

Minerals Definition, Types, and Identification Forensic Applications

Transparent emerald, the green variety of beryl, on calcite matrix

Niocalite (blue) in sovite (calcite + apatite). Oka carbonatite complex. Crossed-polars. Width = 5.4 mm

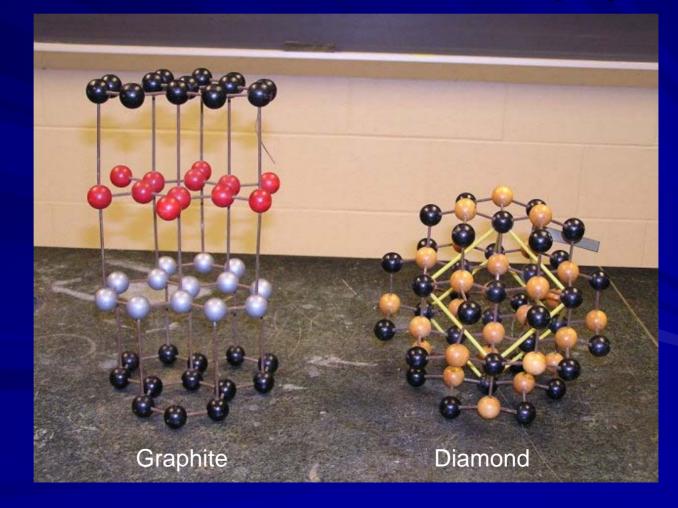
- Building blocks of rocks, soil ,dirt, and mud
- Minerals are everywhere
- Rocks are aggregates of one or more minerals

Copyright @ 2005 Pearson Prentice Hall, Inc.

Mineral Definition

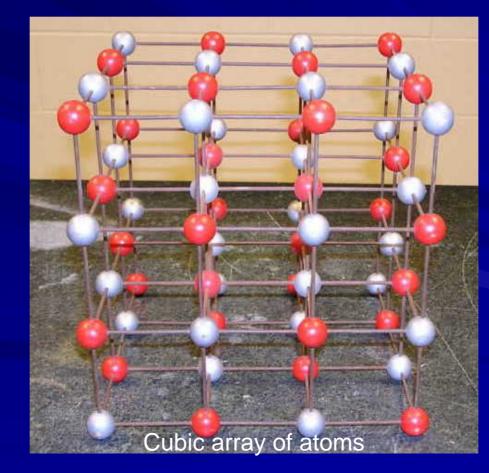
- **1. Naturally Occurring**
- 2. Inorganic
- 3. Crystalline has a definite internal structure, i.e., atoms in the mineral are arranged in a regular way
- 4. Chemical composition fixed or varies within certain limits

Minerals


- Naturally Occurring minerals must be formed naturally - glass, concrete, synthetic diamonds, rubies and emeralds don't count
- Inorganic minerals are not formed by anything that was ever alive. Therefore, materials such as: Ivory, Amber, Coal, Pearls are not minerals!

Minerals

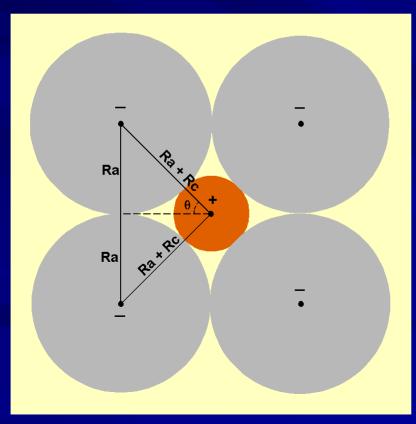
Crystalline - the atoms in minerals have an orderly atomic arrangement giving them a definite structure that controls their properties.

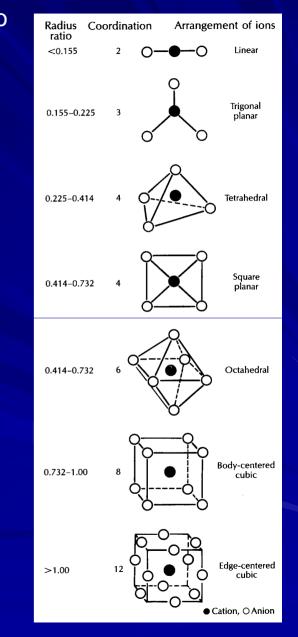


Minerals

Chemistry - Chemical composition is fixed or varies within certain limits. Crystalline compounds with the same structure but different chemistry form different minerals.

