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1 Introduction

Population genetics is concerned with the study of the genetic composition of populations.
This composition is shaped by selection, mutation, recombination, mating behavior and
reproduction, migration, and other genetic, ecological, and evolutionary factors. There-
fore, these mechanisms and their interactions and evolutionary consequences are investi-
gated. Traditionally, population genetics has been applied to animal and plant breeding,
to human genetics, and more recently to ecology and conservation biology. One of the
main subjects is the investigation of the mechanisms that generate and maintain genetic
variability in populations, and the study of how this genetic variation, shaped by environ-
mental influences, leads to evolutionary change, adaptation, and speciation. Therefore,
population genetics provides the basis for understanding the evolutionary processes that
have led to the diversity of life we encounter and admire.

Mathematical models and methods have a long history in population genetics, tracing
back to Gregor Mendel, who used his education in mathematics and physics to draw
his conclusions. Francis Galton and the biometricians, notably Karl Pearson, developed
new statistical methods to describe the distribution of trait values in populations and
to predict their change between generations. Yule (1902), Hardy (1908), and Weinberg
(1908, 1909) worked out simple, but important, consequences of the particulate mode of
inheritance proposed by Mendel in 1866 that contrasted and challenged the then prevailing
blending theory of inheritance. However, it was not before 1918 that the synthesis between
genetics and the theory of evolution through natural selection began to take shape through
Fisher’s (1918) work. By the early 1930s, the foundations of modern population genetics
had been laid by the work of Ronald A. Fisher, J.B.S. Haldane, and Sewall Wright. They
had demonstrated that the theory of evolution by natural selection, proposed by Charles
Darwin in 1859, can be justified on the basis of genetics as governed by Mendel’s laws. A
detailed account of the history of population genetics is given in Provine (1971).

In the following, we explain some basic facts and mechanisms that are needed for our
course. Mendel’s prime achievement was the recognition of the particulate nature of the
hereditary determinants, now called genes. Its position along the DNA is called the locus,
and a particular sequence there is called an allele. In most higher organisms, genes are
present in pairs, one being inherited from the mother, the other from the father. Such
organisms are called diploid. The allelic composition is called the genotype, and the set
of observable properties derived from the genotype is the phenotype.

Meiosis is the process of formation of reproductive cells, or gametes (in animals, sperm
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and eggs) from somatic cells. Under Mendelian segregation, each gamete contains precisely
one of the two alleles of the diploid somatic cell and each gamete is equally likely to contain
either one. The separation of the paired alleles from one another and their distribution to
the gametes is called segregation and occurs during meiosis. At mating, two reproductive
cells fuse and form a zygote (fertilized egg), which contains the full (diploid) genetic
information.

Any heritable change in the genetic material is called a mutation. Mutations are
the ultimate source of genetic variability and form the raw material upon which selection
acts. Although the term mutation includes changes in chromosome structure and number,
the vast majority of genetic variation is caused by changes in the DNA sequence. Such
mutations occur in many different ways, for instance as base substitutions, in which one
nucleotide is replaced by another, as insertions or deletions of DNA, as inversions of
sequences of nucleotides, or as transpositions. For the population-genetic models treated
in this text the molecular origin of a mutant is of no relevance because they assume that
the relevant alleles are initially present.

During meiosis, different chromosomes assort independently and crossing over between
two homologous chromosomes may occur. Consequently, the newly formed gamete con-
tains maternal alleles at one set of loci and paternal alleles at the complementary set.
This process is called recombination. Since it leads to random association between alleles
at different loci, recombination has the potential to combine favorable alleles of different
ancestry in one gamete and to break up combinations of deleterious alleles. These prop-
erties are generally considered to confer a substantial evolutionary advantage to sexual
species relative to asexuals.

The mating pattern may have a substantial influence on the evolution of gene fre-
quencies. The simplest and most important mode is random mating. This means that
matings take place without regard to ancestry or the genotype under consideration. It
seems to occur frequently in nature. For example, among humans, matings within a pop-
ulation appear to be random with respect to blood groups or allozyme phenotypes, but
are nonrandom with respect to other traits, for example, height.

Selection occurs when individuals of different genotype leave different numbers of
progeny because they differ in their probability to survive to reproductive age (viabil-
ity), in their mating success, or in their average number of produced offspring (fertility).
Darwin recognized and documented the central importance of selection as the driving force
for adaptation and evolution. Since selection affects the entire genome, its consequences
for the genetic composition of a population may be complex. Selection is measured in
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terms of fitness of individuals, i.e., by the number of progeny contributed to the next
generation. There are different measures of fitness, and it consists of several components
because selection may act on each stage of the life cycle.

Because many natural populations are geographically structured and selection varies
spatially due to heterogeneity in the environment, it is important to study the conse-
quences of spatial structure for the evolution of populations. Dispersal of individuals is
usually modeled in one of two alternative ways, either by diffusion in space or by mi-
gration between discrete niches, or demes. If the population size is sufficiently large, so
that random genetic drift can be ignored, then the first kind of model leads to partial
differential equations (Fisher 1937, Kolmogoroff et al. 1937). This is a natural choice if
genotype frequencies change continuously along an environmental gradient, as it occurs
in a cline (Haldane 1948).

This lecture course will focus on models in which populations inhabit a continuous
habitat and disperse in a way that is similar to diffusion. However, before we turn to
this topic, we will briefly introduce the basic theory about selection in a panmictic, i.e.,
randomly mating and unstructured, population, and then introduce models describing
evolution in subdivided populations that inhabit discrete niches. Such models are most
appropriate if the dispersal distance is short compared to the scale at which the envi-
ronment changes, or if the habitat is fragmented. They also provide us with important
intuition about the more complex models of migration in continuous space.

For mathematically oriented introductions to the much broader field of population
genetics, we refer to the books of Nagylaki (1992), Bürger (2000), Ewens (2004), and
Wakeley (2008). The two latter texts treat stochastic models in detail, an important
and topical area ignored in this course. As an introduction to evolutionary genetics, we
recommend Charlesworth and Charlesworth (2010).

2 Selection on a multiallelic locus

Darwinian evolution is based on selection and inheritance. In this section, we summarize
the essential properties of simple selection models. It will prepare the ground for the
subsequent study of the joint action of spatially varying selection and migration. Proofs
and a detailed treatment may be found in Chapter I of Bürger (2000). Our focus is on
the evolution of the genetic composition of the population, but not on its size. Therefore,
we always deal with relative frequencies of genes or genotypes within a given population.

Unless stated otherwise, we consider a population with discrete, nonoverlapping gen-
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erations, such as annual plants or insects. We assume two sexes that need not be distin-
guished because gene or genotype frequencies are the same in both sexes (as is always the
case in monoecious species). Individuals mate at random with respect to the locus under
consideration, i.e., in proportion to their frequency. We also suppose that the popula-
tion is large enough that gene and genotype frequencies can be treated as deterministic,
and relative frequency can be identified with probability. Then the evolution of gene or
genotype frequencies can be described by difference or recurrence equations. These as-
sumptions reflect an idealized situation which will model evolution at many loci in many
populations or species, but which is by no means universal.

2.1 The Hardy–Weinberg Law

With the blending theory of inheritance variation in a population declines rapidly, and
this was one of the arguments against Darwin’s theory of evolution. With Mendelian
inheritance there is no such dilution of variation, as was shown independently by the fa-
mous British mathematician Hardy (1908) and, in much greater generality, by the German
physician Weinberg (1908, 1909).

We consider a single locus with I possible alleles Ai and write I = {1, . . . , I} for the set
of all alleles. We denote the frequency of the ordered genotype AiAj by Pij, so that the
frequency of the unordered genotype AiAj is Pij + Pji = 2Pij. Subscripts i and j always
refer to alleles. Then the frequency of allele Ai in the population is

pi =
∑
j

Pij .
2

After one generation of random mating the zygotic proportions satisfy3

P ′ij = pipj for every i and j .

A mathematically trivial, but biologically very important, consequence is that (in the
absence of other forces) gene frequencies remain constant across generations, i.e.,

p′i = pi for every i . (2.1)

In other words, in a (sufficiently large) randomly mating population reproduction does
not change allele frequencies. A population is said to be in Hardy–Weinberg equilibrium

2Sums or products without ranges run over all admissible values; e.g.
∑
j =

∑
j∈I .

3Unless stated otherwise, a prime, ′, always signifies the next generation. Thus, instead of Pij(t) and
Pij(t+ 1), we write Pij and P ′

ij (and analogously for other quantities).
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if
Pij = pipj . (2.2)

In a (sufficiently large) randomly mating population, this relation is always satisfied among
zygotes.

Evolutionary mechanisms such as selection, migration, mutation, or random genetic
drift distort Hardy-Weinberg proportions, but Mendelian inheritance restores them if
mating is random.

2.2 Evolutionary dynamics under selection

Selection occurs when genotypes in a population differ in their fitnesses, i.e., in their
viability, mating success, or fertility and, therefore, leave different numbers of progeny.
The basic mathematical models of selection were developed and investigated in the 1920s
and early 1930s by Fisher (1930), Wright (1931), and Haldane (1932).

We will be concerned with the evolutionary consequences of selection caused by dif-
ferential viabilities, which leads to simpler models than (general) fertility selection (e.g.
Hofbauer and Sigmund 1988, Nagylaki 1992). Suppose that at an autosomal locus the
alleles A1, . . . ,AI occur. We count individuals at the zygote stage and denote the (rela-
tive) frequency of the ordered genotype AiAj by Pij(= Pji). Since mating is at random,
the genotype frequencies Pij are in Hardy-Weinberg proportions. We assume that the
fitness (viability) wij of an AiAj individual is nonnegative and constant, i.e., independent
of time, population size, or genotype frequencies. In addition, we suppose wij = wji, as is
usually the case. Then the frequency of AiAj genotypes among adults that have survived
selection is

P ∗ij = wijPij
w̄

= wijpipj
w̄

,

where we have used (2.2). Here,

w̄ =
∑
i,j

wijPij =
∑
i,j

wijpipj =
∑
i

wipi (2.3)

is the mean fitness of the population and

wi =
∑
j

wijpj (2.4)

is the marginal fitness of allele Ai. Both are functions of p = (p1, . . . , pI)>.4

4Throughout, the superscript > denotes vector or matrix transposition.
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Therefore, the frequency of Ai after selection is

p∗i =
∑
j

P ∗ij = pi
wi
w̄
. (2.5)

Because of random mating, the allele frequency p′i among zygotes of the next generation
is also p∗i (2.1), so that allele frequencies evolve according to the selection dynamics

p′i = pi
wi
w̄
, i ∈ I . (2.6)

This recurrence equation preserves the relation
∑
i

pi = 1

and describes the evolution of allele frequencies at a single autosomal locus in a diploid
population. We view the selection dynamics (2.6) as a (discrete) dynamical system on
the simplex

SI =
{
p = (p1, . . . , pI)> ∈ RI : pi ≥ 0 for every i ∈ I ,

∑
i

pi = 1
}
. (2.7)

Although selection destroys Hardy-Weinberg proportions, random mating re-establishes
them. Therefore, (2.6) is sufficient to study the evolutionary dynamics.

The right-hand side of (2.6) remains unchanged if every wij is multiplied by the same
constant. This is very useful because it allows to rescale the fitness parameters according
to convenience (also their number is reduced by one). Therefore, we will usually consider
relative fitnesses and not absolute fitnesses.

Fitnesses are said to be multiplicative if constants vi exist such that

wij = vivj (2.8)

for every i, j. Then wi = viv̄, where v̄ = ∑
i vipi, and w̄ = v̄2. Therefore, (2.6) simplifies

to
p′i = pi

vi
v̄
, i ∈ I , (2.9)

which can be solved explicitly because it is equivalent to the linear system x′i = vixi. It is
easy to show that (2.9) also describes the dynamics of a haploid population if the fitness
vi is assigned to allele Ai.

Fitnesses are said to be additive if constants vi exist such that

wij = vi + vj (2.10)
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for every i, j. Then wi = vi+ v̄, where v̄ = ∑
i vipi, and w̄ = 2v̄. Although this assumption

is important (it means absence of dominance; see Sect. 2.3), it does not yield an explicit
solution of the selection dynamics.

Example 2.1. Selection is very efficient. We assume (2.8). Then the solution of (2.9) is

pi(t) = pi(0)vti∑
j pj(0)vtj

. (2.11)

Suppose that there are only two alleles, A1 and A2. If A1 is the wild type and A2 is a
new beneficial mutant, we may set (without loss of generality!) v1 = 1 and v2 = 1 + s.
Then we obtain from (2.11):

p2(t)
p1(t) = p2(0)

p1(0)

(
v2

v1

)t
= p2(0)
p1(0)(1 + s)t . (2.12)

Thus, A2 increases exponentially relative to A1.
For instance, if s = 0.5, then after 10 generations the frequency of A2 has increased by

a factor of (1 + s)t = 1.510 ≈ 57.7 relative to A1. If s = 0.05 and t = 100, this factor is
(1 + s)t = 1.05100 ≈ 131.5. Therefore, slight fitness differences may have a big long-term
effect, in particular, since 100 generations are short on an evolutionary time scale.

An important property of (2.6) is that mean fitness is nondecreasing along trajectories
(solutions), i.e.,

w̄′ = w̄(p′) ≥ w̄(p) = w̄ , (2.13)

and equality holds if and only if p is an equilibrium.5

A particularly elegant proof of (2.13) was provided by Kingman (1961).
The statement (2.13) is closely related to Fisher’s Fundamental Theorem of Natural

Selection, which Fisher (1930) formulated as follows:

“The rate of increase in fitness of any organism at any time is equal
to its genetic variance in fitness at that time.”

For recent discussion, see Ewens (2011) and Bürger (2011). In mathematical terms, (2.13)
shows that w̄ is a Lyapunov function. This has a number of important consequences. For
instance, complex dynamical behavior such as limit cycles or chaos can be excluded.

5p is called an equilibrium, or fixed point, of the recurrence equation p′ = f(p) if f(p) = p. We use
the term equilibrium point to emphasize that we consider an equilibrium that is a single point. The term
equilibrium may also refer to a (connected) manifold of equilibrium points.
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From (2.6) it is obvious that the equilibria are precisely the solutions of

pi(wi − w̄) = 0 for every i ∈ I . (2.14)

We call an equilibrium internal, or fully polymorphic, if pi > 0 for every i (all alleles are
present). The I equilibria defined by pi = 1 are called monomorphic because only one
allele is present.

The following result summarizes a number of important properties of the selection
dynamics. Proofs and references to the original literature may be found in Bürger (2000,
Chap. I.9); see also Lyubich (1992, Chap. 9).

Theorem 2.2. 1. If an isolated internal equilibrium exists, then it is uniquely determined.
2. p̂ is an equilibrium if and only if p̂ is a critical point of the restriction of mean

fitness w̄(p) to the minimal subsimplex of SI that contains the positive components of p̂.
3. If the number of equilibria is finite, then it is bounded above by 2I − 1.
4. An internal equilibrium is asymptotically stable if and only if it is an isolated local

maximum of w̄. Moreover, it is isolated if and only if it is hyperbolic (i.e., the Jacobian
has no eigenvalues of modulus 1).

5. An equilibrium point is stable if and only if it is a local, not necessarily isolated,
maximum of w̄.

6. If an asymptotically stable internal equilibrium exists, then every orbit starting in
the interior of SI converges to that equilibrium.

7. If an internal equilibrium exists, it is stable if and only if, counting multiplicities,
the fitness matrix W = (wij) has exactly one positive eigenvalue.

8. If the matrix W has i positive eigenvalues, at least (i− 1) alleles will be absent at a
stable equilibrium.

9. Every orbit converges to one of the equilibrium points (even if they are not isolated).

2.3 Two alleles and the role of dominance

For the purpose of illustration, we work out the special case of two alleles. We write p
and 1− p instead of p1 and p2. Further, we use relative fitnesses and assume

w11 = 1 , w12 = 1− hs , w22 = 1− s , (2.15)

where s is called the selection coefficient and h describes the degree of dominance. We
assume s > 0.
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Schematic selection dynamics with two alleles

p0 1

10  ,10 ≤≤<< hs

10  ,10 ≤≤<< hs

0  ,10 <<< hs

1  ,10 ><< hs

Figure 2.1: Convergence patterns for selection with two alleles.

The allele A1 is called dominant if h = 0, partially dominant if 0 < h < 1
2 , recessive if

h = 1, and partially recessive if 1
2 < h < 1. No dominance refers to h = 1

2 . Absence of
dominance is equivalent to additive fitnesses (2.10). If h < 0, there is overdominance or
heterozygote advantage. If h > 1, there is underdominance or heterozygote inferiority.

From (2.4), the marginal fitnesses of the two alleles are

w1 = 1− hs+ hsp and w2 = 1− s+ s(1− h)p

and, from (2.3), the mean fitness is

w̄ = 1− s+ 2s(1− h)p− s(1− 2h)p2 .

It is easily verified that the allele-frequency change from one generation to the next can
be written as

∆p = p′ − p = p(1− p)
2w̄

dw̄
dp (2.16a)

= p(1− p)s
w̄

[1− h− (1− 2h)p] . (2.16b)

There exists an internal equilibrium if and only if h < 0 (overdominance) or h > 1
(underdominance). It is given by

p̂ = 1− h
1− 2h . (2.17)

If dominance is intermediate, i.e., if 0 ≤ h ≤ 1, then (2.16) shows that ∆p > 0 if
0 < p < 1, hence p = 1 is globally asymptotically stable.
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Figure 2.2: Selection of a dominant (h = 0, solid line), intermediate (h = 1/2, dashed),
and recessive (h = 1, dash-dotted) allele. The initial frequency is p0 = 0.005 and the
selective advantage is s = 0.05. If the advantageous allele is recessive, its initial rate of
increase is vanishingly small because the frequency p2 of homozygotes is extremely low
when p is small. However, only homozygotes are ‘visible’ to selection.

