
Freescale Semiconductor
Application Note

AN1976
Rev. 0, 07/2005

© Freescale Semiconductor, Inc., 2004, 2005. All rights reserved.

Migrating from SDK to PE 
Ed Camacho 

1.   Introduction
The 56800/E product family has long been supported by the 
CodeWarrior Development tool and the Freescale Embedded 
Software Development Kit (SDK). This environment has enabled 
a customer to quickly prototype his applications and to reduce 
development time by simplifying the processor peripheral 
learning curve. Processor ExpertTM (PE) has taken the lessons 
learned from the development of the SDK and improved upon it 
to provide the next generation of CodeWarrior integrated 
development tools. PE targets the same development goals as 
SDK and provides a Graphical User Interface (GUI) that further 
simplifies the tools usage by providing a more user-friendly 
interface. It also offers an expert knowledge system that prevents 
the user from misconfiguring or misusing any of its software 
modules. PE and SDK support embedded software development 
with these common goals:
• Single integrated development environment (CodeWarrior)
• Faster time to market
• Reduce learning curve of processor-specificregister  

programming
• Increased portability and reuse across MCU and 56800/E  

derivatives
• Fully tested, production-quality software modules
• Source code provided for customer optimization and  

customization
• High-Level Encapsulated API that promotes portability and  

processor migration 
• Low-Level Register API for customization of High-Level 
• Application-Specific Algorithm Libraries

This application note will show how these common goals are 
supported in SDK and PE, identify PE improvements, and 
demonstrate how to migrate an SDK project to PE.

Contents

1. Introduction ........................................ 1

2. Common Goals ................................... 2
2.1 Single Integrated Development 

Environment .................................... 2
2.2 Shorten Application Development  

Time ................................................ 4
2.3 Reduce Learning Curve .................. 4
2.4 Increased Portability and Reuse  

Across MCU and 56800/E  
Derivatives ...................................... 4

2.5 Fully Tested, Production-Quality  
Software Modules ........................... 4

2.6 Source Code Provided for Customer 
Optimization and Customization..... 4

2.7 High-Level Encapsulated API ........ 4
2.8 Low-Level Register API................. 5
2.9 Application-Specific Algorithm  

Libraries .......................................... 5

3. PE Improvements over SDK .............. 7
3.1 Common Development  

Environment .................................... 7
3.2 PE Graphical User Interface ........... 7
3.3 Improved Help System ................... 8
3.4 Expert Error-Checking System....... 9
3.5 Object-Oriented Software  

Modules........................................... 9
3.6 Code Generation ........................... 10
3.7 Single Installation ......................... 10

4. Migrating SDK to PE ....................... 11
4.1 Migrating Application-Specific  

Algorithm Libraries....................... 11
4.2 Migrating Low-Level Register 

Programming................................. 13
4.3 Migrating High-Level Encapsulated 

Programming................................. 14

5. Summary ........................................... 22



Common Goals

Migrating from SDK to PE, Rev. 0

2 Freescale Semiconductor  

2.   Common Goals
SDK and PE both target the same customer goals, each achieving these goals within its own development 
environment. This section identifies how the two environments meet these goals.

2.1   Single Integrated Development Environment
CodeWarrior provides the framework into which both SDK and PE are integrated. Both SDK and PE provide 
stationery that automatically creates the development environment necessary to support the instantiation and 
configuration of the available software modules. This stationery makes it easy for a customer to concentrate on 
writing his application-specific software. A new SDK or PE project may be created by selecting File / New
from within the CodeWarrior IDE menu to navigate to the window shown in Figure 2-1. SDK stationery files 
are found under Embedded SDK Stationery and PE stationery files are found under DSP56800E EABI 
Stationery.

Figure 2-1.   Creating a New Project 



Single Integrated Development Environment

Migrating from SDK to PE, Rev. 0

Freescale Semiconductor 3 

An SDK project may be created by selecting the appropriate 56800/E processor derivative and stationery, as 
shown in Figure 2-2, then clicking OK.

 

Figure 2-2.   SDK Stationery

Similarly, a PE project may be created by selecting the appropriate 56800/E processor derivative and 
stationery, C with Processor Expert, as shown in Figure 2-3.

