5,1. Midsegment Theorem and Coordinate Proof

Georgia Performance Standard(s)	Goal - Use properties of midsegments and write coordinate proofs.	
MM1G1c, MM1G1e		
Your Notes	VOCABULARY	
	Midsegment of a triangle	
	THEOREM 5.1: MIDSEGMENT THEOREM The segment connecting the midpoints of two sides of a triangle is \qquad to the third side and is \qquad as long as that side. $\overline{D E} \\| \overline{A C}$ and $D E=\frac{1}{2} A C$	

Example 1 Use the Midsegment Theorem to find lengths

Windows A large triangular window is segmented as shown. In the diagram,

In the diagram for Example 1, midsegment $\overline{D F}$ can be called "the midsegment opposite $\overline{B C}$." $\overline{D F}$ and $\overline{E F}$ are midsegments of $\triangle A B C$. Find $D F$ and $A B$.

$D F=\quad \cdot B C=\quad(\square)=$ \qquad
$A B=$ \qquad - $E F=$ \qquad) $=$ \qquad
(Checkpoint Complete the following exercise.

1. In Example 1, consider $\triangle A D F$. What is the length of the midsegment opposite $\overline{D F}$?

Example 2 Use the Midsegment Theorem
In the diagram at the right, $Q S=S P$ and $P T=T R$. Show that $\overline{Q R} \| \overline{S T}$.

Solution

Because $Q S=S P$ and $P T=T R, S$ is the \qquad of $\overline{Q P}$ and T is the \qquad of $\overline{P R}$ by definition. Then $\overline{S T}$ is a \qquad of $\triangle P Q R$ by definition and $\overline{Q R} \| \overline{S T}$ by the \qquad .

Example 3 Place a figure in a coordinate plane

Place each figure in a coordinate plane in a way that is convenient for finding side lengths. Assign coordinates to each vertex.
a. A square
b. An acute triangle

Solution

It is easy to find lengths of horizontal and vertical segments and distances from \qquad , so place one vertex at the \qquad and one or more sides on an \qquad .
a. Let s represent the
b. You need to use different variables.

Your Notes

(Checkpoint Complete the following exercises.
2. In Example 2, if V is the midpoint of $\overline{Q R}$, what do you know about $\overline{S V}$?
3. Place an obtuse scalene triangle in a coordinate plane that is convenient for finding side lengths. Assign coordinates to each vertex.
\qquad

LESSON

Practice

$\overline{M P}$ is a midsegment of $\triangle L N O$. Find the value of x.
1.

2.

3.

4.

In $\triangle D E F, \overline{E J} \cong \overline{J F}, \overline{F K} \cong \overline{K D}$, and $\overline{D G} \cong \overline{G E}$. Complete the statement.
5. $\overline{G J} \|$ \qquad
6. $\overline{E J} \cong$ \qquad \cong \qquad
7. $\overline{D E} \|$ \qquad
8. $\overline{G J} \cong$ \qquad \cong

\qquad

Use the diagram of $\triangle X Y Z$ where U, V, and W are the midpoints of the sides.

9. If $U W=4 x-1$ and $Y Z=5 x+4$, what is $U W$?

10. Find $Y V$.

Use the graph shown.

11. Find the coordinate of the endpoints of each midsegment of $\triangle P Q R$.

12. Use the slope and the Distance Formula to verify that the Midsegment Theorem is true for $\overline{S T}$.
\qquad
\qquad

ESSON 5.1 Practice continued

Place the figure in the coordinate plane. Assign coordinates to each vertex.

13. $A 4$ unit by 7 unit rectangle with one vertex at $(0,0)$.

14. A square with side length 4 and one vertex at $(4,0)$.

Place the figure in the coordinate plane. Assign coordinates to each vertex. Explain the advantage of your placement.
15. Right triangle: leg lengths are 5 units and 9 units

16. Isosceles right triangle: leg length is 14 units

\qquad
${ }_{5.1}$ waw Practice coninued

In Exercises 17 and 18, describe a plan for the proof.

17. GIVEN: Coordinates of vertices of $\triangle A B C$

PROVE: $\triangle A B C$ is isosceles.

18. GIVEN: $\overline{B D}$ bisects $\angle A B C$.

PROVE: $\triangle B D A \cong \triangle B D C$

5.2

Georgia

 Performance Standard(s)MM1G3e

Your Notes

Use Perpendicular Bisectors

Goal - Use perpendicular bisectors to solve problems.

VOCABULARY

Perpendicular bisector

Equidistant

Concurrent

Point of concurrency

Circumcenter

THEOREM 5.2: PERPENDICULAR BISECTOR THEOREM

In a plane, if a point is on the perpendicular bisector of a segment, then it is from the endpoints of the segment.

If $\overleftrightarrow{C P}$ is the \perp bisector of $\overrightarrow{A B}$, then $C A=$ \qquad .

THEOREM 5.3: CONVERSE OF THE PERPENDICULAR

 BISECTOR THEOREMIn a plane, if a point is equidistant from the endpoints of a segment, then it is on the \qquad ___ of the segment.

If $D A=D B$, then D lies on the \qquad

Example 1 Use the Perpendicular Bisector Theorem
$\overleftrightarrow{A C}$ is the perpendicular bisector of $\overline{B D}$. Find $A D$.

Solution

$A D=$ \qquad
$=$ \qquad
$x=$ \qquad

Perpendicular Bisector Theorem Substitute.
Solve for x.
$A D=\ldots=$ \qquad .

Example 2 Use perpendicular bisectors

In the diagram, $\overleftrightarrow{K N}$ is the perpendicular bisector of $\overline{J L}$.
a. What segment lengths in the diagram are equal?
b. Is M on $\overleftrightarrow{K N}$?

Solution

a. $\overleftrightarrow{K N}$ bisects $\overline{J L}$, so \qquad $=$ \qquad . Because K is on the perpendicular bisector of $\overline{J L}, \quad=\quad$ by Theorem 5.2. The diagram shows that
\qquad $=\quad=13$.
b. Because $M J=M L, M$ is \qquad from J and L.
So, by the \qquad
\qquad M is on the perpendicular bisector of $\overline{J L}$, which is $\overleftrightarrow{K N}$.
v Checkpoint In the diagram, $\overleftrightarrow{J K}$ is the perpendicular bisector of $\overline{\mathbf{G H}}$.

1. What segment lengths are equal?
2. Find GH.

Your Notes

THEOREM 5.4: CONCURRENCY OF PERPENDICULAR BISECTORS OF A TRIANGLE

The perpendicular bisectors of a triangle intersect at a point that is equidistant from the vertices of the triangle.
If $\overline{P D}, \overline{P E}$, and $\overline{P F}$ are perpendicular bisectors, then $P A=$ \qquad = \qquad
 .

Example 3 Use the concurrency of perpendicular bisectors

The perpendicular bisectors of $\triangle M N O$ meet at point S. Find SN.

Solution

Using \qquad , you know that point S is from the vertices of the triangle.
So, \qquad .
$=$ \qquad

Theorem 5.4
Substitute.

Checkpoint Complete the following exercise.
3. The perpendicular bisectors of $\triangle A B C$ meet at point G. Find GC.

\qquad
${ }_{52}$ Practice

Find the length of $\overline{C D}$.

1.

2.

3.

4.

In the diagram, the perpendicular bisectors of $\triangle M N P$ meet at point O and are shown dashed. Find the indicated measure.
5. Find $M O$.
6. Find $P R$.
7. Find $M N$.

