
 Page 1/17

University of California, Berkeley
College of Engineering

Computer Science Division – EECS

Fall 2013 Anthony D. Joseph and John Canny

Midterm Exam #1 Solutions
October 21, 2013

CS162 Operating Systems

Your Name:

SID AND 162 Login:

TA Name:

Discussion Section
Time:

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to
answer as many questions as possible. The number in parentheses at the beginning of each
question indicates the number of points for that question. You should read all of the questions
before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there
is something in a question that you believe is open to interpretation, then please ask us about it!
 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 8

2 17

3 15

4 23

5 18

6 19

TOTAL 100

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 2/17

1. (8 points total) True/False and Why? CIRCLE YOUR ANSWER.

i) A user-level process cannot modify its own page table entries.

TRUE FALSE
Why?
TRUE. If a user-level process was allowed to modify its own page table
entries, then it could access physical memory being used by other
processes or the OS kernel. Kernel mode is required to modify page table
entries. The correct answer was worth 1 points and the justification was
worth an additional 1 point.

ii) The scheduler is the part of an Operating System that determines the priority of
each process.

TRUE FALSE
Why?
FALSE. The scheduler schedules processes based on user-specified
priorities.

We accepted an answer of TRUE, only if you stated that the scheduler was
calculating the effective priority or performing priority
donation/inheritance. The correct answer was worth 1 point and the
justification was worth an additional 1 point.

iii) Shortest Remaining Time First is the best preemptive scheduling algorithm
that can be implemented in an Operating System.

TRUE FALSE
Why?
FALSE. SRTF cannot be implemented because it requires knowledge of
the future. The correct answer was worth 1 points and the justification
was worth an additional 1 point.

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 3/17

iv) The working set model is used to compute the average number of frames a job
will need in order to run smoothly without causing thrashing.

TRUE FALSE
Why?
FALSE. The working set model is used to compute the minimum (total)
number of frames a job will need in order to run smoothly without causing
thrashing. The correct answer was worth 1 points and the justification
was worth an additional 1 point.

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 4/17

2. (17 points total) Deadlock.

a. (11 points total) Recall the various deadlock detection and prevention algorithms
we’ve discussed in this course, and consider the following snapshot of a system
with five processes (P1, P2, P3, P4, P5) and four resources (R1, R2, R3, R4).
There are no current outstanding queued unsatisfied requests.

 Currently Available Resources

R1 R2 R3 R4
2 1 2 0

 Current Allocation Max Need Still Needs

Process R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4
P1 0 0 1 2 0 0 3 2 0 0 2 0
P2 2 0 0 0 2 7 5 0 0 7 5 0
P3 0 0 3 4 6 6 5 6 6 6 2 2
P4 2 3 5 4 4 3 5 6 2 0 0 2
P5 0 3 3 2 0 6 5 2 0 3 2 0

i) (5 points) Is this system currently deadlocked, or can any process become

deadlocked? Why or why not? If not deadlocked, give an execution order.

Using the Banker’s algorithm, the system is not deadlocked and will not
become deadlocked. The process finishing order is: P1, P4, P5, P2, P3.
We awarded no credit for saying the system is deadlocked or could become
deadlocked, and we deducted 3 points for an incorrect finishing order. We
deducted 1 point for minor errors.

ii) (3 points) If a request from a process P1 arrives for (0, 4, 2, 0), can the request

be immediately granted? Why or why not? If yes, show an execution order.

Three points for correct answer: No, the request is invalid, as it would exceed
the maximum need that P1 specified. We deducted one point for saying no,
but giving a different explanation (e.g., not enough available resources).

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 5/17

iii) (3 points) If a request from a process P2 arrives for (0, 1, 2, 0), can the request

be immediately granted? Why or why not? If yes, show an execution order.

Three points for correct answer: No, the request is valid but if granted, the
resulting Currently Available Resources would be (2, 0, 0, 0) and there is no
sequence of process executions that would allow the completion of all
processes. This is an UNSAFE state. We only deducted 1 pt for Yes answers,
if you stated that the system was in an unsafe state and the only valid order
was executing P2, but deducted 2 pts if you only said Yes. We deducted 2
points if you said No and tried to adjust the Max Needs or Still Needs vectors
or give a full/partial execution order.

b. (6 points) Briefly in at most three sentences each describe two approaches to
avoiding deadlock.
Approach #1:

Deadlock can be avoided by using ordering on resource acquisition, or by
using the Banker’s Algorithm, or by removing any of the four requirements for
Deadlock. Unacceptable answers included: using a deadlock detection
algorithm, providing infinite resources, and running just one process at a
time.