Figure 2-3.   PE Stationery



Common Goals

Migrating from SDK to PE, Rev. 0

4 Freescale Semiconductor  

2.2   Shorten Application Development Time
Both SDK and PE target a rapid prototyping environment that provides production-ready software modules,
including peripheral drivers and application-specific algorithms. These software modules include APIs that are 
common across supported processor derivatives, increasing the level of portability. A customer is able to 
utilize these software module building blocks to quickly prototype his applications. Source code is provided to 
allow customers to further optimize and customize these prototypes to meet production performance and 
memory requirements. 

2.3   Reduce Learning Curve
Both the SDK and PE tools provide easy-to-use APIs that make it simple for customers to begin using 
processor peripherals. It is no longer necessary to read through pages and pages of the chip’s user manual 
before writing code. The encapsulated interfaces and configuration mechanisms of both SDK and PE hide the 
complicated, peripheral-specific control software behind the API. The customers can now focus his efforts on 
developing his applications, rather than learning processor-specific details. 

2.4   Increased Portability and Reuse Across MCU and 56800/E Derivatives
Portability is increased by targeting common APIs across supported processor derivatives. While SDK 
supports only the 56800/E derivatives, PE has extended this support across Freescale’s MCU 68HC08 and 
68HCS12 families as well as the 56800/E devices. 
“The demonstration of these integrated technologies furthers Metrowerks’ goal to provide a 
seamless development environment for embedded applications, which brings major productivity 
benefits to our customers,” - Metrowerks European Strategic Marketing Manager.

2.5   Fully Tested, Production-Quality Software Modules
All software modules delivered in the SDK and PE have been developed under industry-standard processes 
and have undergone extensive testing to ensure they are production quality. SDK software development 
follows industry-standard development procedures set forth in the SEI CMM and ISO 9000 standards. PE is 
also ISO 9000 certified in its development and testing procedures. Both tools are developed in close 
communication with processor design teams to ensure feature support and are constantly improved based on 
customer feedback. Further, PE’s advanced object-oriented development methodology instantiates only the 
software required to perform the selected task, thereby providing the benefits of object-oriented software 
development without the overhead.

2.6   Source Code Provided for Customer Optimization and Customization
To meet the needs of the general development population, it is necessary to provide APIs and implementations 
that support all possible applications, which can sometimes lead to code growth and inefficient use of system 
resources. This issue is resolved in SDK and PE by providing source code for all non-proprietary software 
modules, giving a customer the freedom to optimize and customize these implementations to meet his specific 
needs.

2.7   High-Level Encapsulated API 
This high-level API provides a customer with a means to select the processor that best meets the performance 
and cost requirements of his system. Both SDK and PE provide encapsulated interfaces to the peripherals that 
allow customers to easily migrate among supported processor derivatives. This ease of migration is critical 
when evaluating multiple processors. During the prototyping phase, it provides a developer a means to test his 



Application-Specific Algorithm Libraries

Migrating from SDK to PE, Rev. 0

Freescale Semiconductor 5 

prototypes on multiple processors, allowing a better understanding of the processor’s performance 
characteristics. Once the application is functionally sound, it may be optimized to reduce the program and data 
footprints to the point it will fit into a smaller and more cost-effective device. SDK provides this interface via 
its POSIX API, while PE provides the Embedded Bean API. An example of how to migrate from SDK to PE at 
this level is provided in Section 4.3.

2.8   Low-Level Register API 
This low-level API is processor-specific and supports customers who want direct control and visibility into the 
register-level programming of peripherals. It mainly consists of C macro substitutions for setting and clearing 
bits within peripheral registers and is therefore very efficient, but at the cost of portability. It is intended to be 
used in conjunction with the Encapsulated API to take advantage of processor specific features. SDK provides 
this interface via its POSIX IO Control (ioctl) API, while PE provides the Processor Expert System Library 
(PESL) API. The PESL functions are derived from the ioctl command set and provide a high degree of 
compatibility between SDK and PE. An example of how to migrate from SDK to PE at this level is provided in 
Section 4.2.