\qquad

\section*{| LESSON | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 5.2 | continued |}

Tell whether the information in the diagram allows you to conclude that C is on the perpendicular bisector of $\overline{A B}$. Explain.
8.

9.

10. Camping Your campsite is located 500 yards from the ranger station, the grocery store, and the swimming pool, as shown on the map. The ranger station and the grocery store are located 800 yards apart along Mountain Drive. How far is your campsite from Mountain Drive?

5.3 Use Angle Bisectors of Triangles

Georgia Performance Standard(s) MM1G3e	Goal • Use angle bisectors to find distance relationships.
Your Notes	VOCABULARY
Angle bisector	
Incenter	

THEOREM 5.5: ANGLE BISECTOR THEOREM

If a point is on the bisector of an angle, then it is equidistant from the two \qquad of the angle. If $\overrightarrow{A D}$ bisects $\angle B A C$ and $\overrightarrow{D B} \perp \overrightarrow{A B}$

In Geometry, distance means the shortest length between two objects. and $\overrightarrow{D C} \perp \overrightarrow{A C}$, then $D B=$ \qquad .

THEOREM 5.6: CONVERSE OF THE ANGLE BISECTOR THEOREM

If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the \qquad of the angle.

If $\overline{D B} \perp \overrightarrow{A B}$ and $\overline{D C} \perp \overrightarrow{A C}$ and $D B=D C$, then $\overrightarrow{A D}$ \qquad $\angle B A C$.

Example 1 Use the Angle Bisector Theorems

Find the measure of $\angle C B E$.

Solution

Because $\overline{E C} \perp$ \qquad , $\overline{E D} \perp$ \qquad ,
and $E C=E D=21, \overrightarrow{B E}$ bisects $\angle C B D$ by the \qquad
$\overline{m \angle C B E}=m \angle _=$. So,

Web A spider's position on its web relative to an approaching fly and the opposite sides of the web form congruent angles, as shown. Will the spider have to move farther to reach a fly toward the right edge or the left edge?

Solution

The congruent angles tell you that the spider is on the \qquad of $\angle L F R$. By the \qquad
\qquad , the spider is equidistant from $\overrightarrow{F L}$ and $\overrightarrow{F R}$.
So, the spider must move the \qquad to reach each edge.

Example 3 Use algebra to solve a problem

For what value of x does P lie on the bisector of $\angle J$?

Solution

From the Converse of the Angle Bisector Theorem, you know that P lies on the bisector of $\angle J$ if P is equidistant from the sides of $\angle J$, so when \qquad $=$ \qquad .

Z_{Z}	$=$
	$=$
	$=x$

Set segment lengths equal.
Substitute expressions for segment lengths.

Point P lies on the bisector of $\angle J$ when $x=$ \qquad .

THEOREM 5.7: CONCURRENCY OF ANGLE BISECTORS OF A TRIANGLE

The angle bisectors of a triangle intersect at a point that is equidistant from the sides of the triangle. If $\overline{A P}, \overline{B P}$, and $\overline{C P}$ are angle bisectors of $\triangle A B C$, then
 $P D=$ \qquad $=$ \qquad .

In the diagram, L is the incenter of $\triangle F H J$. Find $L K$.

By the Concurrency of Angle Bisectors of a Triangle Theorem, the incenter L is \qquad from the sides of $\triangle F H J$. So, to find $L K$, you can find \qquad in $\triangle L H I$. Use the Pythagorean Theorem.

$$
\begin{aligned}
& = \\
& = \\
& = \\
- & =
\end{aligned}
$$

Substitute known values.
Simplify.

Take the positive square root of each side.

Because \qquad $=L K, L K=$ \qquad .

Checkpoint In Exercises 1 and 2, find the value of x.

3. Do you have enough information to conclude that $\overrightarrow{A C}$ bisects $\angle D A B$? Explain.

4. In Example 4, suppose you are not given HL or HI, but you are given that $J L=25$ and $J I=20$. Find $L K$.

Lesson
 5.3
 Practice

Use the information in the diagram to find the measure.

1. Find $A D$.

2. Find $m \angle D B A$.

3.

Is $D A=D C$ Explain.
5.

6.

\qquad

Can you conclude that $\overrightarrow{B D}$ bisects $\angle A B C$? Explain.

7. B

8.

In Exercises 9 and 10, point T is the incenter of $\triangle P Q R$. Find the value of x.

10.

11. Bird Bath Your neighbor is moving a new bird bath to his triangular back yard.

He wants the bird bath to be the same distance from each edge of the yard. Where should your neighbor place the bird bath? Explain.
12. Landscaping You are planting a tree at the incenter of your triangular front yard. Use the diagram to determine how far the tree is from the house.

Use Medians and Altitudes

Georgia

 Performance Standard(s)MM1G1c, MM1G1e, MM1G3e

Goal - Use medians and altitudes of triangles.

VOCABULARY

Median of a triangle
Your Notes

Centroid

Altitude of a triangle

Orthocenter

THEOREM 5.8: CONCURRENCY OF MEDIANS OF A TRIANGLE

The medians of a triangle intersect at a point that is two thirds of the distance from each vertex to the midpoint of the opposite side.

The medians of $\triangle A B C$ meet at P and

$$
A P=\frac{2}{3} \quad, B P=\frac{2}{3} \quad, \text { and } C P=\frac{2}{3}
$$

\qquad .

Example 1 Use the centroid of a triangle
In $\triangle F G H, M$ is the centroid and $G M=6$. Find $M L$ and $G L$.

$$
=\quad \text { GL } \quad \begin{aligned}
& \text { Concurrency of Medians } \\
& \text { of a Triangle Theorem }
\end{aligned}
$$

$$
\ldots
$$

$$
=G L \quad \text { Substitute }
$$

\qquad

$$
=\text { GL } \quad \text { Multiply each side by the reciprocal, }
$$

\qquad
Then $M L=G L-\quad=\quad-\quad=$ \qquad .
So, ML = \qquad and $G L=$ \qquad .

Checkpoint Complete the following exercise.

1. In Example 1, suppose $F M=10$. Find $M K$ and $F K$.

Median $\overline{K M}$ is used in Example 2 because it is easy to find distances on a vertical segment. You can check by finding the centroid using a different median.

Example 2 Find the centroid of a triangle

The vertices of $\triangle J K L$ are $J(1,2), K(4,6)$, and $L(7,4)$. Find the coordinates of the centroid P of $\triangle J K L$.
Sketch $\triangle J K L$. Then use the Midpoint Formula to find the midpoint M of $\overline{J L}$ and sketch median $\overline{K M}$.

The centroid is \qquad of the distance from each vertex to the midpoint of the opposite side.

The distance from vertex K to point
M is $6-\quad=$ \qquad units. So, the centroid is $(\quad \quad)=\quad$ units down from K on $\overline{K M}$.
The coordinates of the centroid P are (4, 6 - \qquad), or (\qquad).

THEOREM 5.9: CONCURRENCY OF ALTITUDES OF A TRIANGLE

The lines containing the altitudes of a triangle are \qquad .

The lines containing $\overline{A F}, \overline{B E}$, and $\overline{C D}$ meet at G.

Example 3 Find the orthocenter

Find the orthocenter P of the triangle.
a.

b.

Solution

a.

b.

Checkpoint Complete the following exercises.
2. In Example 2, where do you need to move point K so that the centroid is $P(4,5)$?
3. Find the orthocenter P of the triangle.

