \tag{2.20}\\ \sum_{k=1}^{N} T_{N k}^{2} & =1\end{cases}
$$

If it is assumed that

$$
\sum_{k=1}^{N} \frac{G_{1 k}^{2}}{\omega+\lambda_{k}}=j \frac{\left(\mathbb{E}_{-}+\mathbb{E}_{-*}\right)}{\left(\mathbb{E}_{+}-\mathbb{E} \mathbb{F}_{+*}\right)}
$$

then from (2.18),

$$
\begin{equation*}
T_{1 k}=G_{1 k} \sqrt{\frac{L_{1}}{R_{S}}} . \tag{2.21}
\end{equation*}
$$

Combining (2.21) and (2.20) gives ${ }^{3}$

$$
\begin{align*}
\sum_{k=1}^{N} \frac{L_{1}}{R_{S}} G_{1 k}^{2} & =1 \\
\Rightarrow \frac{R_{S}}{L_{1}} & =\sum_{k=1}^{N} G_{1 k}^{2} \tag{2.22}
\end{align*}
$$

Similarly, it can be showed that

$$
\begin{align*}
T_{N k} & =G_{N k} \sqrt{\frac{L_{N}}{R_{L}}}, \text { where } \\
\frac{R_{L}}{L_{N}} & =\sum_{k=1}^{N} G_{N k}^{2} \tag{2.23}
\end{align*}
$$

So, for a given filter response, one can determine the matrix $[\Lambda]$ and $1^{\text {st }}$ and $N^{\text {th }}$ rows of the matrix $[\mathrm{T}]$. If the matrix $[\mathrm{T}]$ is a $3^{\text {rd }}$ order matrix, then the remaining row (i.e., the second row) can be easily determined. No such simple unique solution exists if the order of the filter is greater than 3. So, usually those remaining rows are found by using the Gram-Schmidt orthonormalization process with starting independent vectors ${ }^{4}$ as $\left(T_{11}, T_{12}, \cdots, T_{1 N}\right),\left(T_{N 1}, T_{N 2}, \cdots, T_{N N}\right)$, $(0,0,1, \cdots, 0), \cdots$ and $(0,0,0, \cdots, 1)$, . All these vectors are independent as long as $T_{11} \neq 0$ and $T_{N 2} \neq 0$. Otherwise, a different set of vectors should be chosen.

[^5]
2.5.2.2 Shunt Type LPP

From (2.14) and (1.18),

$$
\begin{align*}
{\left[\mathrm{Y}^{\mathrm{norm}}\right]_{11}^{-1} } & =C_{1} z_{11} \\
\Rightarrow[[\mathrm{M}]+\omega[\mathrm{I}]]_{11}^{-1} & =j C_{1} z_{11} \\
\Rightarrow\left[[\mathrm{~T}][\mathrm{N}][\mathrm{T}]^{t}+\omega[\mathrm{I}]_{11}^{-1}\right. & =j C_{1} z_{11} \\
\Rightarrow \sum_{k=1}^{N} \frac{T_{1 k}^{2}}{\omega+\lambda_{k}} & =j C_{1} z_{11} \\
\Rightarrow \sum_{k=1}^{N} \frac{T_{1 k}^{2}}{\omega+\lambda_{k}} & =j R_{S} C_{1} \frac{\left(\mathbb{E F}_{+}+\mathbb{E F}_{+*}\right)}{\left(\mathbb{E} \mathbb{F}_{-}-\mathbb{E F}_{-*}\right)} . \tag{2.24}
\end{align*}
$$

Once again, $[\Lambda]=\operatorname{diag}\left[\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N}\right], \lambda_{i}$ are the eigenvalues of $[\mathrm{M}]$, and $[\mathrm{T}]$ is an orthogonal matrix. Similarly, from (2.14) and (1.18),

$$
\begin{align*}
{\left[\mathrm{Y}^{\mathrm{norm}}\right]_{1 N}^{-1} } & =\sqrt{C_{1} C_{N}} z_{21} \\
\Rightarrow[[\mathrm{M}]+\omega[\mathrm{I}]]_{1 N}^{-1} & =j \sqrt{C_{1} C_{N}} z_{21} \\
\Rightarrow[[\mathrm{~T}][\Lambda][\mathrm{T}]+\omega[\mathrm{I}]]_{1 N}^{-1} & =j \sqrt{C_{1} C_{N}} z_{21} \\
\Rightarrow \sum_{k=1}^{N} \frac{T_{1 k} T_{N k}}{\omega+\lambda_{k}} & =j \sqrt{R_{S} R_{L} C_{1} C_{N}} \frac{2 P}{\varepsilon\left(\mathbb{E} \mathbb{F}_{-}-\mathbb{E} \mathbb{F}_{-*}\right)} . \tag{2.25}
\end{align*}
$$