2.9   Application-Specific Algorithm Libraries
The SDK provides an extensive set of highly optimized, C-callable, application-specific algorithm libraries 
that target many of the application markets using the 56800/E processor family. These libraries provide 
building blocks for customer applications and can greatly shorten development cycle time, moving a product to 
market more quickly. All SDK libraries have been ported to PE and are available as Embedded Beans through 
the Bean Selector interface. The functionality, performance, and API are compatible between the SDK and PE. 
The available libraries can be selected from the PE Bean Selector window, as shown in Figure 2-4. An 
example of how to migrate from SDK to PE at this level is provided in Section 4.



Common Goals

Migrating from SDK to PE, Rev. 0

6 Freescale Semiconductor  

Figure 2-4.   PE Bean Selector



PE Graphical User Interface

Migrating from SDK to PE, Rev. 0

Freescale Semiconductor 7 

3.   PE Improvements over SDK
Freescale constantly focuses on improving our software development tools to achieve the best possible 
environment for our customers. In doing so, it was a natural progression to combine the best of SDK into PE to 
improve on the SDK environment’s shortcomings, as well as to strengthen the PE environment. The merging 
of these tools has provided the customer with the following improvements over the SDK:

• Common development environment across Freescale’s 8- and 16-bit products
• Graphical User Interface (GUI) for selecting and configuring software modules
• Code generation of selected software modules
• Expert system that checks for errors in peripheral configuration and usage
• Object-oriented software modules
• Highly integrated tool with a single installation mechanism 

3.1   Common Development Environment
Processor Expert for the HC08 and HCS12 microcontroller families has been distributed with CodeWarrior 
and PE is now available for the 56800/E controller derivatives. Having a single common development 
environment improves the ease of migration among supported processors and assists in evaluation and 
application development. These processors provide a natural progression from the MCU application space to 
the hybrid MCU/DSP application space through the similarities of their peripheral sets, addressing modes, 
instruction sets, and, now, their development tools. PE further enhances this progression by providing common 
software interfaces across these processor derivatives. In the end, this common development environment 
improves development time by not forcing the developer to learn a new development tool. The developer is 
already familiar with the development environment, its design features, and its development philosophy.

3.2   PE Graphical User Interface
PE improves on the manual application configuration mechanism found in SDK by providing a GUI for 
selecting and configuring software modules. This improvement makes the tool much simpler to understand and 
use. After creating a PE project, the developer may parse through the Bean Selector, which contains all 
available software module APIs. These APIs are organized by Bean Category, as well as by peripheral, as 
shown in Figure 3-1. The user may add any number of these software modules to the project by simply 
clicking on each. Both the Embedded Bean and PESL APIs are offered, providing the highest degree of 
programming flexibility to the developer.



PE Improvements over SDK

Migrating from SDK to PE, Rev. 0

8 Freescale Semiconductor  

Figure 3-1.   On-Chip Peripheral Embedded Bean and PESL APIs

3.3   Improved Help System
PE offers an extensive help system that provides both balloon help and online help. Balloon help appears
whenever the cursor is placed over any PE module, providing quick reference information about the module’s 
purpose and parameters. More detailed help is available by right mouse clicking on the module and selecting 
Help. This will invoke the Processor Expert Help system, as shown in Figure 3-2.

Figure 3-2.   PE Help System



Object-Oriented Software Modules

Migrating from SDK to PE, Rev. 0

Freescale Semiconductor 9 

3.4   Expert Error-Checking System
As with many complex peripheral sets, only a finite set of register programming values are required to enable 
the peripheral’s many features and modes. All other combinations will cause the peripheral to function 
improperly. PE Embedded Beans provide an expert error checking system that will flag these invalid 
combinations and force the user to correctly configure the peripheral before generating code. The developer is 
now freed from the tedious task of understanding the interaction between peripheral registers, and may instead 
concentrate on selecting the feature set that is required by the application. For example, Figure 3-3 shows how 
the Expert Error Checking System notifies the developer that the ADC conversion time has not been specified,
as indicated by the red exclamation point and Error window.

Figure 3-3.   Configuration Error Checking

3.5   Object-Oriented Software Modules
PE makes it simple to instantiate multiple instances of a particular software module. Each time the Embedded 
Bean is selected from the Bean Selector, a new copy of the code is placed in the project with a new prefix for 
all methods associated with the Bean. This preserves name space and avoids any conflicts if the same function 
has been invoked incorrectly. A unique prefix is automatically selected by the tool and the developer has the 
option to redefine it. PE provides the benefits of object-oriented programming without the overhead.