\qquad

.
 5.4
 Practice

$\overline{B D}$ is a median of $\triangle A B C$. Find the length of $\overline{A D}$.

1.

2.

Use the graph shown.

3. Find the coordinates of D, the midpoint of $\overline{A B}$.
4. Find the length of the median $\overline{C D}$.
5. Find the coordinates of E, the midpoint of $\overline{B C}$.

6. Find the length of the median $\overline{A E}$.

Complete the statement for $\triangle M N P$ with medians $\overline{M T}, \overline{N R}$, and $\overline{P S}$, and centroid Q.

7. $Q R=$ \qquad $N R$
8. $M Q=$ \qquad $M T$
S is the centroid of $\triangle R T W, R S=4, V W=6$, and $T V=9$. Find the length of the segment.
9. $\overline{R V}$
10. $\overline{S U}$
11. $\overline{R U}$
12. $\overline{R W}$

13. $\overline{T S}$
14. $\overline{S V}$
\qquad
\qquad

${ }_{5.4}^{1 \text { min }}$ Practice contineed

Is $\overline{B D}$ a median of $\triangle A B C$? Is $\overline{B D}$ an altitude? Is $\overline{B D}$ a perpendicular bisector?
15.

16.

17. Error Analysis D is the centroid of $\triangle A B C$. Your friend wants to find $D E$. The median $\overline{B E}$ has length 24. Describe and correct the error. Explain your reasoning.

$$
\begin{aligned}
& D E=\frac{2}{3} B E \\
& D E=\frac{2}{3}(24) \\
& D E=16
\end{aligned}
$$

In Exercises 18 and 19, use the following information.

Roof Trusses Some roofs are built using several triangular wooden trusses.

18. Find the altitude (height) of the truss
19. How far down from D is the centroid of $\triangle D E F$?

5,5 Use Inequalities in a Triangle

Georgia Performance Standard(s)

MM1G3b

Your Notes

Goal - Find possible side lengths of a triangle.

THEOREM 5.10

If one side of a triangle is longer than another side, then the angle opposite the longer side is \qquad
 than the angle opposite the $A B>B C$, so shorter side.
$m \angle$ \qquad $>m \angle$ \qquad .

THEOREM 5.11

If one angle of a triangle is larger than another angle, then the side opposite the larger angle is than the side opposite the smaller angle.

$$
m \angle A>m \angle C,
$$

so \qquad $>$ \qquad .

Example $1 \quad$ Write measurements in order from least to greatest

Write the measurements of the triangle in order from least to greatest.
a.

b.

Solution

a. \qquad $<m \angle B<$ \qquad $<A C<$ \qquad
b. \qquad $<m \angle D<$ \qquad $<E F<$ \qquad

Checkpoint Write the measurements of the triangle in order from least to greatest.

THEOREM 5.12: TRIANGLE INEQUALITY THEOREM

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

\qquad $+$ \qquad $>A C$
$A C+$ \qquad $>$ \qquad
\qquad $+A C>$ \qquad

Example 2 Find possible side lengths

A triangle has one side of length 14 and another of length
10. Describe the possible lengths of the third side.

Solution

Let x represent the length of the third side. Draw diagrams to help visualize the small and large values of x. Then use the Triangle Inequality Theorem to write and solve inequalities.

Small values of x

$x+$ \qquad $>$ \qquad
$x>$ \qquad
\qquad $+$ \qquad $>x$

The length of the third side must be \qquad
\qquad -.
3. A triangle has one side of 23 meters and another of 17 meters. Describe the possible lengths of the third side.

THEOREM 5.13: EXTERIOR ANGLE INEQUALITY THEOREM

The measure of an exterior angle of a triangle is greater than the measure of either of the nonadjacent interior angles.
\qquad

Example 3 Relate exterior and interior angles

Write inequalities that relate $m \angle 1$ to $m \angle B$ and $m \angle C$.

Solution

$\angle B$ and $\angle C$ are nonadjacent interior angles to $\angle 1$. So, by the Exterior Angle Inequality Theorem, \qquad $>70^{\circ}$
 and \qquad $>$ \qquad .

Checkpoint Complete the following exercise.
4. Write inequalities that relate $m \angle 1$ to $m \angle B$ and $m \angle C$.

\qquad
\qquad

LESSON
 5.5
 Practice

List the sides in order from shortest to longest and the angles in order from smallest to largest.
1.

4.

5. R

6.

8.

Use a ruler and protractor to draw the given type of triangle. Mark the largest angle and longest side in red and the smallest angle and shortest side in blue. What do you notice?
9. Obtuse scalene
10. Right scalene
\qquad

LESSON 5.5
 Practice continued

For Exercises 11 and 12, use the following diagram.

11. Name the smallest and largest angles of $\triangle D E F$.
12. Name the shortest and longest sides of $\triangle D E F$.

Is it possible to construct a triangle with the given side lengths? If not, explain why not.
13. $6,10,15$
14. $11,16,32$

Describe the possible lengths of the third side of the triangle given the lengths of the other two sides.
15. 12 in., 6 in.
16. $3 \mathrm{ft}, 8 \mathrm{ft}$
17. $12 \mathrm{~cm}, 17 \mathrm{~cm}$
18. $7 \mathrm{yd}, 13 \mathrm{yd}$
\qquad
\qquad
19. Describe the possible values of x.

In Exercises 20-22, you are given a 12-inch piece of wire. You want to bend the wire to form a triangle so that the length of each side is a whole number.
20. Sketch two possible isosceles triangles and label each side length.
21. Sketch a possible scalene triangle.
22. List two combinations of segment lengths that will not produce triangles.
23. Distance Union Falls is 60 miles NE of Harnedville. Titus City is 40 miles SE of Harnedville. Is it possible that Union Falls and Titus City are less than 100 miles apart? Justify your answer.

5,6 Inequalities in Two Triangles and Indirect Proof

Georgia Performance Standard(s)

MM1G2a

Your Notes

Goal - Use inequalities to make comparisons in two triangles.

VOCABULARY

Indirect Proof

THEOREM 5.14: HINGE THEOREM

If two sides of one triangle are congruent to two sides of another triangle, and the included angle of the first is larger than the included angle of the second, then the third side of the first is \qquad than the

WX > \qquad third side of the second.

THEOREM 5.15: CONVERSE OF THE HINGE THEOREM

If two sides of one triangle are congruent to two sides of another triangle, and the third side of the first is longer than the third side of the second, then the included angle of the first is \qquad than the included angle of the second.

Complete the statement with <, >, or =. Explain.
a. $A C$ \qquad $E F$
b. $m \angle A D B$ \qquad $m \angle C B D$

Solution

a. You are given that $\overline{A B} \cong$ \qquad and $\overline{B C} \cong$ \qquad . Because 61° < \qquad , by the Hinge Theorem, AC < \qquad .
b. You are given that $A D \cong$ \qquad and you know that $\overline{B D} \cong$ by the Reflexive Property. Because $34>33$, \qquad $>$ \qquad So, by the Converse of the
Hinge Theorem, \qquad > \qquad .

Example 2 Solve a multi-step problem

Travel Car A leaves a mall, heads due north for 5 mi and then turns due west for 3 mi . Car B leaves the same mall, heads due south for 5 mi and then turns 80° toward east for 3 mi . Which car is farther from the mall?
Draw a diagram. The distance driven and the distance back to the mall form two triangles, with \qquad 5 mile sides and \qquad 3 mile sides. Add the third side to the diagram. Use linear pairs to find the included angles of \qquad and \qquad
Because $100^{\circ}>90^{\circ}$, Car \qquad is farther
 from the mall than Car A by the \qquad .