If h < 0 or h > 1, we write (2.16) in the form

∆p = sp(1− p)
w̄

(1− 2h)(p̂− p) . (2.18)

In the case of overdominance (h < 0), we have 0 < sp(1− p)(1− 2h)/w̄ < 1 if 0 < p < 1,
hence p̂ is globally asymptotically stable and convergence is monotonic. If h > 1, then the
monomorphic equilibria p = 0 and p = 1 each are asymptotically stable and p̂ is unstable.

The three possible convergence patterns are shown in Figure 2.1. Figure 2.2 demon-
strates that the degree of (intermediate) dominance strongly affects the rate of spread of
an advantageous allele.

2.4 The continuous-time selection model

Most higher animal species have overlapping generations because birth and death occur
continuously in time. This, however, may lead to substantial complications if one wishes
to derive a continuous-time model from biological principles. By contrast, discrete-time
models can frequently be derived straightforwardly from simple biological assumptions.
If evolutionary forces are weak, a continuous-time version can usually be obtained as an
approximation to the discrete-time model.

A rigorous derivation of the differential equations that describe gene-frequency change
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under selection in a diploid population with overlapping generations is a formidable task
and requires a complex model involving age structure (see Nagylaki 1992, Chap. 4.10).
Here, we simply state the system of differential equations and justify it in an alternative
way.

In a continuous-time model, the (Malthusian) fitness mij of a genotype AiAj is defined
as its birth rate minus its death rate. Then the marginal fitness of allele Ai is

mi =
∑
j

mijpj ,

the mean fitness of the population is

m̄ =
∑
i

mipi =
∑
i,j

mijpipj ,

and the dynamics of allele frequencies becomes

ṗi = dpi
dt = pi(mi − m̄) , i ∈ I .6 (2.19)

This is the analogue of the discrete-time selection dynamics (2.6). Its state space is again
the simplex SI . The equilibria are obtained from the condition ṗi = 0 for every i. The
dynamics (2.19) remains unchanged if the same constant is added to every mij. We note
that (2.19) is a so-called replicator equation (Hofbauer and Sigmund 1998).

If we set
wij = 1 + smij for every i, j ∈ I , (2.20)

where s > 0 is (sufficiently) small, the difference equation (2.6) and the differential equa-
tion (2.19) have the same equilibria. This is obvious upon noting that (2.20) implies
wi = 1 + smi and w̄ = 1 + sm̄. Importantly, if the same constant is added to every mij,
equation (2.19) remains unchanged. This allows for convenient scaling of the fitnesses.

Following Nagylaki (1992, p. 99), we approximate the discrete model (2.6) by the
continuous model (2.19) under the assumption of weak selection, i.e., small s in (2.20).
We rescale time according to t = bτ/sc, where b c denotes the closest smaller integer.
Then s may be interpreted as generation length and, for pi(t) satisfying the difference
equation (2.6), we write πi(τ) = pi(t). Then we obtain formally

dπi
dτ = lim

s↓0

1
s

[πi(τ + s)− πi(τ)] = lim
s↓0

1
s

[pi(t+ 1)− pi(t)] .

6Throughout, a dot, ˙ , indicates a derivative with respect to time.
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From (2.6) and (2.20), we obtain pi(t+ 1)− pi(t) = spi(t)(mi − m̄)/(1 + sm̄). Therefore,
π̇i = πi(mi− m̄) and ∆pi ≈ sπ̇i = spi(mi− m̄). We note that (2.6) is essentially the Euler
scheme for (2.19).

The exact continuous-time model reduces to (2.19) only if the mathematically incon-
sistent assumption is imposed that Hardy-Weinberg proportions apply for every t which
is generally not true. Under weak selection, however, deviations from Hardy-Weinberg
decay to order O(s) after a short period of time Nagylaki (1992).

Example 2.3. For two alleles, (2.19) simplifies considerably because it is sufficient to
track the allele frequency p = p1. In addition, we write q = 1− p.

Scaling the Malthusian parameters in the following way

A1A1 A1A2 A2A2
0 −hs −s ,

we obtain the simple representations

ṗ = 1
2spq if h = 1

2 (no dominance) (2.21)

and
ṗ = spq2 if h = 0 (A1 is dominant) . (2.22)

Equation (2.21) is also obtained for a haploid population in which A2 has a selective
disadvantage of 1

2s relative to A1.

One of the advantages of models in continuous time is that they lead to differential
equations, and usually these are easier to analyze because the formalism of calculus is
available. An example for this is that, in continuous time, (2.13) simplifies to

˙̄m ≥ 0 , (2.23)

which is much easier to prove than (2.13):

˙̄m = 2
∑
i,j

mijpj ṗi = 2
∑
i

miṗi = 2
∑
i

(m2
i − m̄2)pi = 2

∑
i

(mi − m̄)2pi.

3 The general migration-selection model

We assume a population of diploid organisms with discrete, nonoverlapping generations.
This population is subdivided into Γ demes (niches). Viability selection acts within each
deme and is followed by adult migration (dispersal). After migration random mating
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occurs within each deme. We assume that the genotype frequencies are the same in
both sexes (e.g., because the population is monoecious). We also assume that, in every
deme, the population is so large that gene and genotype frequencies may be treated as
deterministic, i.e., we ignore random genetic drift.

3.1 The recurrence equations

As before, we consider a single locus with I alleles Ai (i ∈ I). Throughout, we use letters
i, j to denote alleles, and greek letters α, β to denote demes. We write G = {1, . . . ,Γ} for
the set of all demes. The presentation below is based on Chapter 6.2 of Nagylaki (1992).

We denote the frequency of allele Ai in deme α by pi,α. Therefore, we have∑
i

pi,α = 1 (3.1)

for every α ∈ G. Because selection may vary among demes, the fitness (viability) wij,α
of an AiAj individual in deme α may depend on α. The marginal fitness of allele Ai in
deme α and the mean fitness of the population in deme α are

wi,α =
∑
j

wij,αpj,α and w̄α =
∑
i,j

wij,αpi,αpj,α , (3.2)

respectively.
Next, we describe migration. Let m̃αβ denote the probability that an individual in deme

α migrates to deme β, and let mαβ denote the probability that an (adult) individual in
deme α immigrated from deme β. The Γ× Γ matrices

M̃ = (m̃αβ) and M = (mαβ) (3.3)

are called the forward and backward migration matrices, respectively. Both matrices are
stochastic, i.e., they are nonnegative and satisfy∑

β

m̃αβ = 1 and
∑
β

mαβ = 1 for every α . (3.4)

Given the backward migration matrix and the fact that random mating within each
demes does not change the allele frequencies, the allele frequencies in the next generation
are

p′i,α =
∑
β

mαβp
∗
i,β , (3.5a)

where
p∗i,α = pi,α

wi,α
w̄α

(3.5b)
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describes the change due to selection alone; cf. (2.6). These recurrence equations define
a dynamical system on the Γ-fold Cartesian product SΓ

I of the simplex SI .
The difference equations (3.5) require that the backward migration rates are known. In

the following, we derive their relation to the forward migration rates and discuss conditions
when selection or migration do not change the deme proportions.

3.2 The relation between forward and backward migration rates

To derive this relation, we describe the life cycle explicitly. It starts with zygotes on
which selection acts (possibly including population regulation). After selection adults
migrate and usually there is population regulation after migration (for instance because
the number of nesting places is limited). By assumption, population regulation does not
change genotype frequencies. Finally, there is random mating and reproduction, which
neither changes gene frequencies (Section 2.1) nor deme proportions. The respective
proportions of zygotes, pre-migration adults, post-migration adults, and post-regulation
adults in deme α are cα, c∗α, c∗∗α , and c′α:

Zygote - Adult - Adult - Adult - Zygote
selection migration regulation reproduction

cα , pi,α c∗α , p
∗
i,α c∗∗α , p

′
i,α c′α , p

′
i,α c′α , p

′
i,α

Because no individuals are lost during migration, the following must hold:

c∗∗β =
∑
α

c∗αm̃αβ , (3.6a)

c∗α =
∑
β

c∗∗β mβα . (3.6b)

The (joint) probability that an adult is in deme α and migrates to deme β can be expressed
in terms of the forward and backward migration rates as follows:

c∗αm̃αβ = c∗∗β mβα . (3.7)

Inserting (3.6a) into (3.7), we obtain the desired connection between the forward and the
backward migration rates:

mβα = c∗αm̃αβ∑
γ c∗γm̃γβ

. (3.8)

Therefore, if M̃ is given, an ansatz for the vector c∗ = (c∗1, . . . , c∗Γ)> in terms of c =
(c1, . . . , cΓ)> is needed to compute M (as well as a hypothesis for the variation, if any, of
c).
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Two frequently used assumptions are the following (Christiansen 1975).
1) Soft selection. This assumes that the fraction of adults in every deme is fixed, i.e.,

c∗α = cα for every α ∈ G . (3.9)

This may be a good approximation if the population is regulated within each deme, e.g.,
because individuals compete for resources locally (Dempster 1955).

2) Hard selection. Following Dempster (1955), the fraction of adults will be propor-
tional to mean fitness in the deme if the total population size is regulated. This has been
called hard selection and is defined by

c∗α = cαw̄α/w̄ , (3.10)

where
w̄ =

∑
α

cαw̄α (3.11)

is the mean fitness of the total population.
Essentially, these two assumptions are at the extremes of a broad spectrum of possi-

bilities. Soft selection will apply to plants; for animals many schemes are possible.
Under soft selection, (3.8) becomes

mβα = cαm̃αβ∑
γ cγm̃γβ

. (3.12)

As a consequence, if c is constant (c′ = c), M is constant if and only if M̃ is constant.
If there is no population regulation after migration, then c will generally depend on time
because (3.6a) yields c′ = c∗∗ = M̃>c. Therefore, the assumption of constant deme
proportions, c′ = c, will usually require that population control occurs after migration.

A migration pattern that does not change deme proportions (c∗∗α = c∗α) is called con-
servative. Under this assumption, (3.7) yields

c∗αm̃αβ = c∗βmβα (3.13)

and, by stochasticity of M and M̃ , we obtain

c∗β =
∑
α

c∗αm̃αβ and c∗α =
∑
β

c∗βmβα . (3.14)

If there is soft selection and the deme sizes are equal (c∗α = cα ≡ constant), then mαβ =
m̃βα.
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Remark 3.1. Conservative migration has two interesting special cases.
1) Dispersal is called reciprocal if the number of individuals that migrate from deme α

to deme β equals the number that migrate from β to α:

c∗αm̃αβ = c∗βm̃βα . (3.15)

If this holds for all pairs of demes, then (3.6a) and (3.4) immediately yield c∗∗β = c∗β.
From (3.7), we infer mαβ = m̃αβ, i.e., the forward and backward migration matrices are
identical.

2) A migration scheme is called doubly stochastic if
∑
α

m̃αβ = 1 for every β . (3.16)

If demes are of equal size, then (3.6a) shows that c∗∗α = c∗α. Hence, with equal deme sizes
a doubly stochastic migration pattern is conservative. Under soft selection, deme sizes
remain constant without further population regulation. Hence, mαβ = m̃βα and M is also
doubly stochastic.

Doubly stochastic migration patterns arise naturally if there is a periodicity, e.g., be-
cause the demes are arranged in a circular way. If we posit equal deme sizes and homoge-
neous migration, i.e., m̃αβ = m̃β−α so that migration rates depend only on distance, then
the backward migration pattern is also homogeneous because mαβ = m̃βα = m̃α−β and,
hence, depends only on β−α. If migration is symmetric, m̃αβ = m̃βα, and the deme sizes
are equal, then dispersion is both reciprocal and doubly stochastic.

3.3 Important special migration patterns

We introduce three migration patterns that play an important role in the population
genetics and ecological literature.

Example 3.2. Random outbreeding and site homing, or the Deakin (1966) model. This
model assumes that a proportion µ ∈ [0, 1] of individuals in each deme leaves their deme
and is dispersed randomly across all demes. Thus, they perform outbreeding whereas
a proportion 1 − µ remains at their home site. If c∗∗α is the proportion (of the total
population) of post-migration adults in deme α, then the forward migration rates are
defined by m̃αβ = µc∗∗β if α , β, and m̃αα = 1 − µ + µc∗∗α . If µ = 0, migration is absent;
if µ = 1, the Levene model is obtained (see below). Because this migration pattern is
reciprocal, M = M̃ holds.
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To prove that migration in the Deakin model satisfies (3.15), we employ (3.7) and find

mβα = c∗α
c∗∗β
m̃αβ =


µc∗α if α , β
c∗β
c∗∗β

(1− µ) + µc∗β if α = β .
(3.17)

From this we deduce

1 =
∑
α

mβα =
∑
α,β

µc∗α +
c∗β
c∗∗β

(1− µ) + µc∗β = µ · 1 + (1− µ)
c∗β
c∗∗β

, (3.18)

which immediately yields c∗∗β = c∗β for every β provided µ < 1. Therefore, we obtain
m̃βα = µc∗α if α , β and c∗βm̃βα = c∗βµc

∗
α = c∗αm̃αβ, i.e., reciprocity.

We will always assume soft selection in the Deakin model, i.e., c∗α = cα. Thus, for a
given (probability) vector c = (c1, . . . , cΓ)>, the single parameter µ is sufficient to describe
the migration pattern:

mβα = m̃βα =

µcα if α , β
1− µ+ µcβ if α = β .

(3.19)

If all demes have the same size, the so-called island model is obtained. Then migration is
usually scaled such that individuals stay in their home deme with probability 1−m and
migrate to each of the other demes with probability m/(Γ− 1).

Example 3.3. The Levene model (Levene 1953) assumes soft selection and

mαβ = cβ . (3.20)

Thus, dispersing individuals are distributed randomly across all demes in proportion to
the deme sizes. In particular, migration is independent of the deme of origin and M = M̃ .

Alternatively, the Levene model could be defined by m̃αβ = µβ, where µβ > 0 are
constants satisfying ∑β µβ = 1. Then (3.8) yields mαβ = c∗β for every α, β ∈ G. With
soft selection, we get mαβ = cβ. This is all we need if demes are regulated to constant
proportions. But the proportions remain constant even without regulation, for (3.6a)
gives c′α = c∗∗α = µα. This yields the usual interpretation µα = cα (Nagylaki 1992, Sect.
6.3).

Example 3.4. In the linear stepping-stone model the demes are arranged in a linear
order and individuals can reach only one of the neighboring demes. It is an extreme case
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among migration patterns exhibiting isolation by distance, i.e., patterns in which migra-
tion diminishes with the distance from the parental deme. In the classical homogeneous
version, the forward migration matrix is

M̃ =



1−m m 0 . . . 0
m 1− 2m m 0
...

. . .
...

0 m 1− 2m m
0 . . . 0 m 1−m

 . (3.21)

We leave it to the reader to derive the backward migration matrix using (3.8). It is a
special case of the following general tridiagonal form:

M =



n1 r1 0 . . . 0
q2 n2 r2 0
...

. . .
...

0 qΓ−1 nΓ−1 rΓ−1
0 . . . 0 qΓ nΓ

 , (3.22)

where nα ≥ 0 and qα+nα+rα = 1 for every α, qα > 0 for α ≥ 2, rα > 0 for α ≤ Γ−1, and
q1 = rΓ = 0. This matrix admits variable migration rates between neighboring demes.

If all deme sizes are equal, the homogeneous matrix (3.21) satisfies M = M̃ , and each
deme exchanges a fraction m of the population with each of its neighboring demes. The
stepping-stone model has been used as a starting point to derive the partial differential
equations for selection and dispersal in continuous space (Nagylaki 1989). Also circular
and infinite variants have been investigated.

Juvenile migration is of importance for many marine organisms and plants, where seeds
disperse. It can be treated in a similar way as adult migration. Also models with both
juvenile and adult migration have been studied. Some authors investigated migration
and selection in dioecious populations, as well as selection on X-linked loci (e.g. Nagylaki
1992, pp. 143, 144).

Unless stated otherwise, we assume that the backward migration matrix M is constant,
as is the case for soft selection if deme proportions and the forward migration matrix are
constant. Then the recurrence equations (3.5) provide a self-contained description of
the migration-selection dynamics. Hence, they are sufficient to study evolution for an
arbitrary number of generations.
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4 Two alleles and finitely many demes

Of central interest is the identification of conditions that guarantee the maintenance of
genetic diversity. Often it is impossible to determine the equilibrium structure in detail
because establishing existence and, even more so, stability or location of polymorphic
equilibria is unfeasible. Below we introduce an important concept that is particularly
useful to establish maintenance of genetic variation at diallelic loci. Throughout this
section we consider a single locus with two alleles. The number of demes, Γ, can be
arbitrary.

4.1 Protected polymorphism

There is a protected polymorphism (Prout 1968) if, independently of the initial conditions
are, a polymorphic population cannot become monomorphic. Essentially, this requires
that if an allele becomes very rare, its frequency must increase. In general, a protected
polymorphism is neither necessary nor sufficient for the existence of a stable polymorphic
equilibrium. For instance, on the one hand, if there is an internal limit cycle that attracts
all solutions, then there is a protected polymorphism. On the other hand, if there are
two internal equilibria, one asymptotically stable, the other unstable, then selection may
remove one of the alleles if sufficiently rare. A generalization of this concept to multiple
alleles would correspond to the concept of permanence often used in ecological models
(e.g. Hofbauer and Sigmund 1998).

Because we consider only two alleles, we can simplify the notation. We write pα = p1,α

for the frequency of allele A1 in deme α (and 1 − pα for that of A2 in deme α). Let
p = (p1, . . . , pΓ)> denote the vector of allele frequencies. Instead of using the fitness
assignments w11,α, w12,α, and w22,α, it will be convenient to scale the fitness of the three
genotypes in deme α as follows

A1A1 A1A2 A2A2
xα 1 yα

(4.1)

(xα, yα ≥ 0). This can be achieved by setting xα = w11,α/w12,α and yα = w22,α/w12,α,
provided w12,α > 0.

