MIDTERM \#2, PHYS 1211 (INTRODUCTORY PHYSICS), November 5, 2015

 PART I: MULTIPLE CHOICE QUESTIONS (question 1 to 5)For each question circle the correct answer (a,b,c,d or e).

1. ($\mathbf{2}$ points) A 1000-kg plane moves in a straight line at constant speed. The force of air friction is 1800 N . The net force on the plane is:
A) 0 N
B) 11600 N
C) 1800 N
D) 9800 N
E) None of these

ANSWER: A
2. ($\mathbf{2}$ points) A crate rests on a horizontal surface and a woman pulls on it with a $10-\mathrm{N}$ force. No matter what the orientation of the force, the crate does not move. Rank the situations shown below according to the magnitude of the frictional force of the surface on the crate, least to greatest

2

A) 1, 2, 3
B) 2, 3, 1
C) 2, 1, 3
D) 1, 3, 2
E) $3,2,1$

ANSWER: E
3. ($\mathbf{2}$ points) A $400-\mathrm{N}$ block is dragged along a horizontal surface by an applied force \vec{F} as shown. The coefficient of kinetic friction is $u_{k}=0.4$ and the block moves at constant velocity. The magnitude of \vec{F} is closest to:
A) 100 N
B) 150 N
C) 200 N
D) 290 N
E) 400 N

HINT: 1) The weight of box is $\mathrm{mg}=400 \mathrm{~N}$;
2) May be easiest to substitute the answers to see which one obeys Newton's law. However, the systematic method of applying Newton's Law will also give the correct answer.

Equilibrium so use Newton's first law.
Y-com: $F_{N}-F_{g}+(3 / 5) F=0 \rightarrow F_{N}=400 N-(3 / 5) F$. Kinetic Friction $f_{k}=F_{N} \mu_{k}$,
$f_{k}=160 N-0.24 F$. X-comp $f_{k}=(4 / 5) F \rightarrow 160 N-0.24 F=0.8 F \rightarrow F=154 N$.
ANSWER B
4. (2 points) A constant external force $P=130 \mathrm{~N}$ is applied to a $20-\mathrm{kg}$ box, which is on a rough horizontal surface. The force pushes the box a distance of 8.0 m , in a time interval of 7.0 s , and the speed changes from $v_{1}=0.6 \mathrm{~m} / \mathrm{s}$ to $v_{2}=3.2 \mathrm{~m} / \mathrm{s}$. The work done by the external force \boldsymbol{P} is closest:
a) 900 J
b) 520 J
c) 810 J
d) 720 J
e) 620 J

Warning: Read the question carefully!!
Work done by $\vec{P}, W=\vec{P} \cdot \vec{d}=P \cos 30^{\circ}=130 N \cos 30^{\circ} \times 8 m=900 J$, ANSWER: A
5. ($\mathbf{2}$ points) A $3.00-\mathrm{kg}$ ball swings rapidly in a complete vertical circle of radius 2.00 m by a light string. The ball moves so fast that the string is always taut. As the ball swings from its lowest point to its highest point:
a) The work done on it by gravity and the work done on it by the tension in the string are both equal to zero.
b) The work done on it by gravity is -118 J and the work done on it by the tension in the string is zero.
c) The work done on it by gravity and the work done on it by the tension in the string are both equal to -118 J .
d) The work done on it by gravity is +118 J and the work done on it by the tension in the string is -118 J .
e) The work done on it by gravity is -118 J and the work done on it by the tension in the string is +118 J .
ANSWER: B Work by gravity is $W_{g}=-m g \Delta y=-3 \mathrm{~kg} \times 9.8 \mathrm{~m} \cdot \mathrm{~s}^{-2} \times 4 m=-118 \mathrm{~J}$. Since the ball travels in a circle, then tension is perpendicular to the direction of motion, and the work done by the tension is zero.

PART II: FULL ANSWER QUESTIONS (question 6 to 9)

Do all four questions on the provided space. Show all works.
6. (10 points) In the diagram, block $1\left(M_{1}=2.0 \mathrm{~kg}\right)$ lies on frictionless incline of 53.1°, and is moving up the incline with acceleration $a=1.04 m \cdot s^{-2}$. Block 1 is connected by an ideal rope through a frictionless pulley to block $2\left(M_{2}=7 \mathrm{~kg}\right)$, which rests on a 36.9° incline with friction. Block 2 is acted on by an applied horizontal force of magnitude F_{A} $=5 \mathrm{~N}$. The tension $\left(\mathrm{T}=\right.$?) and kinetic coefficient $\left(\mu_{k}=\right.$?) are unknown.

a) Draw a free-body-diagram (FBD) of all forces on block $1\left(\mathrm{M}_{1}\right)$, which includes the direction of its acceleration. Calculate the tension, T.

b) Draw a free-body diagram (FBD) of all forces acting on block $2\left(\mathrm{M}_{2}\right)$. Use this to determine the magnitude and direction of the friction force $f_{k, 2}$, acting on block 2 .