PE Improvements over SDK

Migrating from SDK to PE, Rev. 0

10 Freescale Semiconductor  

3.6   Code Generation
Once the developer has selected and correctly configured all Embedded Beans required by the application, PE 
will automatically copy the code required to implement the selected functionality from its database into the 
developer’s workspace and include it in the current project. This feature reduces the complexity that occurs 
when unneeded functions are included simply because they are part of a particular library. Even though 
extraneous functions can be dead-stripped by the linker from the project’s executable, completely removing 
them from the project makes it easier for the developer to concentrate on understanding the content of only a 
few files which contain relevant information.

Methods associated with the selected Beans can be included into the application through PE’s drag-and-drop 
feature, as shown in Figure 3-4.

Figure 3-4.   Drag-n-Drop Method Instantiation

3.7   Single Installation
The integration of CodeWarrior and PE has been improved over that of CodeWarrior and SDK via a single 
(combined) installation mechanism. Since CodeWarrior and SDK were installed separately, there was always 
the issue of maintaining compatible versions between the two packages. This issue has now been eliminated 
since CodeWarrior and PE are distributed as one tool. 



Migrating Application-Specific Algorithm Libraries

Migrating from SDK to PE, Rev. 0

Freescale Semiconductor 11 

4.   Migrating SDK to PE
When migrating an SDK project to a PE project, there are three main API levels that will be encountered: 
Application-Specific Algorithm Library API, Low-Level Register Programming API, and High-Level 
Encapsulated API. This section will provide an example of how to port from SDK to PE.

4.1   Migrating Application-Specific Algorithm Libraries
The SDK Application-Specific Algorithm Libaries have all been ported to Processor Expert and provide a 
simple migration path between SDK and PE. Follow these steps when migrating applications that use SDK 
libraries to PE:

1. Create a PE project

2. Generate code to create the basic PE project structure

3. Copy the SDK application source code to PE source files

4. Select the Algorithm Library from the PE Bean Selector

5. Drag and drop appropriate methods into PE’s main.c

6. Build the project and verify functionality

These steps are used in the following example to migrate a 56F801 SDK application to PE, which uses the 
Memory Manager and Array Math libraries. 

1. Create a PE project using the 56F801 PE Stationery.

Figure 4-1.   Create a 56F801 PE project



Migrating SDK to PE

Migrating from SDK to PE, Rev. 0

12 Freescale Semiconductor  

2. Generate code, which allows PE to create the basic project files associated with the 56F801 target system. 
Figure 4-2 shows the PE menu selection that generates the base files; the base structure is also shown. 
• The support folder contains CodeWarrior basic libraries
• The Startup Code folder contains source code that is run at processor reset to set-up the C 

programming environment; for example, setting up the software stack and initializing variables
• The Generated Code folder contains all source code generated by PE and should generally not be 

modified
• The User Modules folder contains all source code written by the user to implement the 

application-specific functionality
• The Doc folder contains PE-generated documentation on the software selected

Figure 4-2.   Generate PE Base Files

3. Copy the SDK main function code to the PE main function. The PE main source file (SDKtoPE_Lib.c) is 
named after the project name chosen when the project was created and may be found in the User Modules 
folder. Any other application-specific source files, like appconst.c, should also be added to the User 
Modules folder. When copying the SDK main function code to the PE main function, do not remove the 
PE initialization code located at the top of the main function; this code is needed to initialize the PE Beans 
selected.



Migrating Low-Level Register Programming

Migrating from SDK to PE, Rev. 0

Freescale Semiconductor 13 

Figure 4-3.   Copy SDK Application Source to PE

4. Add the Memory Manager and Array Math libraries to the PE project from the Bean Selector

5. Inspect the code being ported to determine which methods are required, then drag and drop the appropriate 
methods from the Bean libraries.

6. Build the project by selecting the Make icon. This will cause PE to generate code for the selected Bean 
methods; compile; assemble; and link the project. PE will automatically check for Bean configuration 
errors and notify the user by halting the build process and displaying the errors in the Error window. 
 
The migration process is now complete and the project may be tested for functionality.