With these fitness assignments, one obtains

w1,α = 1− pα + xαpα and w̄α = xαp
2
α + 2pα(1− pα) + yα(1− pα)2 , (4.2)
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and the migration-selection dynamics (3.5) becomes

p∗α = pαw1,α/w̄α (4.3a)

p′α =
∑
β

mαβp
∗
β . (4.3b)

We consider this as a (discrete) dynamical system on [0, 1]Γ.
We call allele A1 protected if it cannot be lost. Thus, it has to increase in frequency if

rare. In mathematical terms this means that the monomorphic equilibrium p = 0 must
be unstable. To derive a sufficient condition for instability of p = 0, we linearize (4.3)
at p = 0. If yα > 0 for every α (which means that A2A2 is nowhere lethal), a simple
calculation shows that the Jacobian of (4.3a),

D =
(
∂p∗α
∂pβ

) ∣∣∣∣∣∣
p=0

, (4.4)

is a diagonal matrix with (nonzero) entries dαα = y−1
α . Because (4.3b) is linear, the

linearization of (4.3) is
p′ = Qp , where Q = MD , (4.5)

i.e., qαβ = mαβ/yβ.
To obtain a simple criterion for protection, we assume that the descendants of indi-

viduals in every deme be able eventually to reach every other deme. Mathematically,
the appropriate assumption is that M is irreducible. Then Q is also irreducible and it is
nonnegative. Therefore, the Theorem of Perron and Frobenius (e.g. Seneta 1981) implies
the existence of a uniquely determined eigenvalue λ0 > 0 of Q such that |λ| ≤ λ0 holds
for all eigenvalues of Q. In addition, there exists a strictly positive eigenvector pertaining
to λ0 which, up to multiplicity, is uniquely determined. As a consequence,

A1 is protected if λ0 > 1 and A1 is not protected if λ0 < 1 (4.6)

(if λ0 = 1, then stability cannot be decided upon linearization). This maximal eigenvalue
satisfies

min
α

∑
β

qαβ ≤ λ0 ≤ max
α

∑
β

qαβ , (4.7)

with equality if and only if all the row sums are the same.

Example 4.1. Suppose that A2A2 is at least as fit as A1A2 in every deme and more fit in
at least one deme, i.e., yα ≥ 1 for every α and yβ > 1 for some β. Then qαβ = mαβ/yβ ≤
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mαβ for every β. Because M is irreducible, there is no β such that mαβ = 0 for every α.
Therefore, the row sums ∑β qαβ = ∑

βmαβ/yβ in (4.7) are not all equal to one, and we
obtain

λ0 < max
α

∑
β

qαβ ≤ max
α

∑
β

mαβ = 1 . (4.8)

Thus, A1 is not protected, and this holds independently of the choice of the xα, or w11,α.
It can be shown similarly that A1 is protected if A1A2 is favored over A2A2 in at least

one deme and is nowhere less fit than A2A2.

One obtains the condition for protection of A2 if, in (4.6), A1 is replaced by A2 and λ0

is the maximal eigenvalue of the matrix with entries mαβ/xβ. Clearly, there is a protected
polymorphism if both alleles are protected.

In the case of complete dominance the eigenvalue condition (4.6) cannot be satisfied.
Consider, for instance, protection of A1 if A2 is dominant, i.e., yα = 1 for every α. Then
qαβ = mαβ, ∑β qαβ = ∑

βmαβ = 1, and λ0 = 1. This case is treated in Section 6.2 of
Nagylaki (1992).

4.2 Two demes

It will be convenient to set

xα = 1− rα and yα = 1− sα , (4.9)

where we assume rα < 1 and sα < 1 for every α ∈ {1, 2}. We write the backward
migration matrix as

M =
(

1−m1 m1
m2 1−m2

)
, (4.10)

where 0 < mα < 1 for every α ∈ {1, 2}.
Now we derive the condition for protection of A1. The characteristic polynomial of Q

is proportional to

ϕ(x) = (1−s1)(1−s2)x2− (2−m1−m2−s1−s2 +s1m2 +s2m1)x+1−m1−m2 . (4.11)

It is convex and satisfies

ϕ(1) = s1s2(1− κ) , (4.12a)

ϕ′(1) = (1− s1)(m2 − s2) + (1− s2)(m1 − s1) , (4.12b)
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Figure 4.1: The region of protection of A1 (hatched) (from Nagylaki and Lou 2008).

where
κ = m1

s1
+ m2

s2
. (4.13)

By Example 4.1, A1 is not protected if A1A2 is less fit than A2A2 in both demes (more
generally, if s1 ≤ 0, s2 ≤ 0, and s1 + s2 < 0). Of course, A1 will be protected if A1A2

is fitter than A2A2 in both demes (more generally, if s1 ≥ 0, s2 ≥ 0, and s1 + s2 > 0).
Hence, we restrict attention to the most interesting case when A1A2 is fitter than A2A2

in one deme and less fit in the other, i.e., s1s2 < 0.
The Perron-Frobenius Theorem informs us that ϕ(x) has two real roots. We have to

determine when the larger (λ0) satisfies λ0 > 1. Because ϕ′′(x) > 0, this is the case if and
only if ϕ(1) < 0 or ϕ(1) ≥ 0 and ϕ′(1) < 0. By noting that m1 ≥ s1 if κ ≥ 1 and s2 < 0,
it is straightforward to show that ϕ(1) ≥ 0 and ϕ′(1) < 0 is never satisfied if s1 > 0 and
s2 < 0. By symmetry, we conclude that allele A1 is protected if ϕ(1) < 0, i.e., if

κ < 1 ; (4.14)

cf. Bulmer (1972). It is not protected if κ > 1. Figure 4.1 displays the region of protection
of A1 for given m1 and m2.

If there is no dominance (rα = −sα and 0 < |sα| < 1 for α = 1, 2), then further
simplification can be achieved. From the preceding paragraph the results depicted in
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(Ω+) in the absence of dominance (from Nagylaki and Lou 2008).

Figure 4.2 are obtained. The region of a protected polymorphism is

Ω+ = {(s1, s2) : s1s2 < 0 and |κ| < 1} . (4.15)

In this case, there is a unique internal equilibrium and it is globally asymptotically stable
(Campbell 1983).

In a panmictic population, a stable polymorphism can not occur in the absence of
overdominance. Protection of both alleles in a subdivided population requires that selec-
tion in the two demes is in opposite direction and sufficiently strong relative to migration.
Therefore, the study of the maintenance of polymorphism is of most interest if selection
acts in opposite direction and dominance is intermediate, i.e.,

rαsα < 0 for α = 1, 2 and s1s2 < 0. (4.16)

Example 4.2. In the Deakin model, the condition (4.14) for protection of allele A1

becomes
κ = µ

(
c2

s1
+ c1

s2

)
< 1, (4.17)

where s1s2 < 0. Therefore, for given s1, s2, and c1, there is a critical value µ0 such that
allele A1 is protected if and only if µ < µ0. This implies that for two diallelic demes a
protected polymorphism is favored by a smaller migration rate.
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Example 4.3. In the Levene model, the condition for a protected polymorphism is

c2

s1
+ c1

s2
< 1 and c2

r1
+ c1

r2
< 1 . (4.18)

We close this subsection with an example showing that already with two alleles and
two demes the equilibrium structure can be quite complicated.

Example 4.4. In the absence of migration, the recurrence equations for the allele fre-
quencies p1, p2 in the two demes are two decoupled one-locus selection dynamics of the
form (2.16). Therefore, if there is underdominance in each deme, the top convergence
pattern in Figure 2.1 applies to each deme. As a consequence, in the absence of migra-
tion, the complete two-deme system has nine equilibria, four of which are asymptotically
stable and the others are unstable. Under sufficiently weak migration all nine equilibria
are admissible and the four stable ones remain stable, whereas the other five are unstable.
Two of the stable equilibria are internal. For increasing migration rate, several of these
equilibria are extinguished in a sequence of bifurcations (Karlin and McGregor 1972a).

5 Migration and selection in continuous time

Following Nagylaki and Lou (2007), we assume that both selection and migration are
weak and approximate the discrete migration-selection dynamics (3.5) by a differential
equation which is easier accessible. Accordingly, let

wij,α = 1 + εrij,α and m̃αβ = δαβ + εµ̃αβ , (5.1)

where rij,α and µ̃αβ are fixed for every i, j ∈ I and every α, β ∈ G, and ε > 0 is sufficiently
small. From (3.2) we deduce

wi,α = 1 + εri,α and w̄α = 1 + εr̄α , (5.2a)

where
ri,α =

∑
j

rij,αpj,α and r̄α =
∑
i,j

rij,αpi,αpj,α . (5.2b)

To approximate the backward migration matrix M , note that (3.10) and (5.2a) imply
that, for both soft and hard selection,

c∗α = cα +O(ε) (5.3)
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as ε→ 0. Substituting (5.1) and (5.3) into (3.8) leads to

mαβ = δαβ + εµαβ +O(ε2) (5.4)

as ε→ 0, where

µαβ = 1
cα

(
cβµ̃βα − δαβ

∑
γ

cγµ̃γα

)
. (5.5)

Because M̃ is stochastic, we obtain for every α ∈ Γ,

µ̃αβ ≥ 0 for every β , α and
∑
β

µ̃αβ = 0 . (5.6)

As a simple consequence, µαβ shares the same properties.
The final step in our derivation is to rescale time as in Sect. 2.4 by setting t = bτ/εc

and πi,α(τ) = pi,α(t). Inserting all this into the difference equations (3.5) and expanding
yields

πi,α(τ + ε) = πi,α {1 + ε[ri,α(π·,α)− r̄α(π·,α)]}+ ε
∑
β

µαβπi,β +O(ε2) (5.7)

as ε→ 0, where π·,α = (π1,α, . . . , πI,α)> ∈ SI . Rearranging and letting ε→ 0, we arrive at

dπi,α
dτ =

∑
β

µαβπi,β + πi,α[ri,α(π·,α)− r̄α(π·,α)] . (5.8)

Absorbing ε into the migration rates and selection coefficients and returning to p(t), we
obtain the slow-evolution approximation of (3.5),

ṗi,α =
∑
β

µαβpi,β + pi,α[ri,α(p·,α)− r̄α(p·,α)] . (5.9)

In contrast to the discrete-time dynamics (3.5), here the migration and selection terms are
decoupled. This is a general feature of many other slow-evolution limits (such as mutation
and selection, or selection, recombination and migration). Because of the decoupling of
the selection and migration terms, the analysis of explicit models is often facilitated.

With multiple alleles, there are few general results on the dynamics of (5.9). For two
alleles, we set pα = p1,α and write (5.9) in the form

ṗα =
∑
β

µαβpβ + ϕα(pα) . (5.10)

Since µαβ ≥ 0 whenever α , β, the system (5.10) is quasimonotone or cooperative, i.e.,
∂ṗα/∂pβ ≥ 0 if α , β. As a consequence, (5.10) cannot have an exponentially stable limit
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cycle. However, Akin (personal communication) has proved for three diallelic demes that
a Hopf bifurcation can produce unstable limit cycles. This precludes global convergence,
though not generic convergence. If Γ = 2, then every trajectory converges (Hirsch 1982;
Hadeler and Glas 1983; see also Hofbauer and Sigmund 1998, p. 28).

Example 5.1. Eyland (1971) provided a global analysis of (5.9) for the special case of
two diallelic demes without dominance. As in Sect. 4.2, we assume that the fitnesses of
A1A1, A1A2, and A2A2 in deme α are 1 + sα, 1, and 1 − sα, respectively, where sα , 0
(α = 1, 2). Moreover, we set µ1 = µ12 > 0, µ2 = µ21 > 0, and write pα for the frequency
of A1 in deme α. Then (5.9) becomes

ṗ1 = µ1(p2 − p1) + s1p1(1− p1) , (5.11a)

ṗ2 = µ2(p1 − p2) + s2p2(1− p2) . (5.11b)

The equilibria can be calculated explicitly. At equilibrium, p1 = 0 if and only if p2 = 0,
and p1 = 1 if and only if p2 = 1. In addition, there may be an internal equilibrium point.
We set

σα = µα
sα

, κ = σ1 + σ2 , (5.12)

and
B = (1− 4σ1σ2)1/2 . (5.13)

The internal equilibrium exists if and only if s1s2 < 0 and |κ| < 1; cf. (4.15). If s2 < 0 < s1,
it is given by

p̂1 = 1
2(1 +B)− σ1 and p̂2 = 1

2(1−B)− σ2 . (5.14)

It is straightforward to determine the local stability properties of the three possible
equilibria. Gobal asymptotic stability follows from the results cited above about quasi-
monotone systems. Let p = (p1, p2)>. Then allele A1 is eliminated in the region Ω0 in
Figure 4.2, i.e., p(t) → (0, 0) as t → ∞, whereas A1 is ultimately fixed in the region Ω1.
In Ω+, p(t) converges globally to the internal equilibrium point p̂ given by (5.14).

6 Derivation of the PDE migration-selection model

Our aim is the motivation and derivation of a model that describes dispersal of individuals
or alleles in continuous space. The most common approach is to model dispersal by
diffusion in space (Fisher 1937, Kolmogorov et al. 1937, Haldane 1948; see Nagylaki and
Lou 2008 for a recent review). This is appropriate if the dispersal distance is typically
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small relative to changes in the environment. In this section we demonstrate how the well
known partial differential equation can be obtained as an approximation to the discrete-
time discrete-demes model. The derivation outlined below is inspired by the more general
ones given by Nagylaki (1989, 1996).

The starting point is the model derived in Section 3. Here, it will be convenient to use
the number Nα of individuals in deme α instead of the deme proportions cα. Then (3.8)
becomes

mβα = N∗αm̃αβ∑
γ N∗γ m̃γβ

. (6.1)

Using (6.1), we can rewrite (3.5a) as(∑
γ

N∗γ m̃γα

)
p′i,α =

∑
β

N∗βm̃βαp
∗
i,β , (6.2a)

where
p∗i,β = pi,β

wi,β
w̄β

. (6.2b)

We measure time, t, in generations and suppose that wij,α(pα, t), m̃αβ(t), and Nα(t)
are given for every i, j, α, β, t, and that N∗α = N∗α(Nα, pα, t), where pα = (p1,α, . . . , pI,α)>.
Then (6.2) describes the model completely.

We treat only the one-dimensional case and assume that demes are arranged in a
linear array. Examples include organisms confined to a river, riverbank, seashore, or
mountain range. The model applies to populations in two-dimensional habitats if only
one coordinate, such as latitude, altitude on a mountain range, or distance from a river
or seashore matter.

We scale space and time as follows:

x = εα, y = εβ, t = bτ/λc. (6.3)

In the new units, ε is a measure of distance between adjacent colonies and λ corresponds
to the length of one generation. We let

ε→ 0 and λ→ 0 such that ε
2

λ
remains fixed. (6.4)

We suppose that there are numbers rij,α(pα, t) ∈ [−1, 1] such that

wij,α(pα, t) = 1 + λrij,α(pα, t) (6.5)

holds for every i, j, α, and t. Therefore, we obtain from (6.2b)

p∗i,α = pi,α + λsi,α(pα, t) + o(λ) (6.6)
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because wi,α/w̄α = 1 + λ(ri,α − r̄α) + o(λ) and si,α = pi,α(ri,α − r̄α).
In terms of the scaled variables x, y and τ , we write

Nα(t) = ρ̂(x, τ), pi,α(t) = π̂i(x, τ), si,α(pα, t) = Ŝi(π̂, x, τ). (6.7)

Here and below, we assume that all quantities marked with a caret (ˆ) have uniform and
continuous limits in x as λ → 0. We omit the carets in this limit. Thus, our aim is to
derive the system of PDEs that the πi(x, τ) have to satisfy if they are the λ→ 0 limit of
the solution pα(t) of (6.2).

Our assumptions imply that (6.6) holds uniformly in x for every τ , i.e.,

lim
λ→0

sup
x

∣∣∣∣∣ π̂∗i (x, τ)− π̂i(x, τ)
λ

− Ŝi(π̂, x, τ)
∣∣∣∣∣ = 0 (6.8)

or, simply,
π̂∗i (x, τ) = π̂i(x, τ) + λŜi(π̂, x, τ) + o(λ) (6.9)

uniformly in x as λ→ 0, where the superscript ∗ again denotes frequencies after selection.
Because we want to model migration by diffusion we require the following diffusion

hypothesis:

lim
λ→0

ε

λ

∑
β:|α−β|<θ/ε

(β − α)m̃αβ(t) = M(x, τ), (6.10a)

lim
λ→0

ε2

λ

∑
β:|α−β|<θ/ε

(β − α)2m̃αβ(t) = V (x, τ), (6.10b)

lim
λ→0

1
λ

∑
β:|α−β|≥θ/ε

m̃αβ = 0, (6.10c)

uniformly in x and for every θ > 0. Here, M and V represent the mean and variance
of displacement by dispersal per new time unit in new length units. The corresponding
quantities in generations are λM and λV , respectively. We note that in the limit λ→ 0
the variance of migrational displacement equals its mean square. We assume that the
partial derivatives that appear below are the uniform limits as λ→ 0 of the corresponding
discrete quantities and are continuous.

