

Microwave Assisted Peptide Synthesis

Sanjukta Ghosh Green Chemistry – 671 December 8, 2011

Overview

- I. What are peptides and why are they important
- II. Conventional method of peptide synthesis : SPPS and challenges
- III. Microwave technology and its contribution
- IV. Conclusion

Overview

I. What are peptides and why are they important

- II. Conventional method of peptide synthesis : SPPS and challenges
- III. Microwave technology and its contribution in SPPS
- IV. Conclusion

Peptides

- Peptides are short amino acid sequences, linked together with a polar amide bond
- Every peptide has a N-terminus and C-terminus residue on the ends of the peptide except for cyclic peptides

Growing Importance of Peptides

- Biological building blocks of Proteins and Enzymes; They act as active regulators and information carriers
- Peptides have numerous therapeutic potential as hormones, enzymes, antibiotics, antitumor agents and neurotransmitters
- Compared with small molecule therapies, peptides have higher specificity and lower toxicity, no accumulation in organs and no side effects
- Insulin was the first peptide to be administered therapeutically
- 40 50 commercially available chemically synthesized peptide based drugs, about 600 in clinical trial stages

Watching peptide drugs grow up. Chem. Eng. News 2005, 83,17 Synthetic therapeutic peptides: science and market. Drug Discovery Today 2010, 15, 40

Peptide NCEs entering clinical study: Rapidly Increasing Market

Company name	Generic name	Indication	Year	
1&1	Nesiritide	Heart failure	2001	
Lily	Teriparatide	Osteoporosis	2002	
Trimeris	Enfuvirtide	HIV	2003	
Praecis	Abarelix	Prostate Cancer	2003	Annual global sales
Elan	Ziconotide	Severe chronic pain	2004	exceeding eleven bi
Amylin	Pramlintide	Diabetes Type 1 and 2	2005	US dollars
Amylin	Exenatide	Diabetes Type 2	2005	
lpsen	Lanreotide	Neuroendocrine tumors	2007	
Amgen	Romiplostim	Immune thrombocytopenia	2008	
Ferring	Degarelix	Cancer	2008]

2010 Report Summary: Development trends for peptide therapeutics, Peptide Therapeutics foundation http://www.zealandpharma.com/technology/Peptide-Chemistry

billion

Overview

- I. What are peptides and why are they important
- II. Conventional method of peptide synthesis : SPPS and challenges
- III. Microwave technology and its contribution in SPPS
- IV. Conclusion

Solid Phase Peptide Synthesis

Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide", *Journal of the American Chemical Society* **85** (14): 2149

- Discovered by Robert Bruce Merrifield in 1963
- Fifth most cited article in journal's history
- Won Nobel Prize in Chemistry in 1984

July 15, 1921, Texas May 14, 2006, N. jersey

- Deprotection
- Coupling
- Cleavage

Elegant and Efficient Challenges : Green?

Challenges in SPPS

Steps of SPPS	Chemicals used	Challenges
Coupling	 a. Carbodiimides: dicyclohexylcarbodiimide (DCC) and diisopropylcarbodiimide (DIC), Phosphonium and Uronium salts Aromatic oximes: 1-hydroxybenzotriazole (HOBt), 1-hydroxy-7-aza-benzotriazole (HOAt) 	 a. Skin irritations and respiratory problems. Toxic nitrogen containing phosphoric byproduct. b. Sensitive and potential explosives
Protection/ Deprotection	t-Boc: (tert Butyloxy carbonyl) ; HF for removal Fmoc: (Fluorenyl-methoxy-carbonyl); for removal : TFA ; 20% piperidine in DMF	Harsh Reaction conditions
Cleavage	Trifluoroacetic acid (TFA)	Harsh Reaction conditions
Solvents	Dimethylformamide H-C(=O)N(CH ₃) ₂ Dichloromethane CH ₂ Cl ₂ Excess of water	Undesirable solvents ; Byproducts in the form of ureas, phosphonium salts, scavengers.

- Use of hazardous chemicals and solvents in large amounts
- \circ $\;$ Formation of toxic byroducts and waste
- \circ $\;$ Low atom efficiency and high E factor $\;$

Challenges in SPPS

- Yield : If each amino acid addition has a 90% yield then the overall yield of a 50 amino acid peptide is only 0.5%.
- Purity : purity of the product formed is affected by deleterious sequences and racemization
- Not suitable for difficult peptides. Difficulties are mainly related to:
 - Intra- and/or intermolecular aggregation
 - Secondary structure formation
 - Steric hindrance of protecting groups which can generate premature termination of the sequence

Need and scope for Improvement

Overview

- I. What are peptides and why are they important
- II. Conventional method of peptide synthesis : SPPS and challenges
- III. Microwave technology and its contribution in SPPS
- IV. Conclusion