Calculate the coefficient of kinetic friction, μ_{k}, between surfaces of block 2 and incline. In diagram below the forces and acceleration are dented by the solid black arrows.

Friction: $f_{k 2}=\mu_{k} F_{N 2} \rightarrow \mu_{k}=12.12 N / 57.88 N=0.21$ (2 points)
7. ($\mathbf{1 0}$ points) In the diagram below, the two blocks are accelerating at $\mathrm{a}=0.53 \mathrm{~m} \bullet \mathrm{~s}^{-2}$, due to a force of unknown magnitude ($\mathrm{F}=$?) that is pushing block $\mathrm{m}(\mathrm{m}=10 \mathrm{~kg}$). Block M has mass $\mathrm{M}=99 \mathrm{~kg}$. The coefficients of friction between the sides of the two blocks are $\mu_{k}^{\text {side }}=0.3$ and $\mu_{s}^{\text {side }}=0.5$. It is assumed that block m does not slide down the side of block M. The coefficients of friction between block M and the floor are $\mu_{k}^{\text {floor }}=0.18$ and $\mu_{s}^{\text {floor }}=0.25$.

Friction between m and M

Friction between M and floor $\mu_{k}^{\text {floor }}=0.18, \mu_{s}^{\text {floor }}=0.25$
A) Assume that block m does not slide down the side of M. Calculate the magnitude and direction of the force of static friction on m by $\mathrm{M}, \vec{f}_{s}^{m M}$. Use Newton's third law to determine the force of static friction on M by $\mathrm{m}, \vec{f}_{s}^{M m}$. NOTE: direction is up or down.
 $\vec{f}_{s}^{M m}$ and $\vec{f}_{s}^{m M}$ are action-reaction pair By Newton's third law $\vec{f}_{s}^{M m}$ must point down

$$
f_{s}^{M m}=m g=98 N \quad(2 \text { points })
$$

B) Draw a free-body diagram of block \mathbf{M}, which includes all forces acting on it, as well as the direction of its acceleration. Use Newton's first law to calculate the vertical normal force on block M by floor's surface, $F_{N}^{\text {Mfloor }}$. Hence calculate the magnitude of force of
 calculate the horizontal normal force on M by $\mathrm{m}, F_{N}^{M m}$.

C) Draw a free-body diagram of block \mathbf{m}, which include all forces acting on it, as well as the direction of its acceleration. Use Newton's second and third law to calculate the magnitude of the horizontal force F that pushes block m .

8. (10 points) A 10 kg crate is initially moving with a speed of $5.0 \mathrm{~m} / \mathrm{s}$, when it is acted on by a horizontal 8 N force as shown in the diagram below. The coefficient of kinetic and static friction between all surfaces are $\mu_{\mathrm{k}}=0.1$ and $\mu_{\mathrm{S}}=0.2$, respectively.

F $=8 \mathrm{~N}$	-	$5.0 \mathrm{~m} / \mathrm{s}$	
	10 kg		$\begin{aligned} & \mu_{\mathrm{k}}=0.1 \\ & \mu_{\mathrm{S}}=0.2 \end{aligned}$

A) Draw a free-body diagram showing all forces on the crate. Determine the normal force, F_{N}, and the friction force on the crate. Find the acceleration.

B) Use the kinematics equation $v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right)$ to find the speed of the crate after it has traveled 10 m to the right of its initial position (above diagram).
$v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right)=\left(5 m \cdot s^{-1}\right)^{2}+2\left(-0.18 m \cdot s^{-2}\right)(10 m) \rightarrow v_{x}=4.63 m \cdot s^{-1} \quad(2$ points $)$
C) Calculate the work done by the $\mathrm{F}=8 \mathrm{~N}$ force, the normal force, gravity (weight), and friction after it has traveled 10 m to the right of its initial position.
$\mathrm{F}=8 \mathrm{~N}, W_{F}=\vec{F} \cdot \vec{d}=8 \mathrm{~N} \times 10 \mathrm{~m}=80 \mathrm{~J}$, positive since force is parallel to displacemnet
Normal force, $W_{N}=\vec{F}_{N} \cdot \vec{d}=0$, since $\vec{F}_{N} \perp \vec{d}$
Gravity, $W_{g}=\vec{F}_{g} \cdot \vec{d}=0$, since $\vec{F}_{N g} \perp \vec{d}$
Friction, $W_{f}=\vec{f}_{k} \cdot \vec{d}=-9.8 \mathrm{~N} \times 10 \mathrm{~m}=-98 \mathrm{~J}$, negative since force of kinetic friction is antiparallel to displacement. (2 points)
D) Use the work-energy theorem (and result of part C) to find the speed of the crate after it has traveled 10 m to the right of its initial position. Compare this answer with that of part B.