In view of (6.5) we assume that

N∗α = Nα(1 +O(λ)), (6.11)

which includes both soft and hard selection; cf. (5.3).
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For a bounded function fα(t) = F (x, τ), such that Fxx7 is twice continuously differen-
tiable, the diffusion hypothesis (6.10) together with Taylor’s theorem imply∑

α

m̃βαfα(t) = F (y, τ) + λM(y, τ)Fy(y, τ) + 1
2λV (y, τ)Fyy(y, τ) + o(λ) (6.12)

uniformly as λ→ 0.
[Proof: We decompose∑

α

m̃βαfα =
∑

α:|β−α|< θ
ε

m̃βαfα +
∑

α:|β−α|≥ θ
ε

m̃βαfα,

where ∑α:|β−α|≥ θ
ε
m̃βαfα = o(λ) by (6.10c) because F is bounded. To approximate the

first term, we use first Taylor expansion of fα = F (x), then (6.10):∑
α:|β−α|< θ

ε

m̃βαfα =
∑

α:|β−α|< θ
ε

m̃βα

(
F (y) + (y − x)Fy(y) + 1

2(y − x)2Fyy(y) + o((y − x)2)
)

=

 ∑
α:|β−α|< θ

ε

m̃βα

F (y) +

 ∑
α:|β−α|< θ

ε

m̃βαε(β − α)

Fy(y)

+ 1
2

 ∑
α:|β−α|< θ

ε

m̃βαε
2(β − α)2

Fyy(y) + o((y − x)2)

= F (y) (1 + o(λ)) + λ(M(y) + o(1))Fy(y) + λ

2 (V (y) + o(1))Fyy(y) + o(ε2),

which yields (6.12). ]
Now we choose test functions φα(t) = Φ(x, τ) such that Φ, Φx, and Φxx are continuous

and vanish outside of the interval (x1, x2), where x1 < x2 are arbitrary but fixed. We
multiply the discrete recursion (6.2) by φα and sum over all α:∑

α,β

N∗βm̃βαp
′

i,αφα =
∑
α,β

N∗βm̃βαp
∗
i,βφα. (6.13)

Using first (6.6) and (6.12), then (6.7), we obtain for the right hand side of (6.13)∑
β

N∗βp
∗
i,β

∑
α

m̃βαφα

=
∑
β

N∗β (pi,β + λsi,β + o(λ))
(

Φ(y) + λM(y, τ)Φy(y) + 1
2λV (y, τ)Φyy(y) + o(λ)

)
=
∑
β

N∗β
[
π̂i(y, τ)Φ(y) + λŜi(π̂, y, τ)Φ(y)

+ λM(y, τ)Φy(y)π̂i(y, τ) + 1
2λV (y, τ)Φyy(y)π̂i(y, τ) + o(λ)

]
. (6.14)

7We denote first and second partial derivatives with respect to x by Fx and Fxx respectively.
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Using p
′
i,α = π̂i(x, τ) + λπ̂i,τ (x, τ) + o(λ) and (6.12), we obtain for the left hand side of

(6.13) in essentially the same way as above:
∑
α,β

N∗βm̃βαp
′
i,αφα

=
∑
β

N∗β
[
π̂i(y, τ)Φ(y) + λπ̂i,τ (y, τ)Φ(y) + λM(y, τ) [π̂i(y, τ)Φ(y)]y

+ 1
2λV (y, τ) [π̂i(y, τ)Φ(y)]yy + o(λ)

]
. (6.15)

Equating (6.14) and (6.15), we get

∑
β

N∗β

[
λΦ(y)

(
π̂i,τ (y, τ)− Ŝi(π̂, y, τ) +M(y, τ)π̂i,y(y) + 1

2V (y, τ)π̂i,yy(y, τ)
)

+ λV (y, τ)π̂i,y(y, τ)Φy(y) + o(λ)
]

= 0.

If we take the limit λ→ 0, the left side converges to the integral∫ x2

x1

[
ρ(y, τ)

(
πi,τ (y, τ)− Si(π, y, τ) +M(y, τ)πi,y(y, τ) + 1

2V (y, τ)πi,yy(y, τ)
)
−

−
(
ρ(y, τ)V (y, τ)πi,y(y, τ)

)
y

]
Φ(y)dy = 0, (6.16)

where we have used that N∗β = Nβ(1 + O(λ)) → ρ(y, τ) as λ → 0 (6.7), and V (y)πi,yΦy

was integrated by parts. Since Φ is arbitrary, the term in brackets must vanish for all
y ∈ (x1, x2) if we assume ρ(y, τ) > 0 for all y and ρ.

Therefore, after performing the differentiation (ρV πi,y)y = (ρV )yπi,y + ρV πi,yy, we
obtain the PDE

πi,τ = 1
2V (y, τ)πi,yy −M(y, τ)πi,y + 1

ρ(y, τ)
(
(ρ(y, τ)V (y, τ))yπi,y

)
+ Si(π, y, τ),

which we rewrite as

pi,t = 1
2V pi,xx +

[
ρ−1(ρV )x −M

]
pi,x + Si, (6.17)

where we suppressed the dependence of M , V , and ρ on x and t, and that of Si on p, x,
and t. We assume (6.17) holds on a (spatial) domain Ω that is a bounded or unbounded
open interval. For extensions to more than one space dimension, we refer to Nagylaki
and Lou (2008). In general, (6.17) is a complicated PDE, not simply a reaction-diffusion
equation.

32



In the important special case in which ρ = const. and migration is homogeneous and
isotropic, so that M = 0 and V = σ2 (a positive constant), (6.17) simplifies to

pi,t = 1
2σ

2pi,xx + Si. (6.18a)

This is the form most frequently studied in the literature. Usually, we assume that

Si = Si(p, x) = pi(x, t)[ri(x)− r̄(x)], (6.18b)

where ri(x) = ∑
j rij(x)pj(x, t) and r̄(x) = ∑

ij rij(x)pi(x, t)pj(x, t); cf. (6.5) – (6.7) and
Chapter 2. In addition, we always assume

pi(x, 0) ≥ 0, pi(x, 0) . 0,
∑
j

pj(x, 0) ≡ 1 for every x ∈ Ω, (6.18c)

as well as the boundary condition

pi,x(b, t) = 0 for every i and t > 0, (6.18d)

which is assumed to hold at every endpoint b of the spatial domain Ω. Thus, equations
(6.18a), (6.18b), (6.18c), and (6.18d) constitute our basic model.

It remains to derive the boundary condition (6.18d). It follows from the condition that
at the boundary, there is no flux of individuals or of alleles. Let us assume, for instance,
that the habitat is [0,∞), with no migration left of the origin. We start with a discrete
model, and consider colonies 0, 1, 2, . . .. We assume m0α = 0 if α > Γ. Inserting (6.5)
into the recursion, we obtain

p′i,0 =
Γ∑
α=0

m0αpi,α +O(λ)

as λ→ 0. A simple calculation yields

λ

ε

p′i,0 − pi,0
λ

=
Γ∑
α=0

m0α
pi,α − pi,0

ε
+O(ε). (6.19)

Letting λ→ 0, we obtain (p′i,0 − pi,0)/λ = (π̂i(0, τ + λ)− π̂i(0, τ))/λ→ πi,τ (0, τ), whence
the left-hand side of (6.19) converges to zero. Similarly, letting λ→ 0, we obtain (pi,α −
pi,0)/ε = (πi(εα, τ) − πi(ε0, τ))/ε → απi,x(0, τ). Therefore, the right-hand side of (6.19)
converges to πi,x(0, τ)∑Γ

α=0 αm0α, from which we conclude that the boundary condition
is pi,x(0, t) = 0 for every i and t.

We conclude with results concerning existence and uniqueness of solutions.
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Remark 6.1. Hölder continuity. A function f : R→ R is Hölder continuous if there exist
constants c and α ∈ (0, 1], such that

|f(x)− f(y)| ≤ c|x− y|α

for every x, y in the domain of f . A Hölder continuous function is uniformly continuous;
if α = 1, then it is Lipschitz continuous.

Denote by C(Ω) the continuous real-valued functions on Ω, by

Ck(Ω) = {u : Dmu ∈ C(Ω), 0 ≤ m ≤ k} ,

and by Ck(Ω̄) those functions in Ck(Ω) with the property that Dmu has a continuous
extension to Ω̄, for each m with 0 ≤ m ≤ k. Finally, denote by Ck,α(Ω̄) those u ∈ Ck(Ω̄)
that have the property that Dku is Hölder continuous with exponent α.

Then Ck(Ω̄) and Ck,α(Ω̄) are separable Banach spaces with the norms

‖u‖Ck = max
0≤m≤k

sup
x∈Ω
|Dmu(x)|

and
‖u‖Ck,α = ‖u‖Ck + sup

x,y∈Ω̄,x,y

|Dαu(x)−Dαu(y)|
|x− y|α

,

respectively (Friedman 1969).

We assume that ρ(x), M(x), V (x), and rij(x) are all Hölder continuous and pi(x, 0)
is continuous on Ω̄. Then the standard existence theory of evolution equations (e.g.,
Sell and You 2002) shows that the problem (6.18), or the more general version in which
(6.18a) is replaced by (6.17), has a unique classical solution p(x, t) that exists for all time,
pi ∈ C(Ω̄× [0,∞))∩C2,1(Ω̄× (0,∞)) and pi(x, t) ≥ 0 for every i, every x ∈ Ω̄, and every
t > 0. Therefore, without loss of generality, we posit that 0 < pi(x, 0) < 1 for every i and
every x ∈ Ω̄.

Finally, we show that 0 < pi(x, t) < 1 holds for all i, x, and t > 0, and ∑i pi(x, t) ≡ 1
for every x ∈ Ω and t > 0. By summation, we obtain from (6.18a)

∂

∂t

(∑
i

pi

)
= σ2

2
∂2

∂x2

(∑
i

pi

)
+ λr̄

[
1−

(∑
i

pi

)]
, (6.20)

from (6.18c) ∑
i

pi(x, 0) ≡ 1, (6.21)
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and from (6.18d)
∂

∂x

(∑
i

pi

)
(b, t) = 0. (6.22)

By the uniqueness of the solutions of linear parabolic equations (e.g., Friedman 1969), we
obtain ∑

i pi(x, t) ≡ 1 for every x ∈ Ω and every t > 0. By the maximum principle for
parabolic equations (Appendix B or Protter and Weinberger 1984), if pi(x, 0) . 0, then
pi(x, t) > 0 for every x ∈ Ω̄ and t > 0. Hence, without loss of generality, we assume that
pi(x, t) > 0 for every i, x ∈ Ω̄, and t ≥ 0.

7 PDE models for two alleles

The majority of available theory about the PDE migration-selection model assumes two
alleles per locus. In this section, we shall treat three classical scenarios: Fisher waves,
hybrid zones, and clines. Because we assume only two alleles, the notation can be sim-
plified. Instead of using the vector (p1, p2)>, it is sufficient to use p(x, t) = p1(x, t). In
addition, we set S(x, p) = S1((p1, p2)>, x). Throughout, we assume the initial condition

0 ≤ p(x, 0) ≤ 1 , p(x, 0) . 0 , p(x, 0) . 1 on Ω. (7.1)

We will factor out the selection intensity s, i.e., we assume that the fitness of AiAj is
srij(x), and rij is independent of p and t. Then we obtain

S(x, p) = sp(r1(x, p)− r̄(x, p))

= sp(1− p)
(
r12(x)− r22(x) + [r11(x)− 2r12(x) + r22(x)]p

)
. (7.2)

In general, S(x, p) cannot be factored into the form

S(x, p) = sg(x)f(p). (7.3)

However, in the following important special cases this is possible.
a) No dominance: rij(x) = vi(x) + vj(x) on Ω̄. Then

S(x, p) = s[v1(x)− v2(x)]p(1− p). (7.4)

b) A1 is dominant: r11(x) = r12(x) on Ω̄. Then

S(x, p) = s[r11(x)− r22(x)]p(1− p)2. (7.5)
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c) A1 is recessive: r22(x) = r12(x) on Ω̄. Then

S(x, p) = s[r11(x)− r22(x)]p2(1− p). (7.6)

d) All selection coefficients have the same spatial dependence g(x). Then we can choose

r11(x) = g(x), r12(x) = hg(x), r22(x) = −g(x), (7.7)

where h signifies the degree of dominance, and obtain

S(x, p) = sg(x)p(1− p)(1 + h− 2hp); (7.8)

cf. (2.16). Note that h = 0, 1,−1 yields the cases a), b), c), respectively.

7.1 Fisher’s equation

This model was introduced independently by Fisher (1937) and Kolmogorov et al. (1937).
It assumes that fitnesses are independent of the spatial position and exhibit no dominance.
Fisher envisaged to model the spread of a mutant that has a constant fitness advantage
over the wild type. These assumptions together with (7.4) show that (6.18a) becomes

pt = σ2

2 pxx + sp(1− p), (7.9)

where x ∈ Ω = (−∞,∞). By rescaling time and space according to τ = st and y =
x
√

2s/σ2, (7.9) simplifies to
pt = pxx + p(1− p). (7.10)

Fisher wanted to find out how fast a new favorable mutant spreads through a spatially
distributed population.

It turns out that the (biologically relevant) solutions are “wave like”. In general, PDEs
can have quite different kinds of wave-like solutions. We shall be mainly concerned with
wave fronts. They have the following properties:

0 ≤ u ≤ 1, u(−∞) = 1, and u(∞) = 0. (7.11)

(One can also assume u(−∞) = 0 and u(∞) = 1. Then the wave front will travel in the
opposite direction.) A solitary wave (soliton, pulse) satisfies

u ≥ 0, u , 0, u(−∞) = u(∞) = 0. (7.12)
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To find wave-front solutions of (7.10), we set

p(x, t) = u(x− ct). (7.13)

Then (7.10) becomes −cu′(x− ct) = u′′(x− ct) + u(x− ct)[1− u(x− ct)], i.e.,

u′′ + cu′ + u(1− u) = 0. (7.14)

Here, u′ indicates differentiation with respect to the (single) variable on which u depends.
If we introduce v = u′, then (7.14) can be written as the following system of linear ODEs:

u′ = v,

v′ = −cv − u(1− u).
(7.15)

We study the system (7.15). The equilibria are (0, 0) and (1, 0). A wave front corre-
sponds to a heteroclinic orbit joining these two equilibria and satisfying 0 ≤ u ≤ 1. The
Jacobian of (7.15) is

J =
(

0 1
−1 + 2u −c

)
. (7.16)

Therefore, the Jacobians at the two equilibria are

J(0,0) =
(

0 1
−1 −c

)
and J(1,0) =

(
0 1
1 −c

)
. (7.17)

We find that the eigenvalues at (0, 0) are −1
2c±

1
2

√
c2 − 4. Therefore, (0, 0) is asymp-

totically stable if and only if c > 0, and it is a nodal sink if and only if c ≥ 2. The
eigenvalues at (1, 0) are −1

2c ±
1
2

√
c2 + 4. Therefore, (1, 0) is always a saddle. The case

c < 0 is without interest because then both equilibria are unstable and a connecting, i.e.,
heteroclinic, orbit is repelling. Therefore, we focus on the case c > 0. If 0 < c < 2, the
heteroclinic orbit spirals. Therefore, it is not positive everywhere. Because the eigenvec-
tors corresponding to the two eigenvalues are (c+

√
c2 + 4, 2) and (c−

√
c2 + 4, 2), we can

draw the phase portrait (see Figure 7.1). (Also note that v′ < 0 if v = 0 and 0 ≤ u ≤ 1,
and v′ > 0 if v < −u(1− u)/c.)

A wave front exists if and only if c ≥ 2. For every c > 2, there exists a unique wave
front (Kolmogorov et al. 1937; Aronson and Weinberger 1975, 1978). The reason is that
then one of the branches of the unstable manifold of (1, 0) must connect to (0, 0). Because
the heteroclinic orbit satisfies v < 0 if 0 < u < 1, we have u′ = v < 0. Hence, the wave
front is strictly monotone decreasing. The point of inflection is given by u′′ = v′ = 0, i.e.,
it satisfies v = −u(1− u)/c. In advance of this point, u′′ > 0.
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Figure 7.1: Phase portrait of (7.15) for c = 2.5.
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Figure 7.2: The explicit wave-front solution (7.18) with r = −1
2 and c = 5/

√
6.
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An explicit wave-front solution of (7.10) is known for c = ±5/
√

6 ≈ ±2.0412 (Ablowitz
and Zeppetella, 1979):

u(z) =
(
1− rez/

√
6
)−2

, (7.18)

where r < 0 is arbitrary (Figure 7.2). Of course, if z → u(z) is a solution, then also
z → u(z + a) for every a.

Kolmogorov et al. (1937) proved that the initial datum p(x, 0) = 1 if x < 0, and
p(x, 0) = 0 if x > 0 converges to a wave with speed c=2. McKean (1975) extended this
result to initial data that converge sufficiently rapidly to 1 or 0 as x→ −∞ and x→∞,
respectively. In addition, he proved that if for given c > 2, the initial function converges to
1 at an appropriate (exponential) rate as x→ −∞, the corresponding solution converges
to a wave front with speed c. Thus, wave fronts are stable. For the original equation
(7.9), the condition c > 2 transforms into c >

√
2σ2s.

Of course, it is unnatural that the speed is indeterminate. The reason is that diffusion
(with a constant) rate can be expected to approximate biological reality only if sufficiently
many individuals of both types are present. Clearly, this is not the case at the extreme
front or back of the wave. Therefore, in sufficiently large populations the wave speed
should be close to the minimum possible value of c = 2. Finally, initial data satisfying
p(x, 0)→ 0 as x→ ±∞ may converge to double waves, similar to those in Figure 7.4.

There exist other types of simple solutions of (7.9). For instance,

p(x, t) = aest

1− a+ aest
(7.19)

is a family of solutions that is constant in x and p(x, 0) ≡ a.

7.2 Hybrid zones

A hybrid zone exists where two subspecies or differentiated populations meet and cross-
fertilize. However, if the populations have been separated for a long time, hybrids usually
have reduced fitness. To model this situation, we follow Bazykin (1967) and Barton
(1979). We assume that the fitnesses of the three genotypes A1A1, A1A2, and A2A2

are spatially independent and given by 1 + 2s, 1 + s − h, and 1, respectively, where
0 ≤ s, h � 1. Essentially, allele A1 (A2) is assumed to be characteristic of population
1 (2). If migration is homogeneous and isotropic, we obtain from (6.18a) and (7.2) the
PDE

pt = 1
2σ

2pxx + sp(1− p) + hp(1− p)(2p− 1) (7.20)

on Ω = (−∞,∞). Obviously, p ≡ 0 and p ≡ 1 are always solutions.
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Figure 7.3: Graph of p−(x, t) (7.21) for x0 = 0, σ2 = 0.2, s = 0.05, h = 0.2. The blue,
yellow, green, red, and violet curves are for t = 0, 10, 20, 30, 40, respectively.