2.6 The $N+2$ Coupling Matrix

Till now, it is assumed that coupling is an intra resonator phenomena. In addition, if coupling between source/load to inner resonators is allowed, then fully canonical filter responses (i.e., $\left.n_{f z}=N\right)$ too can be achieved. A LPP configuration with source/load to inner resonator couplings is shown in Fig. 2.8.

2.6.1 Analysis of the General $N+2$ Coupling Matrix

2.6.1.1 Series Type LPP

KVL equations corresponding to Fig. 2.8 are given in matrix form as

$$
\left[\begin{array}{c}
v_{S} \tag{2.26}\\
0 \\
0 \\
\vdots \\
0 \\
-v_{L}
\end{array}\right]=j \underbrace{\left[\begin{array}{cccccc}
0 & K_{S, 1} & K_{S, 2} & \cdots & K_{S, N} & K_{S, L} \\
K_{S, 1} & \omega L_{1}+X_{1} & K_{1,2} & \cdots & K_{1, N} & K_{1, L} \\
K_{S, 2} & K_{1,2} & \omega L_{2}+X_{2} & \cdots & K_{2, N} & K_{2, L} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
K_{S, N} & K_{1, N} & K_{2, N} & \cdots & \omega L_{N}+X_{N} & K_{N, L} \\
K_{S, L} & K_{1, L} & K_{2, L} & \cdots & K_{N, L} & 0
\end{array}\right]}_{[\mathrm{Z}]}\left[\begin{array}{c}
i_{S} \\
i_{1} \\
i_{2} \\
\vdots \\
i_{N} \\
i_{L}
\end{array}\right] .
$$

Figure 2.8: Series type LPP with source/load to inner resonator couplings.

Normalizing the above matrix gives

$$
\left[\begin{array}{c}
v_{S} \tag{2.27}\\
0 \\
0 \\
\vdots \\
0 \\
-v_{L}
\end{array}\right]=\underbrace{i_{S}}_{\left[\begin{array}{cccccc}
0 & \frac{K_{S, 1}}{\sqrt{L_{1}}} & \frac{K_{S, 2}}{\sqrt{L_{2}}} & \cdots & \frac{K_{S, N}}{\sqrt{L_{N}}} & K_{S, L} \\
{\left[\begin{array}{l}
{\left[\begin{array}{l}
\text { norm }]
\end{array}\right][[\mathrm{M}]+\omega[\mathrm{I}]]} \\
\frac{K_{S, 1}}{\sqrt{L_{1}}} \\
\omega+\frac{X_{1}}{L_{1}}
\end{array} \frac{\frac{K_{1,2}}{\sqrt{L_{1} L_{2}}}}{\cdots}\right.} & \cdots & \frac{K_{1, N}}{\sqrt{L_{1} L_{N}}} & \frac{K_{1, L}}{\sqrt{L_{1}}} \\
\frac{K_{S, 2}}{\sqrt{L_{2}}} & \frac{K_{1,2}}{\sqrt{L_{1} L_{2}}} & \omega+\frac{X_{2}}{L_{2}} & \cdots & \frac{K_{2, N}}{\sqrt{L_{2} L_{N}}} & \frac{K_{2, L}}{\sqrt{L_{2}}} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
K_{S, N} & \frac{K_{1, N}}{\sqrt{L_{1} L_{N}}} & \frac{K_{2, N}}{\sqrt{L_{2} L_{N}}} & \cdots & \omega+\frac{X_{N}}{L_{N}} & \frac{K_{N, L}}{\sqrt{L_{N}}} \\
K_{S, L} & \frac{K_{1, L}}{\sqrt{L_{1}}} & \frac{K_{2, L}}{\sqrt{L_{2}}} & \cdots & \frac{K_{N, L}}{\sqrt{L_{N}}} & 0
\end{array}\right]}\left[\begin{array}{c}
i_{1} \sqrt{L_{1}} \\
i_{2} \sqrt{L_{2}} \\
\vdots \\
i_{N} \sqrt{L_{N}} \\
i_{L}
\end{array}\right] .
$$