History of Microwave Technology

- 1946 : Microwave radiation was discovered as a method of heating by Dr. Percy Spencer
- 1947 : Housed in refrigerator-sized cabinets, First commercial domestic microwave oven was introduced
- 1990s : Microwave chemistry emerged and developed as a field of study for its applications in chemical reactions
- 1992 : First attempt to synthesize peptide in household microwave oven ¹
- 2000 : First commercial microwave synthesizer was introduced to conduct chemical synthesis

Radarange: 6 Feet Tall, 750 Pounds, Cost US\$5000

¹ J.Org.Chem. 1992, 57, 4781

Microwave Technology /Chemistry

- The fundamental mechanism of microwave heating involves agitation of polar molecules or ions that oscillate under the effect of an oscillating electric or magnetic field.
- Only materials that absorb microwave radiation are relevant to microwave chemistry
- Operation range : 1GHz 100 GHz . Chosen based on regulatory and cost constraints

Arrhenius Equation: $k = A e^{-Ea/RT}$

Thermal effect : Reduction in reaction Time

Fmoc/tBu RT and MW-assisted SPPS deprotection and coupling protocols used for the synthesis of PTHrP(1–34)NH2

	First d	eprotect	ion	Second deprotection			Coupling		
Protocol	Time (min)	Power (W)	Tempe rature (°C)	Time (min)	Power (W)	Temper ature (°C)	Time (min)	Power (W)	Temper ature (°C)
RT- SPPS	5	—	20	10	_	20	20	—	20
MW- assiste d SPPS	0.5	35	75	3	60	75	5	30	75

Faster Reactions : Time decreased from 35 mins to 8.5 mins

Journal of Peptide Science

Volume 17, Issue 10, pages 708–714, October 2011

Electromagnetic effect : Synthesis of difficult peptides

Less reagents required

Source : Journal of Peptide Science 2007; 13: 143–148

Direct Solid-Phase Synthesis of the β-Amyloid (1-42) Peptide Using Controlled Microwave Heating Bernadett Bacsa, Szilvia Bosze and C. Oliver Kappe J. Org. Chem. Vol. 75, No. 6, 2010

RT (SPPS)

86⁰C (MW)

45 mins

10 mins

β -amyloid peptide : H-DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA								
300 W single-mode manual microwave peptide synthesizer								
Reaction	Coupling (DIC, HOBt,	Over All	HPLC	IC ₅₀				
Temperature	NMP, Fmoc-AA)	Synthesis Time	Purity %					

54 h

26 h

 β -amyloid (1-42) peptide is the major component of the neurological plaques in Alzheimer's patients

54

78

5.48

5.12

RT Synthesis is difficult due to reported on-resin aggregation and folding due to hydrophobic C-terminus

(IC_{50:} Half maximal inhibitory concentration) : How effective a drug is ?

Solid-Phase Peptide Synthesis in Water Using Microwave-Assisted Heating *Organic Letters*, **2009**, *11* (20), pp 4488–4491

Leu-enkephalin; neurotransmitter :Tyr-Gly-Gly-Phe-Leu (H-YGGFL-OH) Complete synthesis in water with water soluble reagents

- Faster reaction with high yield and purity (81-90%)
- Small amount of impurities were observed as a result of byproduct and deletion reactions which was minimized using Triton detergent
- Challenge : Compatibility of the peptide and reagents in water

Purity of the peptide obtained by microwave heating and conventional heating on a hot plate was similar

Solid-Phase Synthesis of Difficult Peptide Sequences at Elevated Temperatures: A Critical Comparison of Microwave and Conventional Heating Technologies

J. Org. Chem. 2008, 73, 7532–7542 Bernadett Bacsa,[†] Kata Horva´ti,[‡] Szilvia Bo[~]sze,[‡] Fritz Andreae,§ and C. Oliver Kappe^{*},[†]

- 1. H-Gly-Ile-Leu-Thr(t-Bu)-Val-Ser(t-Bu)-Val-Ala-Val-CONH2
- 2. H-Lys-Trp-Lys-Leu-Phe-Lys-Lys-Ile-Gly-Ala-Val-Leu-Lys-Val-Leu-CONH2
- 3. H-Cys(Trt)-Gly-Ile-Gly-Lys(Boc)-Phe-Leu-His(Trt)-Gly-Ala-Lys(Boc)-Lys(Boc)-Phe-Gly-Lys(Boc)-
- Ala- Phe-Val-Gly-Glu-(OtBu)-Ile-Met-Asn(Trt)-Ser(tBu)-CONH2
- Conventional heating was done using heating block (PLS 4 × 6 organic synthesizer from Advanced ChemTech.
- 300 W single-mode manual microwave peptide synthesizer (Discover SPS)
- Fast responding fiberoptic probe system as accurate temperature measurement device

Result : Synthesis of GILTVSVAV Using Microwave and Conventional Heating at the Same Temperature