It is straightforward to check that the following family of non-trivial solutions exists:

p±(x, x0, t) = 1
2

1± tanh
√ h

2σ2 (x− x0)± st

2

 . (7.21)

(Recall that tanh(x) = (ex − e−x)/(ex + e−x).) If s > 0, these solutions are wave fronts;
p− satisfies (7.11) and travels to the right (Figure 7.3). If h , 0, in contrast to Fisher’s
equation (where h = 0), the speed and shape are uniquely determined. If h = 0, the
solution (7.21) is constant in space. Note that s does not affect shape; it determines only
the speed at which the wave front advances.

If s = 0, p(x, x0, t) is time independent, and represents a family (x0 ∈ R) of stationary
solutions. The inverse of the maximum gradient,

w = 1
|p′(x0, x0)| = 2

√
2σ2

h
, (7.22)

may be called their width. Then p(x0 − w/2) = 1/(1 + e2) ≈ 0.119 and p(x0 + w/2) =
e2/(1 + e2) ≈ 0.881. As expected, the solutions become steeper around their center x0 as
selection against hybrids increases or dispersal decreases.

If h > s, the solutions p−(x, x0, t) are globally stable modulo appropriate initial con-
ditions (Fife and McLeod 1977; Sattinger, 1976, 1977). In fact, much more complicated
asymptotic states can exist. For instance, the existence of infinitely many periodic and
other non-monotone unstable asymptotic states has been proved (Fife 1978, 1979).
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We now formulate a more general and precise result.
Consider the initial-value problem

ut = uxx + f(u), x ∈ Ω = (−∞,∞), t > 0, (7.23a)

where
u(x, 0) = ϕ(x), x ∈ Ω. (7.23b)

Assume that f ∈ C1[0, 1] satisfies for some α ∈ (0, 1)

f(0) = f(1) = 0, f ′(0) < 0, f ′(1) < 0, f changes sign once at α. (7.24)

(Note that the last assumption implies that the ODE u̇ = f(u) has the asymptotically
stable equilibria 0 and 1, and the unstable equilibrium α; hence, u̇ = f(u) exhibits
bistability.)

Theorem 7.1 (Fife and McLeod, 1977).

1. There exists a unique (except for translation) monotone traveling front U(x − ct)
(Kanel’ 1960).

2. Suppose that 0 ≤ ϕ(x) ≤ 1 for all x ∈ Ω, and

lim inf
x→−∞

ϕ(x) > α and lim sup
x→∞

ϕ(x) < α. (7.25)

Then for some x0 the solution of the initial-value problem approaches U(x− ct−x0)
uniformly in x as t→∞. Further, c ≥ 0 (c ≤ 0) according as

∫ 1
0 f(u)du ≥ 0 (≤ 0),

and the rate at which the limit is approached is exponential.

3. Suppose that ϕ is of bounded support or, more generally, that lim supx→±∞ ϕ(x) < α

and that ϕ(x) > α+ η for some η > 0 and |x| < L. If L is large enough, depending
on η, and

∫ 1
0 f(u)du > 0, then the solution develops (uniformly in x) into a pair of

diverging traveling fronts

U(x− ct− x0) + U(−x− ct− x1)− 1. (7.26)

Fife and McLeod (1977) prove more general results by admitting that f has more than
one zero. They consider fronts traveling to the left.

Figure 7.4 documents the double waves of the third statement. With f(u) = u(1 −
u)(s − h + 2hu), as in (7.20), we have α = h−s

2h and
∫ 1

0 f(u)du = s/6 > 0 (if s > 0).
Therefore, statements 2 and 3 of the above theorem apply if h > s. It can be shown that
if s > 2h, then asymmetric wave fronts at speed c >

√
2σ2(s− h) become stable.
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Figure 7.4: Numerical solution of (7.20) with the initial condition p(x, 0) = 0.6 if |x| ≤ 1,
and p(x, 0) = 0 otherwise. The blue, orange, green, red, violet, brown, light blue, and
yellow curves show the solution for t = 0, 1, 20, 100, 200, 300, 400, and 500, respectively.
The blue dashed line shows the solution (7.26) with U given by p−(x, 200) from (7.21).
The parameters are σ2 = 0.1, s = 0.1, h = 0.2.

7.3 Clines under spatially heterogeneous selection

If genotypic fitnesses vary in space, then equilibrium allele frequencies can be expected to
vary, too. One says a cline (in allele frequencies) occurs if the allele frequencies depend
monotonically on the spatial variable. Such patterns are frequently observed in spatially
distributed populations if there is an environmental gradient, for a instance in tempera-
ture. The first model of a cline is due to Haldane (1948), who motivated his study by the
problem of measuring selection in the deer mouse. Further important early theoretical
work includes Fisher (1950), Slatkin (1973), Fleming (1975), and Nagylaki (1975).

First, we investigate explicit examples; then we will turn to the general theory.

7.3.1 The step environment in the infinite cline

We assume Ω = (−∞,∞),

pt = σ2

2 pxx + sg(x)f(p), (7.27)

where f(p) = p(1− p)(1 + h− 2hp),

g(x) =

1 if x ≥ 0,
−a if x < 0,

(7.28)
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and a > 0; cf. (7.8). Of course, we are only interested in solutions satisfying 0 ≤ p(x, t) ≤ 1
for all x and t.

If a stationary solution (a cline) exists, it must satisfy

p′′ + λf(p) = 0 if x ≥ 0, (7.29a)

p′′ − aλf(p) = 0 if x < 0, (7.29b)

where λ = 2s/σ2. Slatkin (1973) called
√

2/λ = σ/
√
s the critical length of the cline.

We require the conditions

p′(∞) = p′(−∞) = 0, (7.30a)

p and p′ are continuous at x = 0. (7.30b)

Obviously, p ≡ 0 and p ≡ 1 are always solutions.
Now suppose that there is no dominance, i.e., h = 0. Then f(p) = p(1 − p) and the

following solution of (7.29a) exists and is unique with respect to the above conditions (cf.
Haldane 1948, Slatkin 1973, Nagylaki 1976):

p(x) = −1
2 + 3

2 tanh2

 √λ
2 x+ tanh−1

√
1 + 2b

3

 if x ≥ 0, (7.31a)

p(x) = 3
2 −

3
2 tanh2

 √aλ
2 x− tanh−1

√
1− 2b

3

 if x < 0, (7.31b)

where b = p(0) is the unique solution in (0, 1) of

(1 + a)(3b2 − 2b3) = 1. (7.32)

The solution (7.31) satisfies (7.30a), (7.30b), limx→∞ p(x) = 1, limx→−∞ p(x) = 0, and

p′(0) = b
√

3− 2b
√
aλ

3 =
√

aλ

3(1 + a) , (7.33)

where the last equality follows from (7.32). The second derivative at x = 0 is not contin-
uous because p′′(0+) = −b(1− b)λ, whereas p′′(0−) = ab(1− b)λ.

Proof. We set ϕ(x, p) = p′(x). Then p′′ = ∂ϕ
∂x

= ∂ϕ
∂p

∂p
∂x

= ∂ϕ
∂p
ϕ. Therefore, (7.29a) can

be written as ∂ϕ
∂p
ϕ = −λp(1 − p). Separating variables and integrating, we obtain ϕ2 =

C − 2λ(p2/2 − p3/3). Because ϕ(x, p) → 0 as x → ∞ (and p(x) → 1 as x → ∞), we
obtain C = λ/3. Therefore, we have to solve(

dp

dx

)2

= λ

3 (1− p)2(1 + 2p). (7.34)
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Figure 7.5: Numerical solution of (7.27) with no dominance (h = 0), σ2 = 2, s = 1, the
step environment (7.28), and (in the upper panel) the initial condition p(x, 0) = 0.2 if
1 < x < 2 and p(x, 0) = 0 otherwise, and (in the lower panel) p(x, 0) = 0.2 if −2 < x < −1
and p(x, 0) = 0 otherwise. The blue, orange, green, red, magenta, brown, light blue, light
red, and yellow curves show the solution for t = 0, 0.1, 1, 2, 3, 5, 7, 10, and 20, respectively.
The black dashed line shows the solution (7.31) with λ = 1.
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Separation of variables and integration yields (7.31a) if p(0) = b. Analogously, (7.29b)
can be written as ∂ϕ

∂p
ϕ = aλp(1− p), from which we obtain

(
dp

dx

)2

= aλ

3 p2(3− 2p). (7.35)

In this case, separation of variables and integration yields (7.31b) if p(0) = b.
Because we require continuity of p′(x) at x = 0, the right-hand sides of (7.34) and

(7.35) must coincide at x = 0. This yields (7.32). �

Stationary, or equilibrium, solutions of biological significance need to be stable (in an
appropriate sense). We will study stability in a subsequent section. Stability of the cline
is suggested by the convergence of time-dependent solutions in Figure 7.5.

Now we assume arbitrary dominance. Then f(p) = p(1 − p)(1 + h − 2hp) (7.7) and,
analogously to the above proof, we find

ϕ2 = C1 −
λp2

3 φ(p) if x ≥ 0 (7.36)

and
ϕ2 = C2 + aλp2

3 φ(p) if x < 0, (7.37)

where φ(p) = 3 + 3h(1 − p)2 − 2p. Because ϕ(x) → 0 and p(x) → 1 as x → ∞ and
ϕ(x)→ 0 and p(x)→ 0 as x→ −∞, we get C1 = λ/3 and C2 = 0. Therefore, instead of
(7.34) and (7.35), (

dp

dx

)2

= λ

3 −
λp2

3 φ(p) if x ≥ 0 (7.38)

and (
dp

dx

)2

= λap2

3 φ(p) if x < 0 (7.39)

respectively, are obtained. From the conditions (7.30b), we infer

λ

3 −
λb2

3 φ(b) = λab2

3 φ(b), (7.40)

where b = p(0+) = p(0−). This yields

φ(b) = 1
b2(a+ 1) . (7.41)

Substituting this expression into (7.39), evaluated for x→ 0−, we find

p′(0) = p′(0+) = p′(0−) =
√

λa

3(a+ 1); (7.42)
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cf. (7.33).
In analogy to (7.22), we call

w = 1
|p′(0)| =

√
3
λ

√
a+ 1
a

(7.43)

the width of the cline. Therefore, the dependence of the width of the cline on λ, or on
s and σ2, is in accordance with intuition: The cline gets wider as selection decreases or
dispersal increases. Interestingly, the width of the cline is independent of the degree of
dominance, h, and of b = p(0) (this is true only if |h| ≤ 1; see below). Also in accordance
with intuition, its width increases and tends to ∞ as a → 0; the cline “disappears” at
p = 1 in this limit. Finally, for given a > 0, b = p(0) is the unique solution in (0, 1) of
(7.41). Because the steepness or width is often relatively easy to measure, the strength of
selection (dispersal) can be inferred from estimates of the strength of dispersal (selection).

Figure 7.6 displays the clines for five different dominance parameters and a = 1. It
confirms that the clines have the same slope at x = 0 although they are asymmetric unless
there is no dominance.

It appears that, in general, p(x) cannot be obtained explicitly in terms of well known
functions by integrating (7.38) and (7.39) (though the latter ODE can be solved explic-
itly). However, an explicit solution can be derived for the important case of a completely
recessive favorable allele (Haldane 1948). Then h = −1, f(p) = 2p2(1 − p), and (7.38)
and (7.39) become (

dp

dx

)2

= λ

3 (1− p)2(1 + 2p+ 3p2) (7.44)

and (
dp

dx

)2

= aλ

3 p3(4− 3p), (7.45)

respectively. The first differential equation is solved by noting that

d

dx
sinh−1

[ √
2(1 + 2p)
1− p

]
=

√
6

(1− p)
√

1 + 2p+ 3p2 . (7.46)

It follows that the cline can be written as

p(x) = 1− 3
√

2
2
√

2 + sinh
[√

2λx+ sinh−1
( √

2(1+2b)
1−b

)] if x ≥ 0, (7.47a)

p(x) = 3b
3− x

√
3ab(4− 3b)λ+ x2abλ

if x < 0, (7.47b)
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Figure 7.6: Numerical solution of (7.27) with dominance, λ = 1, and the step environment
(7.28) with a = 1 and (7.7). The blue, orange, green, red, and magenta curves show the
solution for h = −1, −0.5, 0 0.5, and 1, respectively. The black dashed line shows the
solution (7.47) with h = 1.

where b is the unique solution in (0, 1) of

1− (1 + a)b3(4− 3b) = 0. (7.48)

If a = 1, then b ≈ 0.6143. This solution has the properties p(0) = b, limx→∞ p(x) = 1,
and limx→−∞ p(x) = 0.

The above analyses for h = 0 and h = −1 show that a cline exists always, i.e., indepen-
dently of s > 0, a > 0, and σ2 > 0. This is different from the two-deme models treated in
Sections 4.2 and 5, in which a protected polymorphism vanishes under sufficiently strong
migration, except under extreme symmetry. For instance, in the Deakin model the pro-
tected polymorphism does not vanish if c2

s1
+ c1

s2
= 0 (4.17), or in Example 5.1 it does not

vanish if 1
s1

+ 1
s2

= 0 and µ1 = µ2 = µ. At first, this discrepancy may seem surprising
because in the PDE model with g(x) given by (7.28) there are two different environments,
just as in the two-deme models. However, the main difference is that in the present PDE
model the habitat is unbounded, i.e., the region is infinitely large in which each of the
alleles is advantageous. If the habitat is bounded or if it is semi-infinite, e.g., Ω = (0,∞),
then generically clines vanish if the dispersal variance becomes very large. We shall treat
such cases below.

Conley (1975) proved that a cline always exists for h = 0 and g(x) subject only to the
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Figure 7.7: Numerical solution of (7.27) with h = 2, λ = 1, and the step environment
(7.28) with a = 1. In the limit x → ∞, both clines converge to the pure selection
equilibrium p̂ = (1 + h)/2h = 3/4. Which cline evolves depends on the initial data.

conditions sgn g(x) = sgn x for sufficiently large |x|, and that g(x) be not integrable as
x→ ±∞. His proof applies for arbitrary h (Nagylaki 1975).

If there is overdominance or underdominance |h| > 1, there exist two clines. If h > 1,
then in the absence of migration there is the stable equilibrium p̂ = (1+h)/2h; if h < −1,
this equilibrium is unstable (Section 2.3). With the step environment (7.28) and h > 1,
there is overdominance if x ≥ 0 and underdominance if x < 0. Therefore, in the presence
of migration, there will be two clines (Figure 7.7). In this case, the steepness of the clines
at x = 0 is no longer given by (7.42). An analogous formula can be derived by taking
into account the limiting behavior as x→ ±∞.

Some other environments than the step environment (7.28) were investigated by Slatkin
(1973) and Nagylaki (1975). The latter study is devoted to semi-infinite clines, i.e.,
Ω = [0,∞). They include, for instance, the case of an environmental pocket.

7.4 Clines in a finite domain

We shall first concentrate on the simplest case, which is that of no dominance. For this
case we shall outline the proof of the main result, Theorem 7.5. Then we shall review the
available theory for intermediate and for complete dominance.
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7.4.1 The ODE model with no dominance and two demes

To motivate the approach below for analyzing the PDE model, we recall Example 5.1 in
which we investigated the ODE model for two alleles without dominance and two demes.
We define

M =
(
−1 1
1 −1

)
and f(p) =

(
p1(1− p1)
p2(1− p2)

)
,

and assume s1s2 < 0 and µ1 = µ2 = µ. After rescaling time and setting λ = 1/µ, we can
rewrite the differential equation (5.11) as

ṗ = Mp+ λ

(
s1 0
0 s2

)
f(p).

To derive the asymptotic stability of equilibria, we calculate the Jacobian and obtain

J(p) = M + λ

(
s1(1− 2p1) 0

0 s2(1− 2p2)

)
.

Obviously, the equilibrium p = (0, 0)> is asymptotically stable if the leading eigenvalue
of J(0, 0) is negative. This eigenvalue has a strictly positive eigenvector. An analogous
result holds for p = (1, 1)>.

Therefore, it is natural to study the eigenvalue problem

−My − λ
(
s1 0
0 s2

)
y = σy, (7.49)

where λ is considered as a parameter. Then p = (0, 0)> is asymptotically stable if the
leading eigenvalue σ1 > 0. Let λ1 denote an eigenvalue satisfying

−My = λ1

(
s1 0
0 s2

)
y (7.50)

for a strictly positive y, i.e., y1 > 0 and y2 > 0 (provided it exists). Then we have σ1 = 0
if and only if λ = λ1; one can show that σ1 > 0 if and only if 0 < λ < λ1 (we are only
interested in λ > 0); and σ1 < 0 if and only if λ > λ1.