Re-writing (2.27) gives

$$
\begin{align*}
& {\left[\begin{array}{c}
i_{S} \\
i_{1} \sqrt{L_{1}} \\
i_{2} \sqrt{L_{2}} \\
\vdots \\
i_{N} \sqrt{L_{N}} \\
i_{L}
\end{array}\right] }=\left[\mathrm{Z}^{\text {norm }}\right]^{-1}\left[\begin{array}{c}
v_{S} \\
0 \\
0 \\
\vdots \\
0 \\
-v_{L}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{c}
i_{S} \\
i_{L}
\end{array}\right]=\left[\begin{array}{cc}
{\left[\mathrm{Z}^{\text {norm }}\right]_{1,1}^{-1}} & {\left[\mathrm{Z}^{\text {norm }}\right]_{1, N+2}^{-1}} \\
{\left[\mathrm{Z}^{\text {norm }}\right]_{N+2,1}^{1}} & {\left[\mathrm{Z}^{\text {norm }}\right]_{N+2, N+2}^{-1}}
\end{array}\right]\left[\begin{array}{c}
v_{S} \\
-v_{L}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{c}
i_{S} \\
-i_{L}
\end{array}\right]=\left[\begin{array}{cc}
{\left[\mathrm{Z}^{\text {norm }}\right]_{1,1}^{-1}} & -\left[\mathrm{Z}^{\text {norm }}\right]_{1, N+2}^{-1} \\
-\left[\mathrm{Z}^{\text {norm }}\right]_{N+2,1}^{-1} & {\left[\mathrm{Z}^{\text {norm }}\right]_{N+2, N+2}^{-1}}
\end{array}\right]\left[\begin{array}{c}
v_{S} \\
v_{L}
\end{array}\right] \tag{2.28}
\end{align*}
$$

Figure 2.9: Shunt type LPP with source/load to inner resonator couplings.

2.6.1.2 Shunt Type LPP

From the duality principle and (2.28),

$$
\begin{align*}
& {\left[\begin{array}{c}
v_{S} \\
-v_{L}
\end{array}\right] }=\left[\begin{array}{cc}
{\left[\mathrm{Y}^{\text {norm }}\right]_{1,1}^{-1}} & -\left[\mathrm{Y}^{\text {norm }}\right]_{1, N+2}^{-1} \\
-\left[\mathrm{Y}^{\text {norm }}\right]_{N+2,1}^{-1} & {\left[\mathrm{Y}^{\text {norm }}\right]_{N+2, N+2}^{-1}}
\end{array}\right]\left[\begin{array}{c}
i_{S} \\
i_{L}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{c}
v_{S} \\
v_{L}
\end{array}\right]=\left[\begin{array}{cc}
{\left[\mathrm{Y}^{\text {norm }}\right]_{1,1}^{-1}} & {\left[\mathrm{Y}^{\text {norm }}\right]_{1, N+2}^{-1}} \\
{\left[\mathrm{Y}^{\text {norm }}\right]_{N+2,1}^{-1}} & {\left[\mathrm{Y}^{\text {norm }}\right]_{N+2, N+2}^{-1}}
\end{array}\right]\left[\begin{array}{c}
i_{S} \\
-i_{L}
\end{array}\right], \tag{2.29}
\end{align*}
$$

where

$$
\left[\mathrm{Y}^{\mathrm{norm}}\right]=j\left[\begin{array}{cccccc}
0 & \frac{J_{S, 1}}{\sqrt{C_{1}}} & \frac{J_{S, 2}}{\sqrt{C_{2}}} & \cdots & \frac{J_{S, N}}{\sqrt{C_{N}}} & J_{S, L} \tag{2.30}\\
\frac{J_{S, 1}}{\sqrt{C_{1}}} & \omega+\frac{B_{1}}{C_{1}} & \frac{J_{1,2}}{\sqrt{C_{1} C_{2}}} & \cdots & \frac{J_{1, N}}{\sqrt{C_{1} C_{N}}} & \frac{J_{1, L}}{\sqrt{C_{1}}} \\
\frac{J_{S, 2}}{\sqrt{C_{2}}} & \frac{J_{1,2}}{\sqrt{C_{1} C_{2}}} & \omega+\frac{B_{2}}{C_{2}} & \cdots & \frac{J_{2, N}}{\sqrt{C_{2} C_{N}}} & \frac{J_{2, L}}{\sqrt{C_{2}}} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
J_{S, N} & \frac{J_{1, N}}{\sqrt{C_{1} C_{N}}} & \frac{J_{2, N}}{\sqrt{C_{2} C_{N}}} & \cdots & \omega+\frac{B_{N}}{C_{N}} & \frac{J_{N, L}}{\sqrt{C_{N}}} \\
J_{S, L} & \frac{J_{1, L}}{\sqrt{C_{1}}} & \frac{2_{2, L}}{\sqrt{C_{2}}} & \cdots & \frac{J_{N, L}}{\sqrt{C_{N}}} & 0
\end{array}\right] .
$$