Approach #2:

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 6/17

3. (15 points total) Demand Paging
For each of the following page replacement policies, list the total number of page
faults and fill in the contents of the page frames of memory after each memory
reference.

a. (5 points) MIN page replacement policy:

Reference E D H B D E D A E B E D E B G
Page #1 E E E E E * E E * E * E * E G
Page #2 - D D D * D * A A A A D D D D
Page #3 - - H B B B B B B * B B B * B
Mark X
for a fault

X X X X X X X

Number of MIN page faults? ______________7 and G can be placed anywhere

b. (5 points) LRU page replacement policy:
Reference E D H B D E D A E B E D E B G
Page #1 E E E B B B B A A A A D D D G
Page #2 - D D D * D * D D B B B B * B
Page #3 - - H H H E E E * E * E * E E
Mark X
for a fault X X X X X X X X X

Number of LRU page faults? ______________9

c. (5 points) FIFO page replacement policy:

Reference E D H B D E D A E B E D E B G
Page #1 E E E B B B B A A A A D D D D
Page #2 - D D D * E E E * B B B B * G
Page #3 - - H H H H D D D D E E * E
Mark X
for a fault X X X X X X X X X X X

Number of FIFO page faults? ______________11
We deducted 1pt for minor errors (e.g., fault count) and 4pts for incorrect algorithms.

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 7/17

4. (23 points) Memory management:

a. (5 points) Consider a memory system with a cache access time of 10ns and a
memory access time of 110ns – assume the memory access time includes the time
to check the cache. If the effective access time is 10% greater than the cache
access time, what is the hit ratio H? (fractional answers are OK)

Effective Access Time = H*Tcache + (1-H) * Tmemory
1.1 * Tcache = H*Tcache + (1-H) * Tmemory
1.1 x 10 = H*10 + (1-H)110
11 = H*10 + 110 – 110* H
-99 = -100*H
H = 99/100
We deducted 1pt for minor errors, 3 points for the correct formula but
incorrect calculations, and 4 pts for the right idea but wrong formula and
calculation.

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 8/17

b. (18 points total) Address Translation:
i) (5 points) Consider a machine with a physical memory of 8 GB, a page size of

8 KB, and a page table entry size of 4 bytes. How many levels of page tables
would be required to map a 46-bit virtual address space if every page table fits
into a single page? Be explicit in your explanation.

Since each PTE is 4 bytes and each page contains 8KB, then a one-page page
table would point to 2048 or 211 pages, addressing a total of 211 * 213 = 224 bytes.
Continuing this process:

Depth Address Space
1 224 bytes
2 235bytes
3 246bytes

We deducted 3 pts if your calculation uses the physical memory size to determine
the bits required for virtual page number, 3pts for the right idea but wrong
interpretation (leading to the wrong number of levels), and 3 to 4 pts for a major
errors depending on whether you answer was on the right track or not.

ii) (4 points) List the fields of a Page Table Entry (PTE) in your scheme.

Each PTE will have a pointer to the proper page, PPN, (worth 3 pts) plus several
bits – read, write, execute, (0.5 pts for protection bits), and valid (0.5 pts). This
information can all fit into 4 bytes, since if physical memory is 233 bytes, then 20
bits will be needed to point to the proper page, leaving ample space (12 bits) for
the information bits.

If you added incorrect fields (VPN, offset, …), we subtracted one point for each
incorrect field.

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 9/17

iii) (3 points) Without a cache or TLB, how many memory operations are required
to read or write a single 32-bit word?

Without extra hardware, performing a memory operation takes 4 actual memory
operations: 3 page table lookups in addition to the actual memory operation. We
did not award partial credit for this problem. We deducted 1 pt if you omitted the
actual memory operation for the 32-bit word. If your answer was incorrect, but
consistent with prior parts, we deduced 2 pts.

iv) (6 points) How much physical memory is needed for a process with three
pages of virtual memory (for example, one code, one data, and one stack
page)?

Six physical pages totaling 48KB are needed: one for the first-level page table,
one for one page of the second-level page table, one for one page of the third-
level page table, and three for the process’ three pages.