From (7.50), we obtain easily that λ1 is unique and given by λ1 = 1
s1

+ 1
s2

(the corre-
sponding eigenvector is (−s2, s1) if s1 > 0 > s2). There is a second eigenvalue, which is
zero. Therefore, σ1 > 0 if and only if 1

µ
= λ < λ1, which is precisely the condition for

stability of p = (0, 0)>, or non-protection of A1, i.e., κ = µ
s1

+ µ
s2
> 1; cf. (4.14). Finally,

we note that λ1 = 0 if and only if s1 + s2 = 0, and λ1 > 0 if and only if s1 + s2 < 0.
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7.4.2 The PDE model with no dominance

Our presentation essentially follows Lou et al. (2013). We assume that Ω is a bounded
open (connected) domain in Rn with a C2 boundary ∂Ω. We write

∆f =
n∑
i=1

∂2f

∂x2
i

and ∇f =
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
(7.51)

for the Laplace and the gradient (nabla) operator, respectively. Note that ∆f = ∇ · ∇f .
Our goal is to study the dynamics of

∂p

∂t
= ∆p+ λg(x)p(1− p) in Ω× (0,∞), (7.52a)

subject to the boundary condition

∂p

∂ν
= 0 on ∂Ω× (0,∞), (7.52b)

where ∂p
∂ν

= ν ·∇p denotes the derivative in direction of ν, the outward unit normal vector
on ∂Ω, and

0 ≤ p(x, 0) ≤ 1, p(x, 0) . 0, p(x, 0) . 1 in Ω. (7.52c)

If n = 1 then Ω = (b1, b2), where −∞ < b1 < b2 < ∞. In this much simpler one-
dimensional case, the equilibrium solution of (7.52) can be determined from the ordinary
differential equation

p′′ + λg(x)p(1− p) = 0, (7.53)

and the boundary condition (7.52b) simplifies to

p′(b1, t) = p′(b2, t) = 0 for t ∈ (0,∞). (7.52b’)

The following eigenvalue problem will play a crucial role in our investigation of the
dynamics (7.52):

−∆ϕ = λg(x)ϕ in Ω, (7.54a)
∂ϕ

∂ν
= 0 on ∂Ω× (0,∞) and ϕ > 0 in Ω. (7.54b)

We say that λ is a principal eigenvalue of (7.54) if (7.54) has a solution. Clearly, zero is
always a principal eigenvalue of (7.54) with positive constants as eigenfunctions. However,
only positive principal eigenvalues of (7.54) are relevant in analyzing the dynamics of
(7.52). In the one-dimensional (ODE) case, (7.54) is a special case of the Sturm-Liouville
eigenvalue problem. Our first result is the following:
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Proposition 7.2. Suppose that g is not identically zero. Then (7.54) has a positive
eigenvalue if and only if g changes sign in Ω and∫

Ω
g(x)dx < 0. (7.55)

For the one-dimensional case, this problem was solved by Picone (1910) and Bocher
(1914) using Sturm’s theory. The n-dimensional case was settled by Brown and Lin
(1980), the general elliptic case by Senn and Hess (1982). We will proof this result in
Section 7.4.3.

Remark 7.3. We note the analogy to the two-deme model outlined in Section 7.4.1, in

which M plays the role of ∆ and
(
s1 0
0 s2

)
that of g.

Remark 7.4. It is well known that if the principle eigenvalue λ1(g) of (7.54) exists, it is
simple and its corresponding eigenfunction can be chosen positive in Ω̄. Moreover, if λ is
a positive eigenvalue of (7.54), then λ ≥ λ1(g). Hence, we call λ1(g) the smallest positive
eigenvalue of (7.54). No other eigenvalue than λ1(g) has an eigenfunction that does not
change sign. We will prove these statements in Section 7.4.3.

We call an equilibrium globally asymptotically stable if it is asymptotically stable and
every solution p(x, t) of (7.52a) satisfying the initial condition (7.52c) converges to it
uniformly, i.e., in L∞(Ω).

The following is the main result of this section.

Theorem 7.5. (i) Suppose that
∫

Ω g(x)dx < 0 and g changes sign in Ω. If λ ≤ λ1(g), the
equilibrium p ≡ 0 of (7.52) is globally asymptotically stable. If λ > λ1(g), then (7.52) has
a unique equilibrium p̂ satisfying 0 < p̂ < 1 in Ω̄, which is globally asymptotically stable.

(ii) Suppose that
∫
Ω g(x)dx = 0 and g changes sign in Ω. Then for every λ > 0, (7.52)

has a unique nontrivial equilibrium, which is globally asymptotically stable.
(iii) Suppose that

∫
Ω g(x)dx > 0 and g changes sign in Ω. There exists a λ∗ > 0 such

that if 0 < λ ≤ λ∗, then p ≡ 1 is globally asymptotically stable. If λ > λ∗, then (7.52)
has a unique equilibrium p∗ satisfying 0 < p∗ < 1 in Ω̄, which is globally asymptotically
stable.

A non-trivial equilibrium of (7.52) is not constant because this would imply g ≡ 0. It
represents a cline. The proof of Theorem 7.5 consists of several steps and is deferred to
Section 7.4.4. It will be sufficient to prove (i) and (ii).
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Remark 7.6. Fleming (1975) derived the conditions for the stability of the trivial solu-
tions p ≡ 0 and p ≡ 1 and proved existence of a stable nontrivial solution if both trivial
solutions are unstable. Henry (1981) proved the above result for the Laplace operator on
an open bounded domain in Rn. Lou and Nagylaki (2002, Theorem 2.1) generalized this
to arbitrary elliptic operators on an open bounded domain in Rn, in particular to multi-
variate versions of the differential operator occurring in (6.17). Thus, their result applies
to much more general migration patterns, which need not to be isotropic or homogeneous.
Also varying population density is covered by their model.

Remark 7.7. 1. We point out the analogy to the results about protection of alleles
and existence of a stable equilibrium in Sections 4.2 and 5. The condition

∫
Ω g(x)dx < 0

corresponds to s1 + s2 < 0. Therefore, A1 is not protected (p = 0 asymptotically stable)
if κ = µ/s1 + µ/s2 > 1 and protected if κ < 1. In the latter case, we indeed have a
protected polymorphism because κ > 0 if s1 + s2 < 0. As already noted at the end of
Section 7.4.1, we have κ = µλ1 = λ1/λ. Therefore, the condition λ > λ1(g) in Theorem
7.5 (i) corresponds to κ < 1.

2. If s1 + s2 = 0, then κ = 0 for every µ > 0 and a stable interior equilibrium exists
always, just as if

∫
Ω g(x) dx = 0.

3. We recall from Section 7.3.1 that for the step environment in Ω = (−∞,∞), a cline
exists for every λ > 0 even if the selection is asymmetric.

The following result shows that (in the sense specified) the cline gets steeper as selection
gets stronger or dispersal weaker.

Proposition 7.8. For λ > λ1(g), i.e., when the cline p̂ exists, ‖∇p̂‖L2(Ω) is a strictly
monotone increasing function of λ.

For the proof, see Lou et al. (2013).

7.4.3 Proof of Proposition 7.2

We first establish necessity. If (7.54) has a positive eigenvalue with eigenfunction ϕ > 0
in Ω, then by the strong maximum principle for elliptic equations (Appendix B), we have
ϕ > 0 in Ω̄. (In the one-dimensional case, this follows from the elementary Theorem B.1.)
Therefore, dividing (7.54a) by ϕ and integrating over Ω, we obtain by using Green’s first
identity8 (partial integration in the 1-d case) and observing the boundary condition on ϕ

8∫
Ω(ψ∆ϕ+∇ψ · ∇ϕ) dx =

∮
∂Ω ψ

∂ϕ
∂ν dS

52



(7.54b) ∫
Ω
g(x) dx = 1

λ

∫
Ω
−ϕ−1∆ϕdx

= 1
λ

(∮
∂Ω
−ϕ−1∂ϕ

∂ν
dS +

∫
Ω
∇(ϕ−1) · ∇ϕdx

)

= −1
λ

∫
Ω

|∇ϕ|2

ϕ2 dx < 0, (7.56)

where the last inequality is strict because ϕ is not constant. (If ϕ were constant, then g ≡ 0
would follow from (7.54a), a contradiction to our assumption.) Furthermore, integrating
(7.54a) in Ω, we find by a similar calculation

∫
Ω g(x)ϕ(x) dx = 0, which together with

positivity of ϕ implies that g must change sign.
The proof of sufficiency is deeper. In a series of lemmas, we will show that

λ1(g) = inf
ψ∈S

K(g, ψ) (7.57)

is the desired eigenvalue. Here,

K(g, ψ) = −
∫

Ω ψ∆ψ dx∫
Ω gψ

2 dx
=
∫

Ω |∇ψ|
2 dx∫

Ω gψ
2 dx

(7.58)

is a ‘Rayleigh quotient’ and

S = {ψ ∈ H1(Ω) :
∫

Ω
gψ2 > 0 and ∂ψ/∂ν = 0 on ∂Ω}, (7.59)

where H1(Ω) is the Sobolov space in L2(Ω) with weak derivatives of first order in L2(Ω)
(C.2) (Appendix C). Essentially, the proof follows Brown and Lin (1980). Indeed, we will
also prove most of the statements of Remark 7.4.

We define

Qλ(ψ) = 〈−∆ψ, ψ〉 − λ
∫

Ω
gψ2 dx =

∫
Ω
|∇ψ|2 dx− λ

∫
Ω
gψ2 dx, (7.60)

where 〈u, v〉 =
∫
Ω uv dx. Then Qλ(ψ) ≥ 0 if and only if λ ≤ K(g, ψ), and

Qλ(ψλ) = 0 (7.61)

if λ is an eigenvalue of (7.54) with eigenfunction ψλ.

Lemma 7.9. If there is a nonnegative eigenfunction of (7.54), then Qλ(ψ) ≥ 0 for every
ψ ∈ S. Therefore, any eigenvalue λ of (7.54) with a nonnegative eigenfunction satisfies
λ ≤ λ1(g).
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Proof. On
D(L1) = {u ∈ H2(Ω) : ∂u/∂ν = 0 on ∂Ω}, (7.62)

we define the operators L1u = −∆u and

(Tu)(x) = −∆u(x)− λg(x)u(x) for x ∈ Ω, (7.63)

Then T is self-adjoint and its spectrum consists of the eigenvalues µ1 < µ2 ≤ . . .. The
eigenvalue µ1 is simple and the corresponding eigenfunction ψ1 can be chosen such that
ψ1 > 0 in Ω̄ (Appendix D). Now suppose that ϕ is a nonnegative eigenfunction of (7.54).
Therefore, µ1 = 0 must be an eigenvalue of T . Because only the smallest eigenvalue
has a nonnegative eigenfunction, and its eigenspace is one-dimensional, ϕ must pertain to
µ1 = 0. From the spectral decomposition (Remark D.7), we obtain 〈Tu, u〉 ≥ µ1〈u, u〉 = 0,
i.e., Qλ(u) ≥ 0, for every u ∈ D(L1). �

Lemma 7.10. If
∫

Ω g dx < 0, then λ1(g) > 0.

This result is quite intuitive because ψ = const < S if
∫

Ω g dx < 0. The proof is a little
bit technical.

Proof. First, we show that there exist ε > 0 and η > 0 such that∫
Ω
|∇ψ|2 dx ≥ ε

∫
Ω
ψ2 dx (7.64)

for every ψ ∈ D(L1) that satisfies
∫
Ω gψ

2 dx > −η
∫

Ω ψ
2 dx. The proof is by contradiction.

Suppose that {ψn} ⊂ D(L1) such that
∫

Ω ψ
2
n dx = 1,

∫
Ω |∇ψn|

2 dx ≤ 1/n, and
∫

Ω gψ
2
n dx ≥

−1/n for every n. Then {ψn} is bounded in H1(Ω) and therefore has a subsequence, {ψk},
that converges to some ψ ∈ L2(Ω). Since

∫
Ω |∇ψk|

2 dx ≤ 1/k for all k, {ψk} is a Cauchy
sequence in H1(Ω), thus converges to ψ ∈ H1(Ω), which satisfies∫

Ω
ψ2 dx = 1,

∫
Ω
|∇ψ|2 dx = 0, and

∫
Ω
gψ2 dx ≥ 0. (7.65)

The first two properties imply that ψ ≡ c , 0, hence
∫

Ω gψ
2 dx = c

∫
Ω g dx < 0, a

contradiction.
For ψ ∈ S, we have

∫
Ω gψ

2 dx > 0 and

K(g, ψ) =
∫

Ω |∇ψ|
2 dx∫

Ω gψ
2 dx

≥
∫

Ω |∇ψ|
2 dx

maxx∈Ω |g(x)|
∫

Ω ψ
2 dx

≥ ε/max
x∈Ω
|g(x)| .

Therefore, λ1(g) ≥ ε/maxx∈Ω |g(x)| > 0, which finishes the proof. �
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Lemma 7.11. Let
∫

Ω g dx < 0. If λ > λ1(g), then λ is not an eigenvalue with a nonneg-
ative eigenfunction. If 0 < λ < λ1(g), then λ is not an eigenvalue.

Proof. The first statement is already contained in Lemma 7.9. To prove the second
statement, by (7.61) it is sufficient to show that (for given λ) there exists a > 0 such that
Qλ(ψ) ≥ a‖ψ‖2 for every ψ ∈ D(L1).

Let λ = (1− τ)λ1(g), where 0 < τ < 1 and ψ ∈ D(L1). Then

Qλ(ψ) =
∫

Ω
|∇ψ|2 dx− λ

∫
Ω
gψ2 dx

= λ

λ1
Qλ1(ψ) +

(
1− λ

λ1

)∫
Ω
|∇ψ|2 dx ≥ τ

∫
Ω
|∇ψ|2 dx.

Let ε and η be the constants in the proof of Lemma 7.10. If
∫

Ω gψ
2 dx > −η

∫
Ω ψ

2 dx, we
obtain from (7.64)

Qλ(ψ) ≥ τ
∫

Ω
|∇ψ|2 dx ≥ τε‖ψ‖2. (7.66)

If
∫

Ω gψ
2 dx ≤ −η

∫
Ω ψ

2 dx, we have

Qλ(ψ) =
∫

Ω
|∇ψ|2 dx− λ

∫
Ω
gψ2 dx ≥ λη‖ψ‖2. (7.67)

�

Lemma 7.12. If
∫

Ω g dx < 0, then λ1(g) is a simple eigenvalue with an eigenfunction
that can be chosen positive on Ω̄.

Proof. We consider the linear eigenvalue problem

−∆ϕ− λ1(g)g(x)ϕ = σϕ in Ω, (7.68a)
∂ϕ

∂ν
= 0 on ∂Ω (7.68b)

and define the operator T1 : D(L1)→ L2(Ω) by

(T1u)(x) = −∆u(x)− λ1(g)g(x)u(x). (7.69)

Then λ1(g) is an eigenvalue of (7.54) with corresponding eigenfunction ϕ if and only if
0 is an eigenvalue of T1, hence of (7.68), with corresponding eigenfunction ϕ. The least
eigenvalue σ1 of T1 is given by

σ1 = inf{Qλ1(ψ) : ψ ∈ D(L1)} (7.70)
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(Theorem D.9). Since Qλ1(ψ) ≥ 0 for all ψ ∈ D(L1), we have σ1 ≥ 0. From the definition
of λ1(g) it follows that there is a sequence {ψn} ⊂ D(L1) such that

∫
Ω gψ

2
n dx = 1

and limn→∞
∫
Ω |∇ψn|

2 dx = λ1(g). Therefore, limn→∞Qλ1(ψn) = 0, whence σ1 = 0.
Therefore, σ1 = 0 is the smallest eigenvalue of (7.68), hence simple and the corresponding
eigenfunction can be chosen positive on Ω. By the strong maximum principle, it is positive
on Ω̄. �

Obviously, Lemma 7.12 completes the proof of sufficiency in Proposition 7.2. The
other lemmas show that λ1(g) > 0 and that λ1(g) is the only positive eigenvalue with the
desired properties.

Remark 7.13. The variational characterization (7.57) of λ1(g) is related to Courant’s
Minimum-Maximum Principle (and to the min-max principle for Hermitian matrices).
For Hermitian matrices, the Rayleigh quotient is simply (Ax, x)/(x, x) (cf. Appendix D).

7.4.4 Proof of Theorem 7.5 (i)

Throughout, we assume
∫
Ω g(x) dx < 0 and g changes sign in Ω.

(a) First, we investigate the local stability of the equilibria p ≡ 1 and p ≡ 0.

Lemma 7.14. The equilibrium p ≡ 1 is unstable for every λ > 0.

Proof. The linearization of the right-hand side of (7.52a) evaluated at p ≡ 1 is ∆−λg(x).
Therefore, p ≡ 1 is asymptotically stable (in the Lyapunov sense) if the smallest eigenvalue
σ1 of

−∆ψ + λg(x)ψ = σψ in Ω, (7.71a)
∂ψ

∂ν
= 0 on ∂Ω, ψ > 0 in ∂Ω (7.71b)

is positive. It is unstable if σ1 < 0. This smallest eigenvalue exists, is simple, and has an
eigenfunction ψ1 > 0 on Ω̄ (Appendix D). We infer from (7.71)

−∆ψ1

ψ1
+ λg(x) = σ1 (7.72)

and, by integration,

−
∫

Ω

|∇ψ1|2

ψ2
1

dx+ λ
∫

Ω
g dx = |Ω|σ1. (7.73)

Our assumptions imply that σ1 < 0 if λ > 0. �
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Figure 7.8: The eigenvalue σ1(λ).

Now we turn to the more interesting and important stability of the equilibrium p ≡ 0.
We recall that λ1(g) is the principal, i.e., smallest positive, eigenvalue of (7.54). It exists
by Proposition 7.2.

Lemma 7.15. The equilibrium p ≡ 0 is asymptotically stable if 0 < λ < λ1(g) and
unstable if λ > λ1(g).

Proof. The linearization of the right-hand side of (7.52a) evaluated at p ≡ 0 is ∆+λg(x).
Therefore, p ≡ 0 is asymptotically stable if the smallest eigenvalue σ1 of

−∆ϕ− λg(x)ϕ = σϕ in Ω, (7.74a)
∂ϕ

∂ν
= 0 on ∂Ω (7.74b)

is positive. This smallest eigenvalue exists, is simple, and has an eigenfunction ϕ1 > 0 on
Ω̄ (Appendix D).

We claim that

σ1


> 0 if 0 < λ < λ1(g),
= 0 if λ = λ1(g),
< 0 if λ > λ1(g).