2.6.2 Synthesis of the General $N+2$ Coupling Matrix

2.6.2.1 Series Type LPP

From (2.28),

$$
\begin{align*}
{\left[\mathrm{Z}^{\text {norm }}\right]_{11}^{-1} } & =y_{11} \\
\Rightarrow[[\mathrm{M}]+\omega[\mathrm{I}]]_{11}^{-1} & =j y_{11} . \tag{2.31}
\end{align*}
$$

Following the theory presented in Sec. 2.5.2.1,

$$
\begin{align*}
& \sum_{k=1}^{N+2} \frac{T_{1 k}^{2}}{\omega+\lambda_{k}}=j y_{11} \\
\Rightarrow & \sum_{k=1}^{N+2} \frac{T_{1 k}^{2}}{\omega+\lambda_{k}}=\frac{j}{R_{S}} \frac{\left(\mathbb{E F}_{-}+\mathbb{E} \mathbb{F}_{-*}\right)}{\left(\mathbb{E} \mathbb{F}_{+}-\mathbb{E} \mathbb{F}_{+*}\right)}, \tag{2.32}
\end{align*}
$$

where, $[M]=[T][\Lambda][T]^{t}$. Similarly,

$$
\begin{align*}
-\left[\mathrm{Z}^{\text {norm }}\right]_{1, N+2}^{-1} & =y_{21} \\
\Rightarrow \sum_{k=1}^{N+2} \frac{T_{1 k} T_{N+2, k}}{\omega+\lambda_{k}} & =\frac{j}{\sqrt{R_{S} R_{L}}} \frac{2 P}{\varepsilon\left(\mathbb{E} \mathbb{F}_{+}-\mathbb{E} \mathbb{F}_{+*}\right)} \tag{2.33}
\end{align*}
$$

2.6.2.2 Shunt Type LPP

From (2.29) and (1.18),

$$
\begin{align*}
{\left[\mathrm{Y}^{\text {norm }}\right]_{11}^{-1} } & =z_{11} \\
\Rightarrow \sum_{k=1}^{N+2} \frac{T_{1 k}^{2}}{\omega+\lambda_{k}} & =j z_{11} \\
\Rightarrow \sum_{k=1}^{N+2} \frac{T_{1 k}^{2}}{\omega+\lambda_{k}} & =j R_{S} \frac{\left(\mathbb{E F}_{+}+\mathbb{E} \mathbb{F}_{+*}\right)}{\left(\mathbb{E} \mathbb{F}_{-}-\mathbb{E F}_{-*}\right)} . \tag{2.34}
\end{align*}
$$

where, $[M]=[T][\Lambda][T]^{t}$. Similarly,

$$
\begin{align*}
{\left[\mathrm{Y}^{\text {norm }}\right]_{1, N+2}^{-1} } & =z_{21} \\
\Rightarrow \sum_{k=1}^{N+2} \frac{T_{1 k} T_{N+2, k}}{\omega+\lambda_{k}} & =j \sqrt{R_{S} R_{L}} \frac{2 P}{\varepsilon\left(\mathbb{E} \mathbb{F}_{-}-\mathbb{E} \mathbb{F}_{-*}\right)} \tag{2.35}
\end{align*}
$$