Note that the second- and third-level page tables do not need 16MB (211 * 8KB)
each, because the top-level (and second-level) page tables enable you to only
have the next level page table pages for those pages that are part of the process's
virtual address space.

For partially correct answers, we subtracted three points for not including the
page table memory, 2 pts for having more than one top level page table, 1 pt for
not including the data pages, 1 pt for minor errors and 1 pt if your answer was
not consistent with prior parts.

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 10/17

5. (18 points total) Scheduling.
Assumptions: All timeslice-based algorithms have a timeslice of one unit; The
currently running thread is not in the ready queue while it is running; An arriving
thread is run at the beginning of its arrival time, if the scheduling policy allows it.
Turnaround time is defined as the time a process takes to complete after it arrives.

Fill in ALL blanks in EACH table – each blank has an unambiguous answer.
For the missing schedulers, the possibilities are SRTF, RR, and Priority.
Priority is a preemptive scheduler.
Hint: Fill in the entry time (below) for Thread C first!

We deducted 6 pts for the wrong entry time for C, 4 pts for each incorrect scheduler
name, 1 or 2 pts each for minor/major errors in ordering and the avg TRT calculation .

Priorities
A 3
B 4
C 5
D 6

Entry Times
A 1
B 2
C 5
D 8

↓Current Time
 Scheduler →

Currently Scheduled Process
FIFO SRTF Priority

1 A A A
2 A A B
3 A A B
4 B B B
5 B C C
6 B B A
7 C B A
8 D D D
9 D D D

10 D D D
Avg Turnaround Time 3.5 3.25 3.5

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 11/17

6. (19 points) Concurrency Control.

You are the organizer of a gaming exhibit at the E3 Electronic Entertainment Expo.
You want to allow the attendees to play your startup’s new game demo. You model
the attendees as threads, called players, and your job is to synchronize access to a
single copy of the game, as follows:

• When a player arrives, he or she waits in a waiting area.
• Once there are 4 or more players waiting to play, you allow exactly 4 of

them to leave the waiting area to begin playing. These four leave the
waiting area and approach the game console.

• When a player reaches the console, the player waits until all four players
are at the console, at which point all four players begin playing.

• Players may finish playing at any time. However, you cannot allow any
new players to begin playing until all four players have left.

• You do not need to let players out of the waiting area in the order in which
they arrived.

• You cannot assume that a player will ever finish playing.

You decide to solve this synchronization problem using two custom
synchronization primitives, which have “barrier-like” semantics:

GameBarrier gb;
ConsoleBarrier cb;

Your task is to implement these synchronization primitives according to the
specifications listed below. Each player thread has access to the two global
barriers, and uses them in the following sequence:

void Player(ThreadID tid, GameBarrier gb, ConsoleBarrier cb) {

gb.waitToPlay();
cb.waitAtConsole();
play();
gb.donePlaying();

}

The GameBarrier can be in one of three states:

• GAME_NOTREADY: There are fewer than 4 players waiting to play. When
the barrier is in this state, no player can progress beyond waitToPlay().

• GAME_FILLING: There are (or were) at least 4 players waiting to play,
and either we are in the first turn or else all four players from the prior turn
have departed (via donePlaying()). When the barrier is in this state, a
player can progress beyond waitToPlay(), and in fact four players must
progress beyond this function. When exactly four players have progressed
beyond this function, the barrier enters the GAME_FILLED state.

• GAME_FILLED: Four players have been sent to the console, and the turn is
not over (meaning that the departure of all four from the console via
donePlaying() has not yet taken place). When the barrier is in this
state, no waiting player can progress beyond waitToPlay().

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 12/17

The ConsoleBarrier can be in one of two states:

• CONSOLE_WAIT: Four players have not yet arrived at the console in the
current round. When the barrier is in this state, no player can progress
beyond waitAtConsole().

• CONSOLE_ALLOW: Four players have arrived in the current round. When
the barrier is in this state, all four waiting players must progress beyond
waitAtConsole(), after which the state reverts to CONSOLE_WAIT.

Your barrier will require the use of condition variables. Recall that condition
variables provide three methods: Condition.wait(Lock mutex),
Condition.signal(), and Condition.broadcast().
Locks provide two methods: Lock.acquire() and Lock.release().

Note that part (but not all) of your work is to ensure that the barriers make the
correct state transitions.