4.2   Migrating Low-Level Register Programming
The SDK provides the lowest-level programming API in its peripheral memory access interface. This interface 
has been ported to PE to support migration at this register programming level. The following functions 
define the API:

• UWord16 periphMemRead(UWord16 *pSrc) 
• void periphMemWrite(UWord16 Data, UWord16 *pDest) 
• void periphBitSet(Mask, Addr) 
• void periphBitClear(Mask, Addr) 
• bool periphBitTest(Mask, Addr) 
• void periphBitChange(Mask, Addr)



Migrating SDK to PE

Migrating from SDK to PE, Rev. 0

14 Freescale Semiconductor  

The SDK maps the entire peripheral register set to a C-type defined structure, named arch_sIO, in the 
architecture definition file, arch.h. PE provides a similar mapping of the peripheral registers in the I/O 
Mapping file, IO_Map.h. Both SDK and PE declare a global variable, called ArchIO; its base address is 
defined in the linker command file. This variable is used to provide the peripheral memory addresses required 
by the peripheral memory access APIs. 

While SDK uses the ArchIO variable to reference individual registers, PE provides a set of defined constants 
that can be used. The PE register definitions are named after the register names found in the chip’s user’s 
manual. Here is an example of the type of substitution that can be expected.

SDK:
periphMemWrite(0xbf00, &ArchIO.PwmA.OutputControlReg); 

/* ENABLE SW CONTROL */

periphMemWrite(0x0000, &ArchIO.PwmA.DisableMapping1Reg); 
/* DISABLE FAULT BITS */

periphMemWrite(0x0000, &ArchIO.PwmA.DisableMapping2Reg); 
/* DISABLE FAULT BITS */

periphMemWrite(0x000e, &ArchIO.PwmA.ConfigReg); 
/* MAKE INDEPENDENT PWMs */

PE: 
periphMemWrite(0xbf00, &PWMA_PMOUT); 

/* ENABLE SW CONTROL */

periphMemWrite(0x0000, &PWMA_PMDISMAP1); 
/* DISABLE FAULT BITS */

periphMemWrite(0x0000, &PWMA_PMDISMAP2); 
/* DISABLE FAULT BITS */

periphMemWrite(0x000e, &PWMA_PMCFG); 
/* MAKE INDEPENDENT PWMs */

The transition between the SDK and PE for this register-level programming interface can be further understood 
by comparing the arch.h and IO_Map.h files. 

4.3   Migrating High-Level Encapsulated Programming
To migrate an SDK project to PE at this level, a high-level overview of the functionality provided by the PE 
Embedded Beans is necessary. This can be understood by spending a few minutes reviewing the available 
Embedded Beans found in the PE Help System at Help / Processor Expert / Embedded Beans Categories. 
Understanding these interfaces will help the user select the appropriate Bean to replace the SDK API. Follow 
these steps when migrating SDK applications to PE:

1. Create a PE project

2. Generate code to create the basic PE project structure

3. Copy the SDK application source code to PE source files

4. Select the appropriate Embedded Bean(s) from the PE Bean Selector

5. Drag and drop appropriate methods into PE’s main.c

6. Build the project and verify functionality



Migrating High-Level Encapsulated Programming

Migrating from SDK to PE, Rev. 0

Freescale Semiconductor 15 

These steps are used in the following example to migrate a 56F800 SDK application to a 56F8323 PE 
application. This SDK application communicates with an application running on a PC via the Serial 
Communications Interface (SCI) to dump Program and Data memory information to the PC’s display. 
Figure 4-7 illustrates the GUI for this application at the end of the migration. The SDK and PC applications 
referred to here are included in all SDK installations, and may be found at these locations for a typical 
installation:

C:\Program Files\Freescale\Embedded SDK\src\dsp5680xevm\nos\applications\sci 

C:\Program Files\Freescale\Embedded SDK\src\x86\win32\applications\serial\serial.exe

The first three steps in this migration are nearly identical to the process already covered in Section 4.1.

1. Follow Step 1 in Section 4.1 to create the project. The PE project name used here is 8323_sci, since this 
example migrates a 56F80x SDK project to a 56F8323 PE project. 