Example 3 Write an indirect proof
Write an indirect proof to show that an odd number is not divisible by 6.
Given x is an odd number.
Prove x is not divisible by 6 .

Solution

Step 1 Assume temporarily that \qquad .
This means that $\quad=n$ for some whole number n. So, multiplying both sides by 6 gives \qquad = \qquad .

You have reached a contradiction when you have two statements that cannot both be true at the same time.

Step 2 If x is odd, then, by definition, x cannot be divided evenly by \qquad . However, \qquad $=$ \qquad so
\qquad . We know that \qquad is a whole number because n is a whole number, so x can be divided evenly by _. This contradicts the given statement that \qquad .
Step 3 Therefore, the assumption that x is divisible by 6 is \qquad , which proves that \qquad \longrightarrow. .

Checkpoint Complete the following exercises.

1. If $m \angle A D B>m \angle C D B$ which is longer, $\overline{A B}$ or $\overline{C B}$?

2. In Example 2, car C leaves the mall and goes 5 miles due west, then turns 85° toward south for 3 miles. Write the cars in order from the car closest to the mall to the car farthest from the mall.
3. Suppose you want to prove the statement "If $x+y \neq 5$ and $y=2$, then $x \neq 3$." What temporary assumption could you make to prove the conclusion indirectly?
\qquad

Lesson
 5.6
 Practice

Complete with <, >, or = .

1. $A B$ \qquad DE

2. $m \angle 1$ \qquad $m \angle 2$

3. $F G _L M$

4. $m \angle 1$ \qquad $m \angle 2$

5. $M S$ \qquad $L S$

6. $m \angle 1 _m \angle 2$

7. Error Analysis Explain why the student's reasoning is not correct.

By the Hinge Theorem, $A B>D C$.
\qquad

Match the conclusion on the right with the given information. Explain your reasoning.
8. $A B=B C, m \angle 1>m \angle 2$
A. $m \angle 7>m \angle 8$
9. $A E>E C, A D=C D$
B. $A D>A B$

10. $m \angle 9<m \angle 10, B E=E D$
C. $m \angle 3+m \angle 4=m \angle 5+m \angle 6$
11. $A B=B C, A D=C D$
D. $A E>E C$

Use the Hinge Theorem or its converse and properties of triangles to write and solve an inequality to describe a restriction on the value of \boldsymbol{x}.
12.

13.

\qquad

${ }_{5.6}{ }^{5}$." Practice ontinued

14. Shopping You and a friend are going shopping. You leave school and drive 10 miles due west on Main Street. You then drive 7 miles NW on Raspberry Street to the grocery store. Your friend leaves school and drives 10 miles due east on Main Street. He then drives 7 miles SE on Cascade Street to the movie store. Each of you has driven 17 miles. Which of you is farther from your school?

15. Write the first statement for an indirect proof of the situation. In $\triangle M N O$, if $\overline{M P}$ is perpendicular to $\overline{N O}$, then $\overline{M P}$ is an altitude.

5.7
 Find Angle Measures in Polygons

Your Notes

Goal - Find angle measures in polygons.

VOCABULARY
Diagonal

Interior angles of a polygon

Exterior angles of a polygon

THEOREM 5.16: POLYGON INTERIOR ANGLES THEOREM

The sum of the measures of the interior angles of a convex n-gon is $(n-$ \qquad). \qquad .

$m \angle 1+m \angle 2+\cdots+m \angle n=(n-$ \qquad) • \qquad

COROLLARY TO THEOREM 5.16: INTERIOR ANGLES OF A QUADRILATERAL

The sum of the measures of the interior angles of a quadrilateral is \qquad .

THEOREM 5.17: POLYGON EXTERIOR ANGLES THEOREM

The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is \qquad .
$m \angle 1+m \angle 2+\cdots+m \angle n=$ \qquad

Find the sum of the measures of the interior angles of a convex octagon.

Solution

A octagon has \qquad sides. Use the Polygon Interior Angles Theorem.

$$
\begin{array}{rll}
(n-\ldots) & =(\ldots-\ldots) \cdot & \begin{array}{l}
\text { Substitute } \\
\text { for } n . \\
\text { Subtract. } \\
\\
\end{array} \\
& =\ldots \cdot & \text { Multiply. }
\end{array}
$$

The sum of the measures of the interior angles of a hexagon is \qquad .

Checkpoint Complete the following exercise.

1. Find the sum of the measures of the interior angles of the convex decagon.

Example 2 Find the number of sides of a polygon

The sum of the measures of the interior angles of a convex polygon is 1260°. Classify the polygon by the number of sides.

Solution

Use the Polygon Interior Angles Theorem to write an equation involving the number of sides n. Then solve the equation to find the number of sides.
$(n-\ldots) \quad$ P___ Polygon Interior Angles Theorem

$$
\begin{array}{rlrl}
n-_ & = & & \text {Divide each side by } \\
n & =_ & \text {Add } \quad \text { to each side. }
\end{array}
$$

\qquad .

The polygon has \qquad sides. It is a \qquad .

Example 3 Find an unknown interior angle measure

Find the value of x in the diagram shown.

Solution

The polygon is a quadrilateral. Use the Corollary to the Polygon Interior Angles Theorem to write an equation involving x. Then solve the equation.
$x^{\circ}+$ \qquad $+$ \qquad $+\ldots$ \qquad Corollary to Theorem 5.16

$$
x+\quad=
$$ Combine like terms.

$x=$ \qquad Subtract from each side.

Checkpoint Complete the following exercises.
2. The sum of the measures of the interior angles of a convex polygon is 1620°. Classify the polygon by the number of sides.
3. Use the diagram at the right. Find $m \angle K$ and $m \angle L$.

Find the value of x in the diagram shown.

Solution

Use the Polygon Exterior Angles Theorem to write and solve an equation.

$$
\begin{aligned}
& x^{\circ}+{ }_{+}^{+}+\ldots \quad \text { Polygon Exterior } \\
& \text { Angles Theorem } \\
& x+\quad= \\
& \text { Combine like } \\
& \text { terms. } \\
& x= \\
& \text { Solve for } x \text {. }
\end{aligned}
$$

Checkpoint Complete the following exercises.
4. A convex pentagon has exterior angles with measures $66^{\circ}, 77^{\circ}, 82^{\circ}$, and 62°. What is the measure of an exterior angle at the fifth vertex?
5. Find the measure of (a) each interior angle and (b) each exterior angle of a regular nonagon.
\qquad

Lesson 5.7
 Practice

Find the sum of the measures of the interior angles of the indicated convex polygon.

1. Heptagon
2. 13-gon
3. 17-gon
4. 18-gon
5. 22-gon
6. 25 -gon
7. 30-gon
8. 34-gon
9. 39-gon

The sum of the measures of the interior angles of a convex polygon is given. Classify the polygon by the number of sides.
10. 1260°
11. 2160°
12. 3240°
13. 4680°
14. 5400°
15. 7560°

Find the value of \boldsymbol{x}.

16.

17.

18.

19.

20.

21.