Below, where indicated, fill out the variables and methods for the GameBarrier
and ConsoleBarrier objects.

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 13/17

public class GameBarrier {

private static final int GAME_NOTREADY = 0;
private static final int GAME_FILLING = 1;
private static final int GAME_FILLED = 2;

private Lock mutex;
private int state;
private Condition cv;

/* SPECIFY ANY OTHER CLASS VARIABLES */
private int NumWaiters;
private int NumPlayers;

public GameBarrier(Lock lock) {

this.mutex = lock;
this.state = GAME_NOTREADY;
this.cv = new Condition();

/* INITIALIZE ANY OTHER CLASS VARIABLES */
this.NumWaiters = 0;
this.NumPlayers = 0;

We deducted 1 pt each if your answer was missing either NumWaiters
or NumPlayers

}

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 14/17

public void waitToPlay() {
/* YOU MUST FILL IN THIS FUNCTION */
mutex.acquire();
NumWaiters++
if ((NumWaiters >= 4) &&
 (state == GAME_NOTREADY)) {

state = GAME_FILLING;
cv.broadcast();

}
while (state != GAME_FILLING) {

cv.wait(mutex);
}
NumWaiters--;
NumPlayers++;
if (NumPlayers == 4) state = GAME_FILLED;
mutex.release();

We applied the following grading rubric:

• -3 pts for not using the mutex or using the mutex incorrectly. We
deducted 1 pt if you forgot the mutex acquire OR release but not
both.

• -1 pt for using signal instead of broadcast. We accepted answers
that signaled at least the appropriate number of times.

• -1 pt for not calling cv.wait() from within a while loop
• -3 pts for using extra synchronization primitives (e.g., another

condition variable or semaphores).
• -1.5 pts if you had incorrect or nonexistent state transitions.
• -1 or -2 pts for each additional minor or major error

}

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 15/17

public void donePlaying() {

/* YOU MUST FILL IN THIS FUNCTION */
mutex.acquire();
NumPlayers--;
if (NumPlayers = 0) {

state = GAME_NOT_READY;
if (NumWaiters >= 4) {

state = GAME_FILLING;
cv.broadcast(mutex);

}
}
mutex.release();

We applied the following grading rubric:

• -3 pts for not using the mutex or using the mutex incorrectly. We
deducted 1 pt if you forgot the mutex acquire OR release but not
both.

• -1 pt for using signal instead of broadcast. We accepted answers
that signaled at least the appropriate number of times. We
deducted 2 pts if your answer had no signals or broadcast.

• -2 pts for calling cv.wait() and blocking
donePlaying()

• -1 pt for not checking NumPlaying or NumWaiters.
• -1.5 pts if you had incorrect or nonexistent state transitions.
• -1 pt for each additional error

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 16/17

}

}

public class ConsoleBarrier {

private static final int CONSOLE_WAIT = 0;
private static final int CONSOLE_ALLOW = 1;

private Lock mutex;
private int state;
private Condition cv;

/* SPECIFY ANY OTHER CLASS VARIABLES */
int NumPlayers;

public ConsoleBarrier(Lock lock) {

this.mutex = lock;
this.state = CONSOLE_WAIT;
this.cv = new Condition();

/* INITIALIZE ANY OTHER CLASS VARIABLES */
this.NumPlayers = 0;

We deducted 2 pts if your answer was missing NumPlayers

}

CS 162 Fall 2013 Midterm Exam #1 October 21, 2013
Solutions NAME: _______________________________________

 Page 17/17

public void waitAtConsole() {
/* YOU MUST FILL IN THIS FUNCTION */
mutex.acquire();
NumPlayers++
if (NumPlayers == 4) {

state = CONSOLE_ALLOW;
cv.broadcast();

}
while (state == CONSOLE_WAIT) {

cv.wait(mutex);
}
NumPlayers--;
if (NumPlayers == 0) state = CONSOLE_WAIT;
mutex.release();

We applied the following grading rubric:

• -3 pts for not using the mutex or using the mutex incorrectly. We
deducted 1 pt if you forgot the mutex acquire OR release but not
both.

• -2 pts if your answer had no signals or broadcast.
• -2 pts for missing cv.wait()
• -1 pt for not checking NumPlaying or NumWaiters.
• -1.5 pts if you had incorrect or nonexistent state transitions.
• -1 or -2 pts for each additional minor/major error

}