(7.75)

Obviously, this claim establishes the lemma.
Let us consider σ1 as a function of λ. Because σ1(0) = σ1(λ1(g)) = 0, (7.75) is an

immediate consequence of Lemma 7.16 below. �

Lemma 7.16. If g is a nonconstant function, then σ1(λ) is strictly concave downward.
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Proof. By the variational characterization of σ1(λ) (Appendix D, Theorem D.9), we obtain
for any pair λ , λ̄

σ1
(

1
2(λ+ λ̄)

)
= inf
{ψ∈H1,

∫
Ω ψ

2=1}

∫
Ω

[
|∇ψ(x)|2 − 1

2(λ+ λ̄)g(x)ψ(x)2
]
dx

= inf
{ψ∈H1,

∫
Ω ψ

2=1}

[1
2

∫
Ω

(|∇ψ|2 − λgψ2) dx+ 1
2

∫
Ω

(|∇ψ|2 − λ̄gψ2) dx
]

>
1
2 inf
{ψ∈H1,

∫
Ω ψ

2=1}

∫
Ω

(|∇ψ|2 − λgψ2) dx+ 1
2 inf
{ψ∈H1,

∫
Ω ψ

2=1}

∫
Ω

(|∇ψ|2 − λ̄gψ2) dx

= 1
2[σ1(λ) + σ1(λ̄)],

where the inequality is strict because the eigenfunctions of σ1(λ) and σ1(λ̄) are linearly
independent (since g is not constant). �

(b) Now we establish existence of a nontrivial equilibrium (the cline). We apply the
supersolution-subsolution method to show that if λ > λ1(g), then (7.52) has at least one
nontrivial equilibrium p̂, i.e., p̂ satisfies 0 < p̂ < 1 in Ω̄.

To establish a subsolution for given λ > λ1(g), let ϕ1 denote the eigenfunction of the
smallest eigenvalue σ1 of (7.74) that is uniquely determined by maxΩ̄ ϕ1 = 1. Set p = εϕ1,
where ε > 0 is to be determined. Hence,

∆p+ λgp(1− p) = ∆(εϕ1) + λgεϕ1 − λgε2ϕ2
1

= −σ1εϕ1 − λgε2ϕ2
1

= (−σ1 − ελgϕ1)εϕ1 > 0, (7.76)

where the inequality holds if 0 < ε < −σ1(λ)/(λ‖g‖∞) because σ1(λ) < 0 if λ > λ1(g).
To establish a supersolution, let ψ1 denote the eigenfunction of the smallest eigenvalue

σ1 of (7.71) such that maxΩ̄ ψ1 = 1. Set p = 1− εψ1. As above, one shows easily that

∆p+ λgp(1− p) = εψ1(σ1 − ελgψ1) < 0, (7.77)

where the inequality holds if 0 < ε < −σ1/(λ‖g‖∞) because σ1 < 0 for every λ > 0.
By the supersolution and subsolution method (e.g., Cantrell and Cosner 2003), for any

λ > λ1(g), the problem (7.52) has at least one equilibrium p̂ satisfying p < p̂ < p in Ω.
(c) Next, we show uniqueness of the nontrivial equilibrium and asymptotic stability.

A main ingredient is
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Lemma 7.17. Any equilibrium p∗ of (7.52) satisfying 0 < p∗ < 1 is asymptotically stable;
in particular, it is nondegenerate and isolated.

Proof. The linearized stability of p∗ is determined by the smallest eigenvalue (denoted as
σ1) of

−∆ψ − λg(1− 2p∗)ψ = σψ in Ω, ∂ψ

∂ν
= 0 on ∂Ω. (7.78)

Let ψ1 > 0 denote an eigenfunction of σ1, i.e.,

∆ψ1 + λg(1− 2p∗)ψ1 = −σ1ψ1. (7.79)

Multiplying (7.79) by f(p∗) = p∗(1 − p∗) and integrating (using Green’s identity and
∂ψ1
∂ν

= 0), we find

− σ1

∫
Ω
p∗(1− p∗)ψ1 dx =

∫
Ω
p∗(1− p∗)∆ψ1 dx+ λ

∫
Ω
p∗(1− p∗)g(1− 2p∗)ψ1 dx

= −
∫

Ω
∇(p∗(1− p∗)) · ∇ψ1 dx+ λ

∫
Ω
gp∗(1− p∗)(1− 2p∗)ψ1 dx

= −
∫

Ω
(1− 2p∗)∇(p∗) · ∇ψ1 dx+ λ

∫
Ω
gp∗(1− p∗)(1− 2p∗)ψ1 dx. (7.80)

Recalling (7.52a), i.e., ∆p∗+λg(x)p∗(1−p∗) = 0, multiplying the equation by (1−2p∗)ψ1

and integrating, we obtain after a similar calculation

2
∫

Ω
ψ1 |∇p∗|2 dx−

∫
Ω

(1−2p∗)∇(p∗) ·∇ψ1 dx+λ
∫

Ω
gp∗(1−p∗)(1−2p∗)ψ1 dx = 0. (7.81)

From (7.80) and (7.81) we infer

σ1

∫
Ω
p∗(1− p∗)ψ1 dx = 2

∫
Ω
ψ1 |∇p∗|2 dx > 0, (7.82)

where the inequality is strict because ψ1 > 0 in Ω and p∗ is not constant. Hence, σ1 > 0
and the lemma is proved. �

This lemma settles not only asymptotic stability of any equilibrium p∗ satisfying 0 <
p∗ < 1, but also uniqueness as we show now. Because both trivial equilibria p ≡ 0 and
p ≡ 1 are isolated, the construction of the supersolution p and subsolution p implies for
sufficiently small ε that all nontrivial equilibria must lie between p and p. It is well known
that the total (Leray-Schauder) degree (e.g., O’Regan et al., 2006) of nontrivial equilibria
between a supersolution and a subsolution is equal to one. Hence, the total degree of
all nontrivial equilibria is equal to one. By Lemma 7.17, each nontrivial equilibrium is
linearly stable, so it must be isolated and have Leray-Schauder degree one. Therefore,
(7.52) has at most one nontrivial equilibrium.
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Figure 7.9: Bifurcation diagram for the model (7.85) with no dominance.

(d) For the proof of global convergence, we refer to Henry (1981) or Lou and Nagylaki
(2002). For the Laplace operator global convergence follows from the fact that (7.52) is a
gradient system with ‘potential’

V (u) =
∫

Ω

[
∇u · ∇u− λg(u2 − 2

3u
3)
]
dx. (7.83)

Indeed,

dV

dt
(u) =

∫
Ω

[
2∇u · ∇ut − λg(2uut − 2u2ut)

]
dx

= 2
∫

Ω
[−∆u− λgu(1− u)]ut dx

= 2
∫

Ω
−u2

t dx ≤ 0,

where the second equality uses Green’s identity and the last follows from (7.52a). From
the theory of gradient systems together with compactness arguments, one can conclude
that the ω-limit set of any solution contains only equilibria. Because there exists only one
asymptotically stable equilibrium, global convergence follows.

The bifurcation diagram in Figure 7.9 illustrates the equilibrium and stability proper-
ties formulated in statement (i) of Theorem 7.5.

7.4.5 Proof of Theorem 7.5 (ii), (iii)

The proofs of statements (ii) and (iii) are very similar to the proof of (i). Statements (i)
and (iii) are symmetric upon interchanging the roles of the equilibria p ≡ 0 and p ≡ 1.
The key observation in the proof of (ii) is that if

∫
Ω g dx = 0, then σ(λ) ≤ 0 for every λ

and equality holds only if λ = 0; see Fig. 7.8. The shapes of σ1(λ) displayed in Fig. 7.8
follow from Lemma 7.16 and the following calculation.
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Let ϕ′ = ∂ϕ
∂λ

(x, λ). Then differentiation of (7.74) with respect to λ yields

−∆ϕ′ − λg(x)ϕ′ − g(x)ϕ = σ′1(λ)ϕ+ σ1(λ)ϕ′ in Ω,
∂ϕ′

∂ν
= 0 on ∂Ω.

Evaluation at λ = 0 produces

−∆ϕ′
∣∣∣∣
λ=0
−g(x) = σ′1(0) in Ω,

∂ϕ′

∂ν
= 0 on ∂Ω

because σ1(0) = 0 and the corresponding eigenfunction can be chosen ϕ ≡ 1. Finally,
integration yields

σ′1(0) = − 1
|Ω|

∫
Ω
g(x) dx. (7.84)

7.5 Clines in a finite domain with dominance: Results and open
problems

In this section, we review the most important results about the existence of clines in the
presence of dominance. We will also mention some open problems. Our exposition is
largely based on the review of Lou et al. (2013). We focus on the following PDE:

∂p

∂t
= ∆p+ λg(x)f(p) in Ω× (0,∞), (7.85a)

∂p

∂ν
= 0 on ∂Ω× (0,∞), (7.85b)

0 ≤ p(x, 0) ≤ 1, p(x, 0) . 0, p(x, 0) . 1 in Ω, (7.85c)

where f ∈ C1([0, 1]), f(0) = f(1) = 0 and f > 0 in (0, 1). The most important example
is

f(p) = p(1− p)(1 + h− 2hp), (7.86)

where −1 ≤ h ≤ 1, i.e., dominance is intermediate; cf. eqs. (7.4) – (7.8). Throughout we
suppose that g changes sign.

First, we contrast the case of no dominance with that of complete dominance.

7.5.1 Complete dominance

We assume complete dominance of A2, or recessivity of A1, i.e.,

f(p) = 2p2(1− p); (7.87)
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cf. (7.6). This case turns out to be quite different from that of no dominance. In fact,
this is already obvious from the model with two demes.

One reason why the model with complete dominance is more complicated than with
no dominance is that the equilibrium p ≡ 0 is degenerate. Indeed, the linearization of the
right-hand side of (7.85a) is ∆ + 2λgp(2 − 3p) which simplifies to ∆ at p ≡ 0. Hence, 0
is an eigenvalue. Nevertheless, the following result can be proved:

Theorem 7.18 (Lou et al. 2010).
(i) If

∫
Ω g dx ≥ 0, then p ≡ 0 is unstable for every λ > 0.

(ii) If
∫

Ω g dx < 0, then p ≡ 0 is stable for every λ > 0.

Obviously, statement (ii) differs markedly from Lemma 7.15 for no dominance.
The equilibrium p ≡ 1 is not degenerate because f ′(1) = −2. Therefore, its stability

properties follow from Sections 7.4.4 and 7.4.5. It is unstable for every λ > 0 if
∫

Ω g dx ≤ 0.
If
∫

Ω g dx > 0, there exists λ∗ > 0 such that p ≡ 1 is stable if 0 < λ < λ∗ and unstable if
λ > λ∗ (cf. Theorem 7.5).

In addition, the following results have been proved:

Theorem 7.19 (Lou et al. 2010, Nakashima et al. 2010).
(i) If

∫
Ω g dx , 0, then for sufficiently small λ > 0, (7.85) has no nontrivial equilibrium.

(ii) If
∫

Ω g dx < 0, then for sufficiently large λ, (7.85) has at least two nontrivial
equilibria, one stable and one unstable.

(iii) If
∫

Ω g dx > 0, then for sufficiently large λ, (7.85) has a stable nontrivial equilib-
rium.

Theorem 7.20 (Nakashima et al. 2010). Suppose that
∫

Ω g dx = 0.
(i) For every λ > 0, (7.85) has at least one stable nontrivial equilibrium p∗.
(ii) As λ → 0+, any sequence of nontrivial equilibria of (7.85) has a subsequence

converging to the constant function 2/3 in C2(Ω̄).
(iii) As λ→∞, p∗ → 1 uniformly on any compact subset of Ω+\∂Ω+ ∩ Ω, and p∗ → 0

uniformly on any compact subset of Ω− \ ∂Ω− ∩ Ω, where Ω+ = {x ∈ Ω : g(x) > 0} and
Ω− = {x ∈ Ω : g(x) < 0}.

The main results are illustrated in Figure 7.10. They should be compared with the
bifurcation diagram for the case of no dominance (Figure 7.9).

Analogs of the above results, in fact considerably stronger results, were derived by
Nagylaki (2009) for the continuous-time two-deme model. He proved that the number of
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Figure 7.10: Bifurcation diagrams for the model (7.85) with complete dominance.

equilibria is precisely one or two in the above theorems instead of at least one or two. If
there is only a single stable equilibrium, it is globally asymptotically stable. Therefore,
Figure 7.10 illustrates his results precisely. Whether this is also true for the PDE model
(i.e., if the number of equilibria is as in this figure) is an open problem. As briefly
discussed in Lou et al. (2013), the structure of the nontrivial equilibria in the PDE model
(7.85) with complete dominance may be more complicated than in the ODE case with
two demes.

7.5.2 Partial dominance

Henry (1981) showed for f ′′(p) ≤ 0 that (7.85) has at most one nontrivial equilibrium,
which, if it exists, is globally asymptotically stable among initial data that are nonnegative
and not identically zero. This holds independently of the sign of

∫
Ω g dx. If f(p) is given

by (7.86), then f ′′(p) ≤ 0 if and only if −1
3 ≤ h ≤ 1

3 . Therefore, Theorem 7.5 (with an
appropriate λ̃1 > 0 instead of λ1(g)) holds not only if h = 0 but also if h is in this interval.

It has been conjectured (Lou and Nagylaki 2002, Nagylaki and Lou 2008) that for the
case

∫
Ω g dx < 0, the condition f ′′(p) ≤ 0 can be generalized to the condition that f(p)/p
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Figure 7.11: Graphs of f(p)/p for the following values of h: −1, −2
3 , −1

3 , 0., 1
2 , 1 (from

bottom to top at p = 0).

is monotone decreasing in (0, 1). If f(p) is as in (7.86), this would generalize statement (a)
of Theorem 7.5 to −1

3 ≤ h ≤ 1. By symmetry, the statement (c) can then be generalized
to −1 ≤ h ≤ 1

3 . Concerning part (b), i.e., the case
∫

Ω g dx = 0, it has been conjectured
that a unique nontrivial equilibrium, which is globally asymptotically stable, exists for
every f such that f(0) = f(1) = 0, f > 0 in (0, 1), and f has unique critical point (hence
a maximum) in (0, 1).

We motivate the above conjecture that the equilibrium structure is determined by
monotonicity of f(p)/p by a brief analysis of the continuous-time continent-island model
(consult Nagylaki 1975 for details). In this model it is assumed that there is one-way
migration from one deme (the continent) to another deme (the island) at backward rate
m. In addition, it is assumed that on the continent allele A2 is fixed, and on the island
allele A1 is advantageous. We assume that on the island the fitnesses of the genotypes
A1A1, A1A2, and A2A2 are s, hs, and −s, respectively; cf. Sections 4 and 5. If the
frequency of A1 on the island is denoted by p, its evolution is described by the ODE

ṗ = −mp+ sf(p), (7.88)

where f(p) is given by (7.86). The equilibria are given by the solutions of
m

s
= f(p)

p
= (1− p)(1 + h− 2hp). (7.89)

Obviously, there exists no solution in (0, 1) if m/s > µ1 = max0≤p≤1
f(p)
p

. In this case,
p = 0 is globally asymptotically stable. If m/s < µ1, there exist one or two solutions. If
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f(p)/p is strictly monotone decreasing on [0, 1], which is the case if and only if−1
3 ≤ h ≤ 1,

then there exists a unique solution for every m/s < µ1. If f(p)/p is not strictly monotone
decreasing, there exist two equilibria if µ2 < m/s < µ1, where µ2 = limp→0

f(p)
p

= 1 + h,
and one equilibrium if 0 ≤ m/s ≤ µ2 (cf. Figure 7.11). If two nontrivial equilibria exist,
the one with the lower equilibrium frequency of p is unstable, the other is asymptotically
stable, as is p = 0. If only one nontrivial equilibrium exists, it is globally asymptotically
stable.

This model has been generalized by assuming discrete time (Nagylaki 1992) and by
admitting evolution on the continent (Nagylaki 2009). The analysis of these discrete-time
models is much more complicated. Also the results differ slightly because the critical
value for h below which a pair of nontrivial equilibria may exist depends on m and is
between −1 and −1

3 .

7.6 Further directions

Several generalizations and variants of the cline models treated above have been investi-
gated. Here, we give a very brief guide to the most relevant literature.

For a bounded domain Ω ⊂ Rn, a considerably body of theory has been developed
for models with arbitrary migration, i.e., elliptic operators, and for multiple alleles (Lou
and Nagylaki 2002, 2004, 2006; Nagylaki and Lou 2008). Most of this work is devoted
to either necessary or sufficient conditions for the loss of one or several alleles, or for the
maintenance of a polymorphism. However, already for three alleles and in the absence of
dominance the dynamics may become rather complex (Lou and Nagylaki 2006).

Interesting and important problems occur if migration varies within the spatial domain,
for instance because of a barrier, if migration is asymmetric, or if population density
varies. Such models have been studied by Slatkin (1973), Nagylaki (1976, 1978, 1996),
ten Eikelder (1979), Fife and Peletier (1981), Pauwelussen and Peletier (1981), Piálek and
Barton (1997).

In the classical treatments of clines, the domain is assumed to be (−∞,∞). It is in
this case that explicit solutions can be derived (Section 7.3). The mathematical theory,
however, has been further developed under the assumption of a bounded domain (Section
7.4). Despite additional technical complications, also for an unbounded domain important
results have been proved (e.g., ten Eikelder 1979, Fife and Peletier 1981, Pauwelussen and
Peletier 1981). An important special case is that of an environmental pocket, in which
one allele is favored in a bounded interval whereas the alternative allele is favored in the
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unbounded complement. This situation can be efficiently modeled on the domain [0,∞)
(or its higher dimensional generalizations) and leads to semi-infinite clines (Nagylaki 1975,
Tertikas 1988, Brown and Tertikas 1991). For environments such as a step environment,
these models admit solutions that are almost as explicit as for the step environment on
(−∞,∞). They share interesting properties with models of continent-island type.

In a recent series of papers, Nagylaki and collaborators extended the diffusion model,
which approximates short-distance migration, to models that include short- and long-
distance migration. The latter is approximated by assuming that a fraction of the pop-
ulation reproduces panmicticly. It gives rise to an integral term so that the resulting
model becomes an integro-PDE model. Numerous aspects of the classical theory have
been extended to this setting, and qualitatively new results and properties have been
found. However, many challenging open problems remain (Nagylaki 2012a,b; Lou et al.
2013; Nagylaki and Zeng 2014; Nagylaki et al. 2014; Su and Nagylaki 2015; and references
therein).
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A Appendix: Perron–Frobenius theory

In this appendix we summarize some important results from the spectral theory of non-
negative matrices. These were discovered by Perron and Frobenius around 1910 and are
useful tools in proving existence, uniqueness, positivity, and stability of equilibrium so-
lutions in many discrete-time or continuous-time models. For a more complete account
of the spectral theory of nonnegative matrices, including proofs, the reader is referred to
Gantmacher (1959), Schaefer (1974, Chapter I), or Seneta (1981). The latter reference
contains, in particular, a detailed treatment of countably infinite matrices.