2. Follow Step 2 in Section 4.1 to generate code for the basic PE project structure

3. Follow Step 3 in Section 4.1 to copy the SDK application source code

4. Determine which PE Beans are required to migrate the SDK application. By studying the SDK 
application code shown in Code Example 4-1, it is possible to determine that the SCI is being used as a 
standard DCE device running at 28.8Kbps, 8 data bits, 1 stop bit, no parity. The application polls the 
SCI receiver to get the data space and address requests from the PC application. If Program memory is 
requested, the SDK memory interface is used to read data from Program memory to access P space from 
C. 

Example 4-1.   SDK Application Code
********************************************************************************
*
* FILE NAME: sci.c
*
*******************************************************************************/

#include "bsp.h"
#include "io.h"
#include "fcntl.h"
#include "mempx.h"

#include "assert.h"

#include "sci.h"

#define X_MEMORY 'X'
#define P_MEMORY 'P'

#define MEMORY_SIZE 0x101

#define BUFFER_SIZE 10

UWord16 Buffer[MEMORY_SIZE];



Migrating SDK to PE

Migrating from SDK to PE, Rev. 0

16 Freescale Semiconductor  

/******************************************************************************/
int main()
{
   UWord16        StartLoc;
   UWord16        OneWord;
   UWord16     *  pData;
   UWord16        MemoryType;
   UWord16        I;
   int            SciFD;
   sci_sConfig    SciConfig;

   for ( I = 0; I < MEMORY_SIZE; I++)
   {
      Buffer[I] = I;
   }

   SciConfig.SciCntl    =  SCI_CNTL_WORD_8BIT | SCI_CNTL_PARITY_NONE;
   SciConfig.SciHiBit   =  SCI_HIBIT_0;
   SciConfig.BaudRate   =  SCI_BAUD_28800;

   SciFD = open(BSP_DEVICE_NAME_SCI_0, O_RDWR, &(SciConfig)); /* open device in Blocking 
mode */

   if ( SciFD  == -1 )
   {
      assert(!" Open /sci0 device failed.");
   }
   
   while(true)
   {
      ioctl( SciFD, SCI_DATAFORMAT_EIGHTBITCHARS, NULL );
         

      MemoryType = 0;   
      while ((MemoryType != X_MEMORY) && (MemoryType != P_MEMORY))
      {
         read(SciFD, &MemoryType, 1);

  }
  

      ioctl( SciFD, SCI_DATAFORMAT_RAW, NULL );

      read(SciFD, &StartLoc, sizeof(StartLoc));

      if(MemoryType == X_MEMORY)
      {
         write( SciFD, (UWord16 *)StartLoc, MEMORY_SIZE);
      }
      else if(MemoryType == P_MEMORY)
      {
         pData = (UWord16 *)StartLoc; 

         for(I = 0; I < MEMORY_SIZE; I++, pData++)
         {
            OneWord = memReadP16(pData);
            write(SciFD, &OneWord, sizeof(OneWord));
         }
      }
   }
}



Migrating High-Level Encapsulated Programming

Migrating from SDK to PE, Rev. 0

Freescale Semiconductor 17 

After reviewing the available serial communication Beans in the PE Help System (see Figure 4-4), it is 
determined that the AsynchroSerial Bean is the perfect match to the SDK’s SCI functionality. The SDK 
program memory read function is available in PE’s Memory manager Bean.

Figure 4-4.   AsyncroSerial Bean Help



Migrating SDK to PE

Migrating from SDK to PE, Rev. 0

18 Freescale Semiconductor  

Now that it’s been determined which beans are required, these Beans may be selected from the PE Bean 
Selector and configured appropriately. Figure 4-5 shows the Bean Inspector window after selecting the 
AsyncroSerial Bean. As noted by the red exclamation point, PE has flagged an error notifying the user 
that a baud rate has not yet been specified.

Figure 4-5.   Configuring AsyncroSerial Bean



Migrating High-Level Encapsulated Programming

Migrating from SDK to PE, Rev. 0

Freescale Semiconductor 19 

By clicking the three periods button next to the Baud rate property, the window shown in Figure 4-6
will appear and allow the user to specify the requested baud rate. Note that PE will automatically 
calculate the exact baud rate that may be generated, based on the current rate of the chip. This value is 
shown in the lower left-hand corner of the configuration window, next to Closest values. The user may 
determine if this rate falls within the requirements of the system and make the appropriate adjustments. 
In this case, the 28800 rate is specified and PE automatically selected the closest value of 28846.154 
baud.