22. The measures of the interior angles of a convex quadrilateral are $x^{\circ}, 2 x^{\circ}, 4 x^{\circ}$, and $5 x^{\circ}$. What is the measure of the largest interior angle?
23. The measures of the exterior angles of a convex pentagon are $2 x^{\circ}, 4 x^{\circ}, 6 x^{\circ}, 8 x^{\circ}$, and $10 x^{\circ}$. What is the measure of the smallest exterior angle?
\qquad

${ }_{5.7}{ }^{5} \mathrm{~F}$ Practice continued

Find the measures of an interior angle and an exterior angle of the indicated regular polygon.

24. Regular hexagon
25. Regular decagon
26. Regular 15 -gon
27. Regular 20-gon
28. Regular 30 -gon
29. Regular 36-gon

In Exercises 30-37, find the value of \boldsymbol{n} for each regular \boldsymbol{n}-gon described.
30. Each interior angle of the regular n-gon has a measure of 90°.
31. Each interior angle of the regular n-gon has a measure of 108°.
32. Each interior angle of the regular n-gon has a measure of 135°.
33. Each interior angle of the regular n-gon has a measure of 144°.
34. Each exterior angle of the regular n-gon has a measure of 90°.
35. Each exterior angle of the regular n-gon has a measure of 60°.
36. Each exterior angle of the regular n-gon has a measure of 40°.
37. Each exterior angle of the regular n-gon has a measure of 30°.
\qquad

LESSON 5.7
 Practice continued

38. Geography The shape of Colorado can be approximated by a polygon, as shown.
a. How many sides does the polygon have? Classify the polygon.
b. What is the sum of the measures of the interior angles of the polygon?
c. What is the sum of the measures of the exterior angles of the polygon?
39. Softball A home plate marker for a softball field is a pentagon, as shown. Three of the interior angles of the pentagon are right angles and the remaining two interior angles are congruent. What is the value of x ?

40. Stained Glass Window Part of a stained-glass window is a regular octagon, as shown. Find the measure of an interior angle of the regular octagon. Then find the measure of an exterior angle.

5.8 Use Properties of Parallelograms

Georgia Performance Standard(s)

MM1G1e, MM1G3d

Your Notes

Goal - Find angle and side measures in parallelograms.

VOCABULARY

Parallelogram

THEOREM 5.18

If a quadrilateral is a parallelogram, then its opposite sides are congruent.

If $P Q R S$ is a parallelogram, then
 $\cong \overline{R S}$ and $\overline{Q R} \cong$ \qquad .

THEOREM 5.19

If a quadrilateral is a parallelogram, then its opposite angles are congruent. If $P Q R S$ is a parallelogram, then
 $\angle P \cong$ \qquad and \qquad $\cong \angle \mathrm{S}$.

Example 1 Use properties of parallelograms

Find the values of x and y.

Solution

FGHJ is a parallelogram by the definition of a parallelogram. Use Theorem 5.18 to
 find the value of x.

$$
\begin{aligned}
F G & = \\
x+6 & = \\
x & =
\end{aligned}
$$ Opposite sides of a \square are \cong. Substitute $x+6$ for $F G$ and \qquad for \qquad . Subtract 6 from each side.

By Theorem 5.19, $\angle F \cong$ \qquad , or $m \angle F=$ \qquad . So, $y^{\circ}=$ \qquad .
In \square FGHJ, $x=$ \qquad and $y=$ \qquad .

THEOREM 5.20

If a quadrilateral is a parallelogram, then its consecutive angles are
\qquad .

If $P Q R S$ is a parallelogram, then $x^{\circ}+y^{\circ}=$ \qquad .

Example 2 Use properties of a parallelogram

Gates As shown, a gate contains several parallelograms. Find $m \angle A D C$ when $m \angle D A B=65^{\circ}$.

Solution

By Theorem 5.20, the consecutive angle pairs in $\square A B C D$ are \qquad . So, $m \angle A D C+m \angle D A B=\quad$. Because $m \angle D A B=65^{\circ}$, $m \angle A D C=$ \qquad - \qquad = \qquad .
\qquad

Checkpoint Find the indicated measure in \square KLMN shown at the right.

1. x
2. y
3. z

THEOREM 5.21

If a quadrilateral is a parallelogram, then its diagonals each other.

$$
\overline{Q M} \cong \quad \text { and }
$$

$\overline{P M} \cong$ \qquad

Example 3 Find the intersection of diagonals

The diagonals of \square STUV intersect at point W. Find the coordinates of W.

Solution

By Theorem 5.21, the diagonals of a
 parallelogram \qquad each other.
So, W is the \qquad of the diagonals $\overline{T V}$ and $\overline{S U}$. Use the \qquad .
Coordinates of midpoint W of

$$
\overline{\mathrm{SU}}=(\square)=(\square
$$

Checkpoint Complete the following exercises.
4. The diagonals of $\square V W X Y$ intersect at point Z. Find the coordinates of Z.

5. Given that $\square F G H J$ is a parallelogram, find MH and FH .

\qquad
\qquad

LEsSON 5.8
 Practice

Find the value of each variable in the parallelogram.
1.

2.

3.

4.

5.

6.

Find the measure of the indicated angle in the parallelogram.
7. Find $m \angle C$.

8. Find $m \angle E$.

9. Find $m \angle K$.

\qquad
\qquad

${ }_{5.8}^{\text {wim }^{5}}$ Practice ontinued

Find the value of each variable in the parallelogram.

10.

11.

12.

Use the diagram of parallelogram MNOP at the right to complete the statement. Explain.

13. $\overline{M N} \cong$ \qquad
14. $\overline{M N} \|$ \qquad
15. $\overline{O N} \cong$ \qquad
16. $\angle M P O \cong$ \qquad
17. $\overline{P Q} \cong$ \qquad 18. $\overline{Q M} \cong$ \qquad

18. $\angle M Q N \cong$ \qquad 20. $\angle N P O \cong$ \qquad

Find the indicated measure in \square HIJK. Explain.
21. $H I$
23. $G H$
24. $H J$
22. $K H$
,

25. $m \angle K I H$
26. $m \angle J I H$
27. $m \angle K J I$
28. $m \angle H K I$
\qquad
29. The measure of one interior angle of a parallelogram is twice the measure of another angle. Find the measure of each angle.
30. The measure of one interior angle of a parallelogram is 30 degrees more than the measure of another angle. Find the measure of each angle.

The crossing slats of a gate form parallelograms that move together to make the gate wider. In Exercises 31-34, use the figure at the right.
31. What is $m \angle A$ when $m \angle B=110^{\circ}$?

32. What is $m \angle D$ when $m \angle B=130^{\circ}$?
33. What happens to $m \angle A$ when $m \angle B$ decreases?
34. What happens to $A C$ when $m \angle B$ increases?
35. Complete the proof.

GIVEN: $A B C D$ is a \square.
PROVE: $\triangle A B D \cong \triangle C D B$

Statements	Reasons
1. $A B C D$ is a \square.	1.
2.	2. Opposite sides of \square are \cong.
3.	3. Opposite sides of \square are \cong.

4. $\angle A \cong \angle C$
5.
6. $\triangle A B D \cong \triangle C B D$
7.

5.9 Show that a Quadrilateral is a Parallelogram

Georgia Performance Standard(s)

MM1G1a, MM1G1e, MM1G3d

Your Notes

Goal - Use properties to identify parallelograms.

THEOREM 5.22

If both pairs of opposite \qquad of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\overline{A B} \cong$ \qquad and $\overline{B C} \cong$ \qquad , then $A B C D$ is a parallelogram.

THEOREM 5.23

If both pairs of opposite \qquad of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

If $\angle A \cong$ \qquad and $\angle B \cong$ \qquad , then $A B C D$ is a parallelogram.