Net work $W^{\text {Net }}=W_{F}+W_{N}+W_{g}+W_{f}=-18 \mathrm{~J}$
Work-Energy Theorem: $W^{n e t}=\Delta K=(1 / 2) m v_{f}^{2}-(1 / 2) m v_{i}^{2}$, where $v_{i}=5 m \cdot s^{-1}$ $v_{f}=\sqrt{\frac{2 W^{\text {Net }}}{m}+v_{i}^{2}}=\sqrt{\frac{2 \times(-18 \mathrm{~J})}{10 \mathrm{~kg}}+\left(5 \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)^{2}}=4.63 \frac{\mathrm{~m}}{\mathrm{~s}}$, which is identical to part b . (2 points)
9. ($\mathbf{1 0}$ points) In the system below a massless ideal spring $(k=410 \mathrm{~N} / \mathrm{M})$ is compressed at $\mathrm{x}=0.8 \mathrm{~m}$ from equilibrium, by a mass of $\mathrm{M}=2.2 \mathrm{~kg}$. It is then released.

A) Calculate the net work done on the Mass M, from the initial (0) to the intermediate position (1), when the spring is back at equilibrium. Use the work-energy theorem to find the speed of the block at position $1, v_{1}$.
Spring $W_{s}=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2}=\frac{1}{2}\left(410 \frac{\mathrm{~N}}{\mathrm{~m}}\right)(0.8 \mathrm{~m})^{2}-\frac{1}{2}\left(410 \frac{\mathrm{~N}}{\mathrm{~m}}\right)(0)^{2}=131.2 \mathrm{~J} \quad(1.5$ points)
Gravity $W_{\text {grav }}=-m g \Delta y=-2.2 \mathrm{~kg} \times 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.8 \mathrm{~m}=-17.248 \mathrm{~J} \quad$ (1.5 points)
Net work, $W^{\text {Net }}=W_{s}+W_{\text {grav }}=113.952 \mathrm{~J}$.
Work-energy $W^{\text {Net }}=\frac{1}{2} m v_{1}^{2}-\frac{1}{2} m v_{0}^{2} \rightarrow v_{1}=\sqrt{\frac{2 W^{\text {Net }}}{m}}$, where we used $v_{0}=0$ (see diagram) $v_{1}=\sqrt{2 \times 113.952 \mathrm{~J} / 2.2 \mathrm{~kg}}=10.18 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ (2 points)
B) The block will reach its maximum height at the final position (2). Use the work-energy theorem to determine the maximum height H , above spring. Hint: Look at the diagram, and note that from position 1 to 2 gravity is the only force acting on the spring.
$W^{\text {net }}=W_{\text {grav }}=-m g \Delta y=-m g H$ (1 point)
Work energy $W^{\text {Net }}=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}=-m g H$ (1 point). Use $v_{2}=0$ (see diagram) (1 point).
$-\frac{1}{2} m v_{1}^{2}=m g H \rightarrow H=\frac{1}{2 g} v_{1}^{2}=\frac{1}{2 \times 9.8 m \cdot s^{-2}}\left(10.18 \frac{m}{s}\right)^{2}=5.28 m .(2$ points $)$

USEFUL EQUATIONS

$\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$, unit vector notation.
Scalar Product: $\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=A B \cos \phi$
Solution of quadratic equation, $a x^{2}+b x+c=0 \rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Kinematics $x=x_{0}+v_{0 x} t+\frac{1}{2} a_{x} t^{2}, v_{x}=v_{0 x}+a_{x} t, v_{x}^{2}=v_{0 x}^{2}+2 a_{x}\left(x-x_{0}\right)$
$g=9.8 m / s^{2}, F_{g}=m g$ Centripetal acceleration $a_{r a d}=\frac{v^{2}}{r}$
Newton's Laws $\vec{F}^{\text {net }}=\Sigma \vec{F}=0$ (Object in equilibrium)
$\vec{F}^{\text {net }}=m \vec{a}$ (Nonzero net force); third law, an applied force on object A by object B will induce an equal (in magnitude) and opposite (in direction) force on object B by object A.
Friction $f_{s} \leq \mu_{s} F_{N}, f_{k}=\mu_{k} F_{N}$.
Work and Energy
$K=(1 / 2) m v^{2}, W=\vec{F} \bullet \vec{d}=(F \cos \theta) d=F_{\|} d$ (Straight-Line Motion, Constant Force)
Scalar product form: $\vec{F}=F_{x} \hat{i}+F_{y} \hat{j}+F_{z} \hat{k}, \vec{d}=d_{x} \hat{i}+d_{y} \hat{j}+d_{z} \hat{k}, W=\vec{F} \bullet \vec{d}=F_{x} d_{x}+F_{y} d_{y}+F_{z} d_{z}$
Hooke's Law $F_{x}=-k x$. Work by spring: $W_{s}=\frac{1}{2} k x_{i}^{2}-\frac{1}{2} k x_{f}^{2}$
Gravitational Work: $W^{g r a v}=-m g\left(y_{f}-y_{i}\right)=m g y_{i}-m g y_{f}$
Work-Energy Theorem: $W^{n e t}=\Delta K=(1 / 2) m v_{f}^{2}-(1 / 2) m v_{i}^{2}$ (valid if $W^{\text {net }}$ is the net or total work done on the object)