2.6.3 Synthesis of the $N+2$ Transversal Matrix

Till now, all the synthesis techniques needed the Gram-Schmidt orthonormalization step. This step can be avoided if one starts with a simpler transversal LPP configuration shown in Fig. 2.10. In this configuration, no coupling exists between the resonators. Only coupling that exists for each resonator is the corresponding interaction with source/load. ABCD parameter matrix corresponding to the highlighted two port section is given as

$$
\begin{aligned}
{\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]_{N} } & =\left[\begin{array}{cc}
0 & \frac{j}{J_{S, N}} \\
j J_{S, N} & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
j \omega C_{N}+j B_{N} & 1
\end{array}\right]\left[\begin{array}{cc}
0 & \frac{j}{J_{N, L}} \\
j J_{N, L} & 0
\end{array}\right] \\
& =-\left[\begin{array}{cc}
\frac{J_{N, L}}{J_{S, N}} & \left(\frac{j \omega C_{N}+j B_{N}}{J_{S, N} J_{N, L}}\right) \\
0 & \frac{J_{S, N}}{J_{N, L}}
\end{array}\right]
\end{aligned}
$$

Figure 2.10: Canonical transversal LPP configuration.

Converting ABCD parameters to Y parameters gives

$$
\begin{aligned}
{\left[\begin{array}{ll}
y_{11} & y_{12} \\
y_{21} & y_{22}
\end{array}\right]_{N} } & =\frac{1}{b}\left[\begin{array}{cc}
d & -1 \\
-1 & a
\end{array}\right] \\
& =\frac{1}{j \omega C_{N}+j B_{N}}\left[\begin{array}{cc}
J_{S, N}^{2} & J_{S, N} J_{N, L} \\
J_{S, N} J_{N, L} & J_{N, L}^{2}
\end{array}\right] .
\end{aligned}
$$

Since all two port sections are connected parallely, overall Y parameter matrix is given as

$$
\left[\begin{array}{ll}
y_{11} & y_{12} \tag{2.36}\\
y_{21} & y_{22}
\end{array}\right]_{\text {total }}=\left[\begin{array}{cc}
0 & \frac{j}{J_{S, L}} \\
j J_{S, L} & 0
\end{array}\right]+\sum_{k=1}^{N} \frac{1}{j \omega C_{k}+j B_{k}}\left[\begin{array}{cc}
J_{S, k}^{2} & J_{S, k} J_{k, L} \\
J_{S, k} J_{k, L} & J_{k, L}^{2}
\end{array}\right] .
$$

From (2.36) and (1.17)

$$
\begin{align*}
\frac{\left(\mathbb{E F}_{-}+\mathbb{E} \mathbb{F}_{-*}\right)}{R_{S}\left(\mathbb{E P}_{+}-\mathbb{E}_{+*}\right)} & =\sum_{k=1}^{N} \frac{J_{S, k}^{2}}{j \omega C_{k}+j B_{k}} \text { and } \\
-\frac{1}{\sqrt{R_{S} R_{L}}} \frac{2 P}{\varepsilon\left(\mathbb{E} \mathbb{F}_{+}-\mathbb{E} \mathbb{F}_{+*}\right)} & =\frac{j}{J_{S, L}}+\sum_{k=1}^{N} \frac{J_{S, k} J_{k, L}}{j \omega C_{k}+j B_{k}} . \tag{2.37}
\end{align*}
$$

So, one can obtain first and last rows (and columns), and all the diagonal elements of (2.30) by equating poles and residues on both sides of (2.37). In addition, all other elements are zero for transveresal prototype.

[^0]: ${ }^{1}$ All polynomials we are dealing in this section are assumed to be normalized (by ε and ε_{R}) such that their highest degree coefficients are equal to 1 .

[^1]: ${ }^{2}$ For the time being, these properties are stated without any proof.
 ${ }^{3}$ If $n_{f z}$, the degree of the polynomial $P(s)$ is zero, then all transmission zeros are located at $s= \pm j \infty$ (e.g., conventional Butterworth, Chebyshev, etc.).

[^2]: ${ }^{4}$ from the view point of placement of the roots of polynomials $E(s), F(s)$ and $P(s)$

[^3]: ${ }^{1}$ All the theory given in this section is related to synchronous coupling (i.e., the two isolated resonators resonate at the same frequency). For mixed and asynchronous couplings, see [J. S. Hong].

[^4]: ${ }^{2} F(j \omega)$ and $P(j \omega)$ are given from the desired filter responce.

[^5]: ${ }^{3}$ It is the ration between R_{S} and L_{1} that is important, not their actual values. So, without loss of generality, many authors simply assume that $L_{1}=1 \mathrm{H}$.
 ${ }^{4}$ Except for the first and last, all the other independent vectors are chosen here (kind of) randomly. One can choose any other combination of vectors if he/she wants!