THEOREM 5.24

If one pair of opposite sides of a quadrilateral are \qquad and \qquad , then the quadrilateral is a parallelogram.
If $\overline{B C}$ $\overline{A D}$ and $\overline{B C}$ $\overline{A D}$, then
 $A B C D$ is a parallelogram.

THEOREM 5.25

If the diagonals of a quadrilateral
\qquad each other, then the quadrilateral is a parallelogram.

If $\overline{B D}$ and $\overline{A C}$ \qquad each other, then
$A B C D$ is a parallelogram.

Example 1 Identify parallelograms

Explain how you know that quadrilateral $A B C D$ is a parallelogram.
a.

b.

a. By the \qquad you know that $m \angle A+m \angle B+m \angle C+m \angle D=$ \qquad , so $m \angle B=$ \qquad . Because both pairs of opposite angles are \qquad , then $A B C D$ is a parallelogram by \qquad .
b. In the diagram, $A E=$ \qquad and $B E=$ \qquad . So, the diagonals bisect each other, and $A B C D$ is a parallelogram by \qquad .

Checkpoint Complete the following exercise.

1. In quadrilateral $G H J K, m \angle G=55^{\circ}, m \angle H=125^{\circ}$, and $m \angle J=55^{\circ}$. Find $m \angle K$. What theorem can you use to show that GHJK is a parallelogram?

Example 2 Use algebra with parallelograms

For what value of x is quadrilateral PQRS a parallelogram?
By Theorem 5.25, if the diagonals of PQRS \qquad each other, then it is a parallelogram. You are given that $\overline{Q T} \cong$ \qquad . Find x so that $\overline{P T} \cong$ \qquad .

PT $=$	Set the segment length
$5 x=$	Substitute for PT and for
$x=$	Subtract ____ from
$x=$	Divide each side by
When x	= $5(\quad)=$ and
$R T=2($	

Quadrilateral PQRS is a parallelogram when $x=$ \qquad .

- Checkpoint Complete the following exercise.

2. For what value of x is quadrilateral DFGH a parallelogram?

Example 3 Use coordinate geometry

Show that quadrilateral KLMN

 is a parallelogram.One way is to show that a pair of sides are congruent and parallel. Then apply \qquad .

First use the Distance Formula to show that $\overline{K L}$ and $\overline{M N}$ are \qquad .
$K L=\sqrt{ }$ \qquad $=\sqrt{ }$ \qquad
$M N=\sqrt{ }$ \square
Because $K L=M N=\sqrt{\square}, \overline{K L}$ $=\sqrt{ }$ \qquad

Then use the slope formula to show that $\overline{K L}$ \qquad $\overline{M N}$.

Slope of $\overline{M N}=$ \square
\qquad
$\overline{K L}$ and $\overline{M N}$ have the same slope, so they are \qquad . $\overline{K L}$ and $\overline{M N}$ are congruent and parallel. So, KLMN is a parallelogram by \qquad -

Checkpoint Complete the following exercise.

Homework

3. Explain another method that can be used to show that quadrilateral KLMN in Example 3 is a parallelogram.
\qquad
\qquad
LLsson 5.9

Practice

What theorem can you use to show that the quadrilateral is a parallelogram?

1.

2.

5.

6.

For what value of \boldsymbol{x} is the quadrilateral a parallelogram?
7.

8.

9.

10.

11.

12.

\qquad
\qquad
${ }_{5.9}^{\text {ङ.9 }}$ Practice contined
The vertices of quadrilateral $A B C D$ are given. Draw $A B C D$ in a coordinate plane and show that it is a parallelogram.
13. $A(-1,3), B(4,3), C(2,-1), D(-3,-1)$

14. $A(-2,3), B(3,2), C(3,-1), D(-2,0)$

What additional information is needed in order to prove that quadrilateral $A B C D$ is a parallelogram?
15. $\overline{A B} \| \overline{D C}$
16. $\overline{A B} \cong \overline{D C}$

17. $\angle D C B \cong \angle D A B$
18. $\overline{D E} \cong \overline{E B}$
19. $m \angle C D A+m \angle D A B=180^{\circ}$
20. $\angle D C A \cong \angle B A C$
\qquad

ESSON 5.9
 Practice continued

In Exercises 21 and 22, use the diagram below to complete the proof using two different methods.

GIVEN: $\triangle M J K \cong \triangle K L M$
PROVE: $M J K L$ is a parallelogram.

21. Statements	Reasons
1.	1. Given
2. $\overline{J K} \cong \overline{L M}$	2.
$\overline{J M} \cong \overline{L K}$	$\mathbf{3 .}$

22. Statements	Reasons
1.	1. Given
2. $\overline{J K} \cong \overline{L M}$	2.
$\angle J K M \cong \angle K M L$	3. Alternate Interior
3.	\angle 's Converse
	4.

5.1.0 Properties of Rhombuses, Rectangles, and Squares

Georgia Performance Standard(s)

MM1G3d

Goal - Use properties of rhombuses, rectangles, and squares.

VOCABULARY

Rhombus

Rectangle

Square

RHOMBUS COROLLARY

A quadrilateral is a rhombus if and only if it has four congruent \qquad $A B C D$ is a rhombus if and only if $\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$.

RECTANGLE COROLLARY

A quadrilateral is a rectangle if and only if it has four \qquad .
$A B C D$ is a rectangle if and only if
 $\angle A, \angle B, \angle C$, and $\angle D$ are right angles.

SQUARE COROLLARY

A quadrilateral is a square if and only if it is a \qquad and a \qquad .
$A B C D$ is a square if and only if $\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$ and

$\angle A, \angle B, \angle C$, and $\angle D$ are right angles.

Example 1 Use properties of special quadrilaterals

For any rhombus RSTV, decide whether the statement is always or sometimes true. Draw a sketch and explain your reasoning.
a. $\angle S \cong \angle V$
b. $\angle T \cong \angle V$

Solution

a. By definition, a rhombus is a parallelogram with four congruent
\qquad . By Theorem 5.19, opposite angles of a parallelogram are

\qquad . So, $\angle S \cong \angle V$. The statement is \qquad true.
b. If rhombus RSTV is a \qquad , then all four angles are congruent right angles. So $\angle T \cong \angle V$ if $R S T V$ is a
\qquad . Because not all rhombuses

are also \qquad , the statement is true.

Example 2 Classify special quadrilaterals

Classify the special quadrilateral. Explain your reasoning.

The quadrilateral has four congruent \qquad

One of the angles is not a \qquad , so the rhombus is not also a \qquad . By the Rhombus Corollary, the quadrilateral is a \qquad .

Checkpoint Complete the following exercises.

1. For any square $C D E F$, is it always or sometimes true that $\overline{C D} \cong \overline{D E}$? Explain your reasoning.
2. A quadrilateral has four congruent sides and four congruent angles. Classify the quadrilateral.

THEOREM 5.26

A parallelogram is a rhombus if and only if its diagonals are \qquad
$\square A B C D$ is a rhombus if and only if

\qquad \perp \qquad .

THEOREM 5.27

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.
$\square A B C D$ is a rhombus if and only if $\overline{A C}$
 bisects \angle \qquad and \angle \qquad and $\overline{B D}$ bisects \angle \qquad and \angle \qquad

THEOREM 5.28

A parallelogram is a rectangle if and only if its diagonals are \qquad
$\square A B C D$ is a rectangle if and only if

\qquad \cong \qquad .