A k × k matrix A = (aij) is called nonnegative, A ≥ 0, if aij ≥ 0 for every i, j. It is
called positive, A > 0, if aij > 0 for every i, j. Similarly, a vector x = (x1, . . . , xk)> is said
to be nonnegative (positive) if xi ≥ 0 (xi > 0) for every i.

The spectral radius r = r(A) of an arbitrary matrix A is the radius of the smallest circle
in the complex plane that contains all eigenvalues of A, i.e., |λ| ≤ r for all eigenvalues
λ of A. It can be shown that r = limn‖An‖1/n, where ‖A‖ is an arbitrary norm of the
matrix A, e.g., ‖A‖ = maxi

∑k
j=1 |aij|. (Throughout this appendix, limn denotes the limit

for n → ∞.) Since the sequence ‖An‖1/n is monotone decreasing, r ≤ ‖An‖1/n holds for
every n ≥ 1. Nonnegative matrices have the following important property:

Theorem A.1. Let A ≥ 0. Then the spectral radius r of A is an eigenvalue and there is
at least one nonnegative eigenvector x ≥ 0 (x , 0), i.e., Ax = rx. In addition, if A has
an eigenvalue λ with an associated positive eigenvector, then λ = r.

We use the notation An = (a(n)
ij ) for nth powers. A nonnegative matrix A is called

irreducible if for every pair of indices (i, j) an integer n = n(i, j) ≥ 1 exists such that
a

(n)
ij > 0. Now we state the Theorem of Perron–Frobenius.

Theorem A.2. If A is irreducible, then the following hold:

1. The spectral radius r is positive and a simple root of the characteristic equation.

2. To r there corresponds a positive right eigenvector x > 0 such that Ax = rx, and x

is unique except for multiplication by a positive constant.

3. No other eigenvalue of A is associated with a nonnegative eigenvector.

This theorem is often sufficient to prove our existence, uniqueness, and stability re-
sults in continuous time. For models in discrete time, usually a stronger condition than
irreducibility is needed.
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A nonnegative matrix A is called primitive if an integer n ≥ 1 exists such that An > 0.
Obviously, every positive matrix is primitive, and every primitive matrix is irreducible.

Theorem A.3. For an irreducible matrix A with spectral radius r, the following assertions
are equivalent:

1. A is primitive.

2. |λ| < r for all eigenvalues λ , r of A.

3. limn(r−1A)n exists.

Concerning property 3, it is readily shown that for an arbitrary matrix A, limn An = 0
is equivalent to r(A) < 1, and that r(A) > 1 always implies that limn An does not exist.
If r(A) = 1, then limn An exists if and only if r(A) = 1 is a simple root of the minimal
polynomial and all other eigenvalues satisfy |λ| < 1.

A stronger result than statement 3 of Theorem A.3 is the following:

Theorem A.4. Let A be primitive with spectral radius r and corresponding eigenvector
x > 0. Then there exists a decomposition A = rP + B, where P is a projection on the
eigenspace spanned by x (i.e., for every y ∈ Rk there is a constant c such that Py = cx,
and Px = x), PB = BP = 0, and r(B) < 1. Consequently,

limn(r−1A)ny = cx + limn(r−1B)ny = cx (A.1)

holds for all y ∈ Rk.

Finally, the exponential
eA =

∞∑
n=0

1
n!A

n (A.2)

of an irreducible matrix A is always positive and, hence, primitive. It follows that

lim
t→∞

e−rteAty = cx (A.3)

for some constant c depending on y.

68



B Appendix: Maximum principles

Maximum principles are very important tools in the analysis of PDEs. For motivation, we
start with the simplest case of a maximum principle. Our exposition follows Protter and
Weinberger (1984), the standard work on the topic. For a concise summary, see Sweers
(2000).

A function u(x) that is continuous on the closed interval [a, b] takes on its maximum at
a point in this interval. If u(x) has a continuous second derivative, and if u has a relative
maximum at some point c between a and b, then

u′(c) = 0 and u′′(c) ≤ 0. (B.1)

Suppose that in an open interval (a, b), u satisfies a differential inequality of the form

L(u) ≡ u′′ + g(x)u′ > 0, (B.2)

where g(x) is any bounded function. Then it is obvious that (B.1) cannot be satisfied at
any c ∈ (a, b). Hence, if (B.2) holds, the maximum of u cannot be assumed in (a, b); it
can be assumed only at the boundary, i.e., at a or b.

Now suppose that u satisfies

L(u) ≡ u′′ + g(x)u′ ≥ 0 (B.3)

on (a, b). Obviously, this admits the solution u ≡ const. For such a solution, the maximum
is attained at every point. One can prove that this exception is the only possible:

Theorem B.1 (One dimensional maximum principle; Protter and Weinberger 1984,
Chap. 1.1, Theorems 1 and 2). Suppose u = u(x) satisfies (B.3) for every x ∈ (a, b),
with g(x) a bounded function. If u(x) ≤ M in (a, b) and if the maximum M of u is
attained at an interior point c of (a, b), then u ≡M .

In addition, if the maximum is attained at a and g is bounded below at x = a, then
u′(a) < 0; if the maximum is attained at b and g is bounded above at x = b, then u′(b) > 0.

The second statement is easy to show if L(u) = 0 holds. Assume u(a) = M . Then
u′(a) ≤ 0 must hold because u(x) ≤ M . If u′(a) = 0, the uniqueness of solutions implies
u(x) ≡M , a contradiction to u(x) < M if a < x < b.

Next we treat elliptic equations. Let Ω denote an open bounded domain (connected)
in Rn. The second-order differential operator L defined by

L(u) ≡
n∑

i,j=1
aij(x) ∂2u

∂xi∂xj
+

n∑
i=1

bi(x) ∂u
∂xi

, (B.4)
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where aij ∈ L∞loc(Ω) and bi ∈ L∞(Ω), is called uniformly elliptic on Ω if for every x ∈ Ω
there are numbers A > a > 0 such that

a |ξ|2 ≤
n∑

i,j=1
aij(x)ξiξj ≤ A |ξ|2 for all ξ ∈ Rn and x ∈ Ω. (B.5)

The operator L is strictly elliptic if the first inequality holds. If the aij are bounded on
Ω̄, then strictly elliptic implies uniformly elliptic.

The following is called the weak maximum principle for elliptic operators.

Theorem B.2. Suppose L is strictly elliptic and h ≤ 0 is in L∞(Ω). If u ∈ C2(Ω)∩C(Ω̄)
satisfies

(L+ h)(u) ≥ 0 in Ω, (B.6)

then u attains a nonnegative maximum at the boundary Ω̄.

Note that in the above theorem it is not excluded that, in addition to the boundary,
the maximum is attained in the interior of Ω.

The following is called the strong maximum principle for elliptic operators.

Theorem B.3. Suppose L is strictly elliptic and h ≤ 0 is in L∞(Ω). If u ∈ C2(Ω)∩C(Ω̄)
satisfies

(L+ h)(u) ≥ 0 in Ω, (B.7)

then either u ≡ supΩ u or u does not attain a nonnegative maximum in Ω.

Concerning a maximum on the boundary, the following result (due to E. Hopf) holds:

Theorem B.4. Suppose that for x0 ∈ ∂Ω there is a ball B ⊂ Ω with x0 ∈ ∂B. If the
assumptions of Theorem B.3 are satisfied, maxΩ̄(x) = u(x0), and u ∈ C1(Ω ∪ x0), then
either u ≡ u(x0) or ∂u

∂ν
(x0) = ν · ∇u(x0) < 0.

The so-called interior-sphere assumption in this theorem is satisfied if the boundary of
Ω is C2 (as in Section 7.4.2).

Without a sign assumption on h, the following simple corollary holds, which requires
a stronger assumption on u.

Theorem B.5. Suppose L is strictly elliptic and h ∈ L∞(Ω) (no sign assumption). If
u ∈ C2(Ω) ∩ C(Ω̄) satisfies

(L+ h)(u) ≥ 0 in Ω and u ≤ 0 in Ω̄, (B.8)
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then either u < 0 in Ω or u ≡ 0.
Moreover, if the additional conditions of Theorem B.4 are satisfied with u < u(x0) = 0

in Ω, then ∂u
∂ν

(x0) < 0 for every direction ν pointing into an interior sphere.

The first statement is a simple consequence of Theorem B.3. Write h(x) = h+(x) −
h−(x), where h+ and h− are the positive and negative part, respectively, of h. Then
−h+ ≤ 0 and from u ≤ 0 it follows that (L− h+)u ≥ −h+u ≥ 0. The conclusion for the
derivative follows from Theorem B.4.

Finally, we turn to a simple version of the maximum principle for one-dimensional
parabolic PDEs (Chap. 3 in Protter and Weinberger 1984). We consider the uniformly
parabolic operator

L(u) ≡ α(x, t)uxx + β(x, t)ux − ut (B.9)

on the domain D = (a, b) × (0,∞), where uniformly parabolic means α(x, t) ≥ α0 > 0
and β(x, t) ≥ β0 > 0 on D.

Theorem B.6. Suppose u = u(x) satisfies

(L+ h)(u) ≥ 0, (B.10)

where h is a given function of (x, t) that satisfies h ≤ 0 in a rectangular region E =
{a < x < b, 0 < t ≤ T} ⊂ D for some T > 0. If u ≤M in E, M ≥ 0, and if u attains the
maximum M at an interior point (x1, t1) of E, then u ≡M for every (x, t) ∈ E such that
t ≤ t1. If a nonnegative maximum occurs at a boundary point (a or b), then ∂u/∂x > 0
at this point.

This is a special case of Theorem 4 in Chapter 3.2 of Protter and Weinberger (1984), in
which much more general regions E are treated (then the conclusion needs to be modified).

For solutions of (L+h)(u) ≤ 0 there is an associated minimum principle if the minimum
is nonpositive. The result follows by applying the above theorem to −u.
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C Appendix: Basics from PDE theory

Sobolev spaces are defined as follows. Let k be a positive integer, 1 ≤ p ≤ ∞, and
α = (α1, . . . , αn) a multiindex. For a locally integrable function f on Ω ⊂ Rn, let

D(α)f = ∂|α|f

∂xα1
1 . . . ∂xαnn

(C.1)

denote the partial derivative of order α (in the distribution sense). Then the Sobolev
space W k,p is defined as

W k,p(Ω) = {u ∈ Lp(Ω) : D(α)u ∈ Lp(Ω) for every α with |α| ≤ k}. (C.2)

For p <∞, the norm can be defined as

‖u‖Wk,p(Ω) =
 ∑
|α|≤k
‖D(α)u‖pLp(Ω)

1/p

. (C.3)

If p = 2, these are Hilbert spaces and W k,2 is often denoted by Hk. We note that functions
in W k,p can be approximated by smooth functions.

A subscript 0, such as H1
0 , indicates that the functions in this space vanish at the

boundary of Ω.
The differential operator L1 defined by L1u = −∆u for u ∈ D(L1) = {u ∈ H2(Ω) :

∂u/∂ν = 0 on ∂Ω} is a densely defined self-adjoint operator on L2(Ω) whose spectrum
consists only of the eigenvalues 0 = α1 < α2 < . . . (see Appendix D for more general
results).
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D Appendix: Spectrum of elliptic operators of sec-
ond order

(Compiled by Dr. Linlin Su, South University of Science and Technology of China)

D.1 Principal eigenvalue

We consider eigenvalue problem of the type

Lϕ+ λϕ = 0 in Ω , (D.1a)

Bϕ = 0 on ∂Ω , (D.1b)

where Ω is a smoothly bounded domain (open, connected) in Rn.
Here

Lu =
n∑

i,j=1
aij(x) ∂2u

∂xixj
+

n∑
i=1

bi(x) ∂u
∂xi

+ c(x)u , (D.2)

where aij, bi, and c are sufficiently smooth, and there exist constants µ1, µ2 > 0 such that

aij(x) = aji(x) ,
n∑

i,j=1
aij(x)ξiξj ≥ µ1

n∑
i=1

ξ2
i ∀ x ∈ Ω̄ , ξ = (ξi) ∈ Rn , (D.3a)

c(x) ≤ µ2 ∀ x ∈ Ω̄ . (D.3b)

We consider B for two alternative forms

Bu = u (Dirichlet b.c.) (D.4a)

and
Bu = ∂u

∂ν
+ b(x)u (Robin b.c., or Neumann if b = 0) , (D.4b)

where ν is the unit outer normal to ∂Ω and b is sufficiently smooth and b(x) ≥ 0 on ∂Ω .

Theorem D.1. The eigenvalue problem (D.1) – (D.4) has a unique (up to a constant
multiple) positive eigenfunction ϕ1 and the corresponding eigenvalue λ1 is real and simple.
All other eigenvalues λ have real part strictly greater than λ1. Furthermore, in case of
(D.4b), ϕ1 > 0 holds on ∂Ω.

Remark D.2. We call (λ1, ϕ1) the principal eigenvalue and eigenfunction.

73



Remark D.3. Theorem 1.1 follows from the strong maximum principle [79] and the
Krein-Rutman Theorem [46]. Some details of the proof can be found in, e.g., [81, pp.
20-23].

Remark D.4. Theorem D.1 still holds if the boundary operator B has the following more
general form than (D.4b)

Bu = (V∇u) · ν + b(x)u , (D.5)

where V = (Vij(x)) is a n by n symmetric positive definite matrix for every x ∈ ∂Ω and
b(x) is as above. Note that under (D.5) the strong maximum principle holds, which is
essential for the conclusions in Theorem D.1.

D.2 Spectral theory for L in divergence form

In this section we study L in divergence form, which is a special case of (D.2).

Lu :=
n∑

i,j=1

∂

∂xi

[
aij(x) ∂u

∂xj

]
+ c(x)u , (D.6)

Bu = u (Dirichlet b.c.) , or (D.7a)

Bu = (A∇u) · ν + b(x)u (Neumann co-normal type if b = 0 or mixed b.c.) , (D.7b)

where A = (aij(x)) and aij, bi, b, and c are as before. Then the operators (L,B) induce
a self-adjoint operator on H1

0 (Ω) in case (D.7a) and on H1(Ω) in case (D.7b). Hence, it
follows from Hilbert space theory for self-adjoint operators that

Theorem D.5. There is an orthogonal basis for L2(Ω) consisting of eigenfunctions for
(L,B) as in (D.6) – (D.7) which are C∞ on Ω̄. The eigenvalues are all real and bounded
below and accumulate only at +∞:

λ1 < λ2 ≤ λ3 ≤ · · · , λk ↗ +∞ . (D.8)

Remark D.6. In (D.8) multiple eigenvalues are repeated according to their multiplicity.
We know in particular that λ1 is simple from Theorem D.1.

Remark D.7. By Theorem D.5 the eigenfunctions ϕi pertaining to the eigenvalues λi
can be chosen to form an orthonormal basis of H1(Ω) (⊂ L2(Ω)). Therefore, if u ∈ H1(Ω)
and u = ∑

i αiϕi, we obtain

〈−Lu, u〉 =
∑
i

λiα
2
i ≥ λ1

∑
i

α2
i = λ1〈u, u〉 , (D.9)
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where 〈u, v〉 =
∫

Ω u(x)v(x) dx denotes the inner product on L2(Ω). In fact, we have the
following variational characterization of the eigenvalues.

In case (D.7a), we define a bi-linear form on H1
0 (Ω)

D1(u, v) =
∫

Ω

 n∑
i,j=1

aij(x) ∂u
∂xi

∂v

∂xj
− c(x)uv

 dx . (D.10)

Theorem D.8. Assume L and B are as in (D.6) and (D.7a), respectively. Then the
variational characterizations of eigenvalues hold

λ1 = min
{
D1(u, u) : u ∈ H1

0 (Ω) ,
∫

Ω
u2 dx = 1

}
; (D.11a)

λk = min
{
D1(u, u) : u ∈ Wk ,

∫
Ω
u2 dx = 1

}
, (D.11b)

where Wk = {u ∈ H1
0 (Ω) :

∫
Ω uϕi dx = 0 for i = 1, . . . , k − 1}.

In case (D.7b), we define a bi-linear form on H1(Ω)

D2(u, v) =
∫

Ω

 n∑
i,j=1

aij(x) ∂u
∂xi

∂v

∂xj
− c(x)uv

 dx+
∫
∂Ω
b(x)uv dS(x) . (D.12)

Theorem D.9. Assume L and B are as in (D.6) and (D.7b), respectively. Then the
variational characterizations of eigenvalues hold

λ1 = min
{
D2(u, u) : u ∈ H1(Ω) ,

∫
Ω
u2 dx = 1

}
; (D.13a)

λk = min
{
D2(u, u) : u ∈ W̃k ,

∫
Ω
u2 dx = 1

}
, (D.13b)

where W̃k = {u ∈ H1(Ω) :
∫
Ω uϕi dx = 0 for i = 1, . . . , k − 1}.

Remark D.10. Theorems D.5 – D.9 can be extracted from Section 7.E in [32], where
the theory is stated in somewhat more general and abstract settings and some special
examples such as for the Laplacian with zero Dirichlet and Neumann boundary conditions
are discussed.

Remark D.11. The Laplacian with zero Dirichlet b.c. is treated in, e.g., [32, Corollary
7.24] and [88, pp. 283-297]. We infer from (D.10) that D1(u, u) =

∫
Ω |∇u|2 dx, and hence

(D.11a) implies λ1 > 0.

Remark D.12. The Laplacian with zero Neumann b.c. is treated in, e.g., [32, Theorem
7.28] and [88, pp. 293-297]. We infer from (D.12) that D2(u, u) =

∫
Ω |∇u|2 dx, and hence

(D.13a) implies λ1 = 0 with ϕ1 ≡ 1 in Ω.
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