Figure 4-6.   Specify Baud Rate

Now that this rate has been specified, the Red exclamation point is removed, and can now proceed to the 
next step.

5. Replace the SDK functions by dragging and dropping the appropriate Bean methods. Code Example 4-2 
shows the converted application code. The basic SDK application structure is still intact.

Example 4-2.   Application Converted from SDK to PE
/* MODULE _8323_sci */

/* Including used modules for compilling procedure */
#include "Cpu.h"
#include "AS1.h"
#include "MEM1.h"
/* Include shared modules, which are used for whole project */



Migrating SDK to PE

Migrating from SDK to PE, Rev. 0

20 Freescale Semiconductor  

#include "PE_Types.h"
#include "PE_Error.h"
#include "PE_Const.h"
#include "IO_Map.h"

#define X_MEMORY 'X'
#define P_MEMORY 'P'

#define MEMORY_SIZE 0x101

void main(void)
{
   UWord16        StartLoc;
   UWord16        OneWord;
   AS1_TComData * pData;
   AS1_TComData  MemoryType, Data[2];
   UWord16        I;
   byte error;
   
  /*** Processor Expert internal initialization. DON'T REMOVE THIS CODE!!! ***/
  PE_low_level_init();
  /*** End of Processor Expert internal initialization.                    ***/

  /* Write your code here */

  for(;;) 
  {
      MemoryType = 0;   
      while ((MemoryType != X_MEMORY) && (MemoryType != P_MEMORY))
      {

AS1_RecvChar(&MemoryType);
  }
  

      while(AS1_GetCharsInRxBuf() == 0);
      AS1_RecvChar(&Data[0]);
      while(AS1_GetCharsInRxBuf() == 0);
      AS1_RecvChar(&Data[1]);
      StartLoc = Data[0]<<8 | Data[1]&0x00FF;
      pData = (AS1_TComData *)(StartLoc<<1);

      if(MemoryType == X_MEMORY)
      {

for(I=0;I<MEMORY_SIZE; I++, pData+=2)
{ 
  while(AS1_SendChar(*(pData+1))==ERR_TXFULL);
  while(AS1_SendChar(*pData)==ERR_TXFULL);
}

      }
      else if(MemoryType == P_MEMORY)
      {
         for(I = 0; I < MEMORY_SIZE; I++, pData+=2)
         {
            OneWord = MEM1_memReadP16((UWord16 *)pData);

    while(AS1_SendChar(*(((unsigned char *) &OneWord) + 
1))==ERR_TXFULL);

    while(AS1_SendChar(*((unsigned char *) &OneWord))==ERR_TXFULL);
         }
      }  
  }
}
/* END _8323_sci */



Migrating High-Level Encapsulated Programming

Migrating from SDK to PE, Rev. 0

Freescale Semiconductor 21 

6. At this point, the migration process is complete and the application may be functionally tested. The 
56F8323EVM serial port may be connected to a PC running the serial application mentioned at the 
beginning of this section. The PE project may be built, downloaded to the EVM and run. At this point, you 
can specify on the PC Application, the address and memory space from which to read data from the 
56F8323 and it will display information as shown in Figure 4-7.

Figure 4-7.   PC Serial Application



Summary

Migrating from SDK to PE, Rev. 0

22 Freescale Semiconductor  

5.   Summary
It is easy to understand how PE can be considered an extension or upgrade to the SDK. It shares the same SDK 
development concepts, as well as many of the SDK software modules. It offers the next logical development 
step for the SDK by providing a more user-friendly environment that even notifies the developer if he requests 
a configuration conflict. PE also provides a common development environment across Freescale’s 8- and 
16-bit product line: HC08, HCS12, 56800E. 

A developer who wants to migrate an existing application from the SDK to PE will first have to become 
familiar with the PE development environment, its similarities to the SDK, and its enhancements. The most 
critical comparisons are summarized below:

• Application-Specific Libraries
— PE includes SDK libraries without modificatin to APIs (for example, DSP Function, Motor 

Control, Tools, etc.)
• High-Level Encapsulated API

— PE provides a GUI for configuration vs. the SDK’s appconfig.h
— PE and SDK APIs are not compatible

• Low-Level Register API
— SDK’s ioctl commands are full supported by PESL
— SDK peripheral macro library is available in PESL

There is no “secret decoder ring” that will allow an SDK-based application to be transformed into a PE-based 
application but the direct porting of all SDK libraries and the Low-Level Register command support provide a 
common thread for the developer to begin transitioning the application. Combined with the following PE 
enhancements, makes the transition even simpler.