Example 3 List properties of special parallelograms

Sketch rhombus FGHJ. List everything you know about it.

Solution

By definition, you need to draw a figure with the following properties:

- The figure is a \qquad .
- The figure has four congruent \qquad .

Because $F G H J$ is a parallelogram, it has these properties:

- Opposite sides are \qquad and \qquad .
- Opposite angles are \qquad . Consecutive angles are \qquad .
- Diagonals \qquad each other.

By Theorem 5.26, the diagonals of FGHJ are . By Theorem 5.27, each diagonal bisects a pair of \qquad .

Example 4 Solve a real-world problem
Framing You are building a frame for a painting. The measurements of the frame are shown at the right.
a. The frame must be a rectangle. Given the measurements in the
 diagram, can you assume that it is? Explain.
b. You measure the diagonals of the frame. The diagonals are about 25.6 inches. What can you conclude about the shape of the frame?

Solution

a. No, you cannot. The boards on opposite sides are the same length, so they form a \qquad . But you do not know whether the angles are \qquad .
b. By Theorem 5.28, the diagonals of a rectangle are \qquad . The diagonals of the frame are \qquad , so the frame forms a \qquad -
(Checkpoint Complete the following exercises.
3. Sketch rectangle $W X Y Z$. List everything that you know about it.

Homework

4. Suppose the diagonals of the frame in Example 4 are not congruent. Could the frame still be a rectangle? Explain.
\qquad
\qquad
5.10 Practice

For any rhombus ABCD, decide whether the statement is always or sometimes true. Draw a diagram and explain your reasoning.

1. $\angle A \cong \angle C$
2. $\overline{D A} \cong \overline{A B}$

For any rectangle FGHJ, decide whether the statement is always or sometimes true. Draw a diagram and explain your reasoning.
3. $\angle G \cong \angle H$
4. $\overline{J F} \cong \overline{F G}$

Classify the parallelogram. Explain your reasoning.
5.

6.

7.

8.

9.

10.

\qquad

LESSON
5.10

Practice continued

Classify the special quadrilateral. Explain your reasoning. Then find the values of \boldsymbol{x} and \boldsymbol{y}.

12.

The diagonals of rhombus $W X Y Z$ intersect at V. Given that $m \angle X Z Y=34^{\circ}$ and $W V=7$, find the indicated measure.
13. $m \angle W Z V$
14. $m \angle X Y Z$
15. $V Y$
16. $W Y$

The diagonals of rectangle PQRS intersect at T. Given that $m \angle R P S=62^{\circ}$ and $Q S=18$, find the indicated measure.
17. $m \angle Q P R$
18. $m \angle P T Q$

19. $S T$
20. $P R$
\qquad

LESSON
5.10

Practice continued

The diagonals of square EFGH intersect at J. Given that $\mathbf{G J}=\mathbf{1 5}$, find the indicated measure.
21. $m \angle E J F$
22. $m \angle J F G$
23. $F H$
24. $E J$

25. Complete the proof.

GIVEN: RECT is a rectangle.
PROVE: $\triangle A R T \cong \triangle A C E$
Statements
1.
2. $\overline{R T} \cong \overline{E C}$
$\frac{R T}{\| C}$
3.
4.
5. $\triangle A R T \cong \triangle A C E$

Reasons

1. Given

2. $\overline{R T} \cong \overline{E C}$
3.
4. Alternate Interior
$\angle \mathrm{s}$ are \cong.
5. Vertical $\angle \mathrm{s}$ are \cong.
6.

Write the corollary as a conditional statement and its converse.
Then explain why each statement is true.
26. Rhombus Corollary
27. Rectangle Corollary
28. Square Corollary

Use Properties of Trapezoids

 and KitesGeorgia
Performance
Standard(s)
MM1G1e, MM1G3d

Your Notes

Goal - Use properties of trapezoids and kites.

VOCABULARY
Trapezoid

Bases of a trapezoid

Base angles of a trapezoid

Legs of a trapezoid

Isosceles trapezoid

Midsegment of a trapezoid

Kite

Example 1 Use a coordinate plane

Show that CDEF is a trapezoid.

Solution

Compare the slopes of opposite sides.
Slope of $\overline{D E}=$

$$
=
$$

Slope of $\overline{C F}=\quad=\quad=$
The slopes of $\overline{D E}$ and $\overline{C F}$ are the same, so $\overline{D E}$ \qquad $\overline{C F}$.

Slope of $\overline{E F}=$ \qquad
Slope of $\overline{C D}=$ \qquad $=\quad=$ \qquad
The slopes of $\overline{E F}$ and $\overline{C D}$ are not the same, so $\overline{E F}$ is to $\overline{C D}$.

Because quadrilateral CDEF has exactly one pair of
\qquad , it is a trapezoid.

THEOREM 5.29

If a trapezoid is isosceles, then each pair of base angles is \qquad .
If trapezoid $A B C D$ is isosceles, then $\angle A \cong \angle \quad$ and $\angle \ldots \cong$.

THEOREM 5.30

If a trapezoid has a pair of congruent trapezoid. , then it is an isosceles

If $\angle A \cong \angle D$ (or if $\angle B \cong \angle C$), then trapezoid $A B C D$ is isosceles.

THEOREM 5.31

A trapezoid is isosceles if and only if its diagonals are \qquad .

Trapezoid $A B C D$ is isosceles if and only if \qquad \cong \qquad .

Example 2 Use properties of isosceles trapezoids

Kitchen A shelf fitting into a cupboard in the corner of a kitchen is an isosceles trapezoid.
Find $m \angle N, m \angle L$, and $m \angle M$.

Solution

Step 1 Find $m \angle N$. KLMN is an \qquad SO $\angle N$ and \angle \qquad are congruent base angles, and $m \angle N=m \angle$ \qquad = \qquad .

Step 2 Find $m \angle L$. Because $\angle K$ and $\angle L$ are consecutive interior angles formed by $\overleftrightarrow{K L}$ intersecting two parallel lines, they are \qquad . So, $m \angle L=$ \qquad - \qquad = \qquad .
Step 3 Find $m \angle M$. Because $\angle M$ and \angle \qquad are a pair of base angles, they are congruent, and $m \angle M=m \angle$ \qquad $=$ \qquad .

So, $m \angle N=$ \qquad , $m \angle L=$ \qquad , and $m \angle M=$ \qquad .

Checkpoint Complete the following exercises.

1. In Example 1, suppose the coordinates of point E are $(7,5)$. What type of quadrilateral is CDEF? Explain.
2. Find $m \angle C, m \angle A$, and $m \angle D$ in the trapezoid shown.

THEOREM 5.32: MIDSEGMENT THEOREM FOR TRAPEZOIDS

The midsegment of a trapezoid is parallel to each base and its length is one half the sum of the lengths of the bases.

If $\overline{M N}$ is the midsegment of trapezoid $A B D C$, then $\overline{M N}$ \qquad , $\overline{M N}$ \qquad , and $M N=$ \qquad $+$ \qquad).

Example 3 Use the midsegment of a trapezoid

In the diagram, $\overline{M N}$ is the midsegment of trapezoid PQRS. Find MN.

Solution

Use Theorem 5.32 to find $M N$.

$$
\begin{array}{rll}
M N & =[\quad+\quad) & \\
\text { Apply Theorem 5.32. } \\
& =(\square+\ldots) & \begin{array}{l}
\text { Substitute } \quad \text { for } P Q \text { and } \\
\text { for SR. } \\
\text { Simplify. }
\end{array}
\end{array}
$$

$M N$ is \qquad inches.