	Fmoc-an	nino acid			
entry	equiv	concn (M)	coupling time (min)	deprotection time (min)	purity ^b (%)
1	3	0.11	60	2 + 20	<1
2	5	0.18	60	2 + 20	32
3	10	0.36	60	2 + 20	37
4	5	0.18	10	2 + 20	<1
5	5	0.18	20	2 + 20	5

		Fmoc-	amino acid		coupling		deprot			
entry		equiv	conc (M)	temp ^b (°C)	power ^c (W)	time (min)	temp ^b (°C)	power ^c (W)	Time (min)	purity ^d (%)
Tentagel										
1	CONV	5	0.18	67		21	67		1.5 + 3.5	77
2	MW	5	0.18	67	5	20	67	20	0.5 + 2.5	82/83
3	CONV	5	0.18	86		11	86		1.5 + 3.5	89
4	MW	5	0.18	86	10	10	86	20	0.5 + 2.5	92/93
					Chem	Matrix				
5	CONV	5	0.38	67		21	67		1.5 + 3.5	90
6	MW	5	0.38	67	5	20	67	20	0.5 + 2.5	91/89
7	CONV	3	0.23	86		11	86		1.5 + 3.5	91
8	MW	3	0.23	86	10	10	86	20	0.5 + 2.5	95/91

Conclusion

	Number of Residues	RT SPPS	Conventional Heating	Microwave Irradiation
Peptide 1	9	32- 37%	91%	92-95%
peptide 2	15	_	87%	91%
Peptide 3	23	_	48%	54%

- The observed enhancement effects in the microwave-assisted SPPS are of purely thermal nature and not related to the microwave field
- No evidence for a proposed disaggregation of the peptide backbone via direct interaction of the peptide chain with the microwave field was obtained

Advantages over SPPS

- Faster reactions
- Better yield and Purity of peptide
- Better technology for difficult sequences
- Efficient source of heating
- Uniform Heating of the sample
- Greener solvents
- Solvent less synthesis is possible
- Less solvent and Reagents Use
- Greater Reproducibility

Disadvantages

- Heating under elevated temperatures.
- Racemization of the Histidine and cysteine
- Heating Efficiency
- Lack of scalability
- Safety hazards
- Health Hazards

MW have improved the peptide synthesis in pharmaceutical industry by reducing the significant amount of time, energy and waste generation

Path Forward : Attempts to make SPPS Green

- Use of more environmentally safe solvents and reagents
- Use of alternative reaction media : Ionic liquids, scCO₂
- Biocatalysis : Enzyme catalyzed peptide synthesis

Milestones : Flowsynth

Peptide Scientific Inc. PSI 200- 600

Saves 40% of solvents by recycling Fully and semi automated, scales upto 10kg

Biotage : Initiator Peptide Workstation

Accelbeam

AAPPTech

Fully automated ;Difficult sequences, : Single reactor vessel, 25 ml to 2 L

CEM: Liberty 1

Small scale, cost-effective, ideal for universities.

References

Conventional and microwave-assisted SPPS approach: a comparative synthesis of PTHrP(1– 34)NH₂. October 2011 Journal of Peptide Science, Volume 17, Issue 10, pages 708–714,

Direct Solid-Phase Synthesis of the β-Amyloid (1-42) Peptide Using Controlled Microwave Heating J. Org. Chem. Vol. 75, No. 6, 2010

Solid-Phase Peptide Synthesis in Water Using Microwave-Assisted Heating Organic Letters, 2009, 11 (20), pages 4488–4491

Solid-Phase Synthesis of Difficult Peptide Sequences at Elevated Temperatures: A Critical Comparison of Microwave and Conventional Heating Technologies

J. Org. Chem. 2008, 73, 7532-7542

Microwave Assisted Peptide Synthesis – A Tool to Replace Classical SPPS ? Peptides (2005) Volume: 43, Issue: 2, Pages: 148-149

Microwaves in organic and medicinal chemistry By C. Oliver Kappe, Alexander Stadler. Microwave Heating as a Tool for Sustainable Chemistry By Nicholas E. Leadbeater Nature Reviews Drug Discovery January 2006, 5, 51-63 Watching peptide drugs grow up Chem. Eng. News 2005, 83, 17–21

Figure 2: Generation of a Standing Wave Pattern

Source: Chapter on Standing Waves and Musical Instruments at www.tufts.edu

Figure 4: Multi-mode Heating Apparatus

Source: Self-turning Single-mode cavity in Discoverer[™] system by CEM Corporation

Source: http://www.pueschner.com/engl/basics/index.html

The protein alphabet--the 20 amino acid R groups

Source: Biotage AB

A microwave oven converts only part of its electrical input into microwave energy. A typical consumer microwave oven consumes 1100 W of electricity in producing 700 W of microwave power, an efficiency of 64%. The other 400 W are dissipated as heat, mostly in the magnetron tube. Additional power is used to operate the lamps, AC power transformer, magnetron cooling fan, food turntable motor and the control circuits. Such wasted heat, along with heat from the product being microwaved, is exhausted as warm air through cooling vents