• Migration between 8- and 16-bit MCU and DSP derivatives
• Graphical User Interface for selection and configuring software modules
• Expert knowledge system automatically prevents invalid configuration of software modules
• Drag and drop coding for object methods
• Expert on-line help system, including balloon help
• Object-orient methodology
• Resource meter reports peripheral allocation
• Target CPU view identifies pin packabe definitions
• Software is tested according to ISO-certified development procedures

Finally, Metrowerks and Freescale help line support services are available 24 hours per day, 7 days a week. 
These services will assist in answering any SDK or CodeWarrior/PE questions. Find support information at 
these links:

Metrowerks: www.metrowerks.com

Freescale: www.freescale.com



Migrating High-Level Encapsulated Programming

Migrating from SDK to PE, Rev. 0

Freescale Semiconductor 23 



How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road 
Chandler, Arizona 85224 
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd. 
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center 
2 Dai King Street 
Tai Po Industrial Estate 
Tai Po, N.T., Hong Kong 
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, 
Inc. All other product or service names are the property of their respective owners. 
This product incorporates SuperFlash® technology licensed from SST.
© Freescale Semiconductor, Inc. 2005. All rights reserved.

AN1976
Rev. 0
07/2005

Information in this document is provided solely to enable system and 
software implementers to use Freescale Semiconductor products. There are 
no express or implied copyright licenses granted hereunder to design or 
fabricate any integrated circuits or integrated circuits based on the 
information in this document.

Freescale Semiconductor reserves the right to make changes without further 
notice to any products herein. Freescale Semiconductor makes no warranty, 
representation or guarantee regarding the suitability of its products for any 
particular purpose, nor does Freescale Semiconductor assume any liability 
arising out of the application or use of any product or circuit, and specifically 
disclaims any and all liability, including without limitation consequential or 
incidental damages. “Typical” parameters that may be provided in Freescale 
Semiconductor data sheets and/or specifications can and do vary in different 
applications and actual performance may vary over time. All operating 
parameters, including “Typicals”, must be validated for each customer 
application by customer’s technical experts. Freescale Semiconductor does 
not convey any license under its patent rights nor the rights of others. 
Freescale Semiconductor products are not designed, intended, or authorized 
for use as components in systems intended for surgical implant into the body, 
or other applications intended to support or sustain life, or for any other 
application in which the failure of the Freescale Semiconductor product could 
create a situation where personal injury or death may occur. Should Buyer 
purchase or use Freescale Semiconductor products for any such unintended 
or unauthorized application, Buyer shall indemnify and hold Freescale 
Semiconductor and its officers, employees, subsidiaries, affiliates, and 
distributors harmless against all claims, costs, damages, and expenses, and 
reasonable attorney fees arising out of, directly or indirectly, any claim of 
personal injury or death associated with such unintended or unauthorized 
use, even if such claim alleges that Freescale Semiconductor was negligent 
regarding the design or manufacture of the part. 


	1. Introduction
	2. Common Goals
	2.1 Single Integrated Development Environment
	2.2 Shorten Application Development Time
	2.3 Reduce Learning Curve
	2.4 Increased Portability and Reuse Across MCU and 56800/E Derivatives
	2.5 Fully Tested, Production-Quality Software Modules
	2.6 Source Code Provided for Customer Optimization and Customization
	2.7 High-Level Encapsulated API
	2.8 Low-Level Register API
	2.9 Application-Specific Algorithm Libraries

	3. PE Improvements over SDK
	3.1 Common Development Environment
	3.2 PE Graphical User Interface
	3.3 Improved Help System
	3.4 Expert Error-Checking System
	3.5 Object-Oriented Software Modules
	3.6 Code Generation
	3.7 Single Installation

	4. Migrating SDK to PE
	4.1 Migrating Application-Specific Algorithm Libraries
	4.2 Migrating Low-Level Register Programming
	4.3 Migrating High-Level Encapsulated Programming

	5. Summary


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