Checkpoint Complete the following exercise.
3. Find $M N$ in the trapezoid at the right.

THEOREM 5.33

If a quadrilateral is a kite, then its diagonals are \qquad .
If quadrilateral $A B C D$ is a kite,
 then \qquad \perp \qquad .

THEOREM 5.34

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent.

If quadrilateral $A B C D$ is a kite and $\overline{B C} \cong \overline{B A}$, then $\angle A$ $\angle C$ and $\angle B$ $\angle D$.

Example 4 Use properties of kites

Find $m \angle \boldsymbol{T}$ in the kite shown at the right.

Solution

By Theorem 5.34, QRST has exactly one pair of opposite angles.

Because $\angle \mathrm{Q} \not \equiv \angle \mathrm{S}, \angle \ldots$ and $\angle \mathrm{T}$ must be congruent. So, $m \angle \ldots=m \angle T$. Write and solve an equation to find $m \angle T$.

Checkpoint Complete the following exercise.

4. Find $m \angle G$ in the kite shown at the right.

\qquad
[ssp
5.11

Practice

Points J, K, L, and M are the vertices of a quadrilateral. Determine whether $J K L M$ is a trapezoid.

1. $J(-1,-1), K(0,3), L(3,3), M(4,-1)$
2. $J(-4,-2), K(-4,3), L(2,3), M(3,-5)$

Find $m \angle B, m \angle C$, and $m \angle D$.
3.

4.

5.

\qquad
\qquad

LESSON
 5.11
 Practice continued

Find the length of the midsegment $\overline{\boldsymbol{R T}}$.

6.

7.

8.

Tell whether the statement is always, sometimes, or never true.
9. A trapezoid is a parallelogram.
10. The bases of a trapezoid are parallel.
11. The base angles of an isosceles trapezoid are congruent.
12. The legs of a trapezoid are congruent.

$K I T E$ is a kite. Find $m \angle K$.

13.

14.

15.

\qquad
${ }_{5.11}^{5.11}$ Practice continued
Use Theorem 5.33 and the Pythagorean Theorem to find the side lengths of the kite. Write the lengths in simplest radical form.
16.

17.

18.

Find the value of \boldsymbol{x}.
19.

20.

21.

\qquad
\qquad

LESSON
Practice continued
22. Vaulting Box Three vaulting boxes used by a gymnastics team are stacked on top of each other as shown. The sides are in the shape of a trapezoid. Find the lengths of a and b.

23. Complete the proof.
GIVEN: $\overline{D E} \| \overline{A V}$, $\triangle D A V \cong \triangle E V A$

PROVE: $D A V E$ is an isosceles trapezoid.

Statements	Reasons	
1. $\overline{D E} \\| \overline{A V}$	$\mathbf{1 .}$	
2. $D A V E$ is a trapezoid.	$\mathbf{2 .}$	
3.	3. Given	
4.	4. Corresponding parts of \cong are \cong.	
5. $D A V E$ is an isosceles trapezoid.	5.	

5.,12 Identify Special Quadrilaterals

Georgia Performance Standard(s)

MM1G3d

Your Notes

Goal - Identify special quadrilaterals.

Example 1 Identify quadrilaterals

Quadrilateral ABCD has both pairs of opposite sides congruent. What types of quadrilaterals meet this condition?

Solution

There are many possibilities.

Opposite sides are congruent.

All sides are congruent.

Checkpoint Complete the following exercise.

1. Quadrilateral JKLM has both pairs of opposite angles congruent. What types of quadrilaterals meet this condition?

In Example 2,

 $A B C D$ is shaped like a square. But you must rely only on marked information when you interpret a diagram.Example 2 Classify a quadrilateral
What is the most specific name for quadrilateral $A B C D$?

Solution

The diagram shows that both pairs of opposite sides are congruent. By Theorem 5.22, ABCD is a \qquad . All sides are congruent, so $A B C D$ is a \qquad by definition. are also rhombuses. However, there is no information given about the angle measures of $A B C D$. So, you cannot determine whether it is a \qquad .

Example 3 Identify a quadrilateral
Is enough information given in the diagram to show that quadrilateral FGHJ is an isosceles trapezoid?

Explain.

Solution

Step 1 Show that $F G H J$ is a \qquad . $\angle G$ and $\angle H$ are \qquad but $\angle F$ and $\angle G$ are not.
So, \qquad , but $\overline{F J}$ is not \qquad to $\overline{\mathrm{GH}}$.
By definition, FGHJ is a \qquad .

Step 2 Show that trapezoid FGHJ is \qquad . $\angle F$ and $\angle G$ are a pair of congruent \qquad . So, FGHJ is an \qquad by Theorem 5.30.

Yes, the diagram is sufficient to show that FGHJ is an isosceles trapezoid.

Checkpoint Complete the following exercises.
2. What is the most specific name for quadrilateral QRST? Explain your reasoning.

3. Is enough information given in the diagram to show that quadrilateral BCDE is a rectangle? Explain.

\qquad
${ }_{5.12}^{12}$ Practice

Match the property on the left with all of the quadrilaterals that have the property.

1. Both pairs of opposite sides are parallel.
2. Both pairs of opposite sides are congruent.
3. Both pairs of opposite angles are congruent.
4. Exactly one pair of opposite sides are parallel.
5. Exactly one pair of opposite sides are congruent.
6. Exactly one pair of opposite angles are congruent.
7. Diagonals are congruent.
8. Diagonals are perpendicular.
A. Parallelogram
B. Rectangle
C. Rhombus
D. Square
E. Trapezoid
F. Isosceles Trapezoid
G. Kite

Give the most specific name for the quadrilateral. Explain.
9.

10.

11.

\qquad
\qquad

LESSON
 5.12
 Practice continued

Tell whether enough information is given in the diagram to classify the quadrilateral by the indicated name. Explain.
12. Parallelogram

13. Square

14. Trapezoid

Give the most specific name for quadrilateral PQRS. Justify your answer.
15.

16.

Which pairs of segments or angles must be congruent so that you can prove that $A B C D$ is the indicated quadrilateral? Explain. There may be more than one right answer.
17. Rectangle

18. Parallelogram

19. Isosceles Trapezoid

\qquad
${ }_{5.12}^{12.12}$ Practice ontinued

In Exercises $\mathbf{2 0}$ and 21, use the following information.

Gem Cutting There are different ways of cutting gems to enhance the beauty of the jewel. One of the earliest shapes used for diamonds is called the table cut, as shown. Each face of a cut gem is called a facet.
20. $\overline{B C} \| \overline{A D}, \overline{A B}$ and $\overline{D C}$ are not parallel. What shape is the facet labeled $A B C D$?

21. $\overline{D E} \| \overline{G F}, \overline{D G}$ and $\overline{E F}$ are congruent, but not parallel. What shape is the facet labeled $D E F G$?

In Exercises 22-24, use the following information.

Wall Hangings Decorative wall hangings are made in a variety of shapes. What type of special quadrilateral is shown?
22.

23.

24.

Words to Review
Give an example of the vocabulary word.

Midsegment of a triangle	Perpendicular bisector
Equidistant	Concurrent
Point of concurrency	

Median of a triangle	Centroid
Altitude of a triangle	
Indirect proof	

Exterior angles of a polygon	Parallelogram
Rhombus	Rectangle
Square	
	Trapezoid
Bases, Legs, and Base	
angles of a trapezoid	