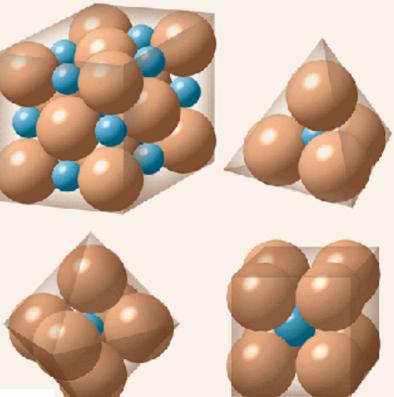
NaCl = Halite




KCl = Sylvite

Structure of Minerals

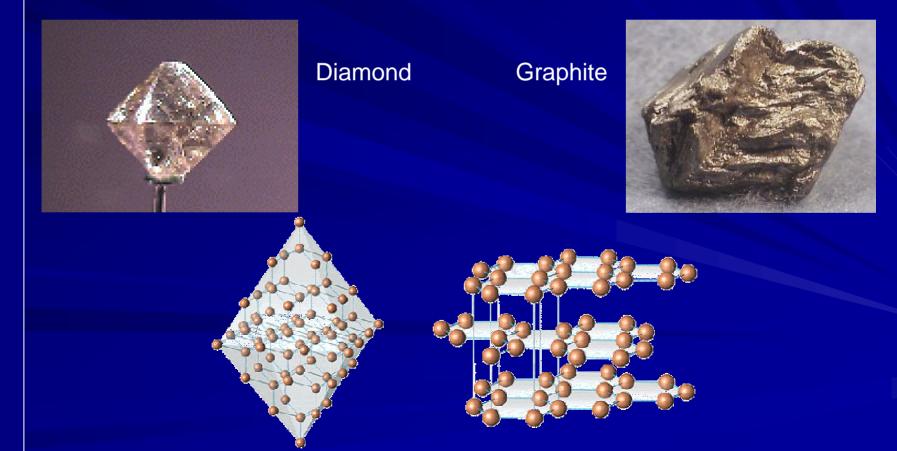
lons are arranged in crystal structures according to their relative sizes. This is referred to as closest packing. We usually look at this from the perspective of the cation and calculate the radius ratio = size cation/size anion. The radius ratio determines the number of anions that can be packed around a particular cation.



Structure of Minerals

<u>Crystal Lattice</u>: the three dimensional molecular structure of a mineral. (Shape of the "unit cell.")

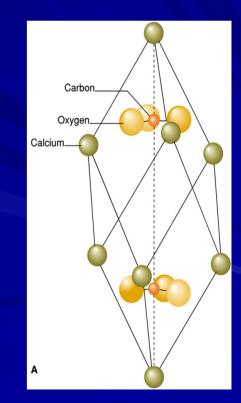
- Various ions make up the mineral.
- Geometry + chemistry!


Coopright Or 1999 Tard Drachic Arts, Inc. All rights reserved.

Structure of minerals

Polymorphs

- Minerals with the same composition but different crystalline structures
- Examples include diamond and graphite
- Phase change one polymorph changing into another


Physical properties of minerals

Crystal Form

- External expression of a mineral's internal structure
- Often interrupted due to competition for space and rapid loss of heat

Crystals are the smallest "bits" of minerals and reflect the geometry of the mineral molecules

Physical properties of minerals Color

- Generally unreliable for mineral identification
- Often highly variable due to slight changes in mineral chemistry
- Exotic colorations of certain minerals produce gemstones
- Some minerals are used as pigments

Quartz (SiO2) exhibits a variety of colors

Physical properties of minerals

Streak Color of a mineral in its powdered form

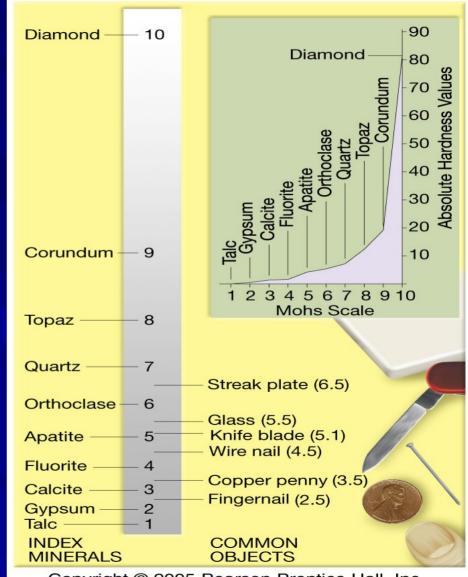
Streak is obtained on an unglazed porcelain plate

Copyright © 2005 Pearson Prentice Hall, Inc.

Physical properties of minerals

Luster

- Appearance of a mineral in reflected light
- Two basic categories
 - Metallic
 - Nonmetallic
- Other descriptive terms include vitreous, silky, or earthy


Galena (PbS) displays metallic luster

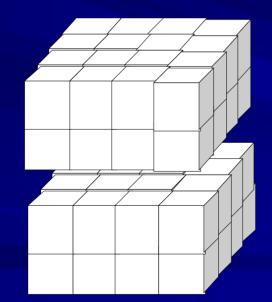
Hardness
The hardness of a mineral is its resistance to scratching.
The standard scale for measuring hardness is Moh's

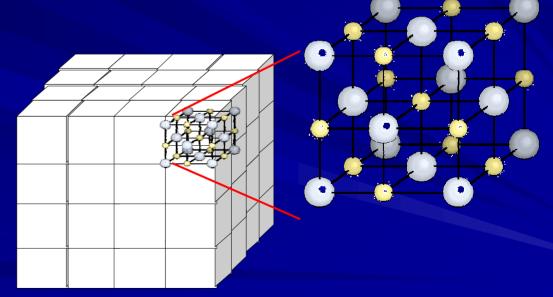
Hardness is mon Hardness scale.

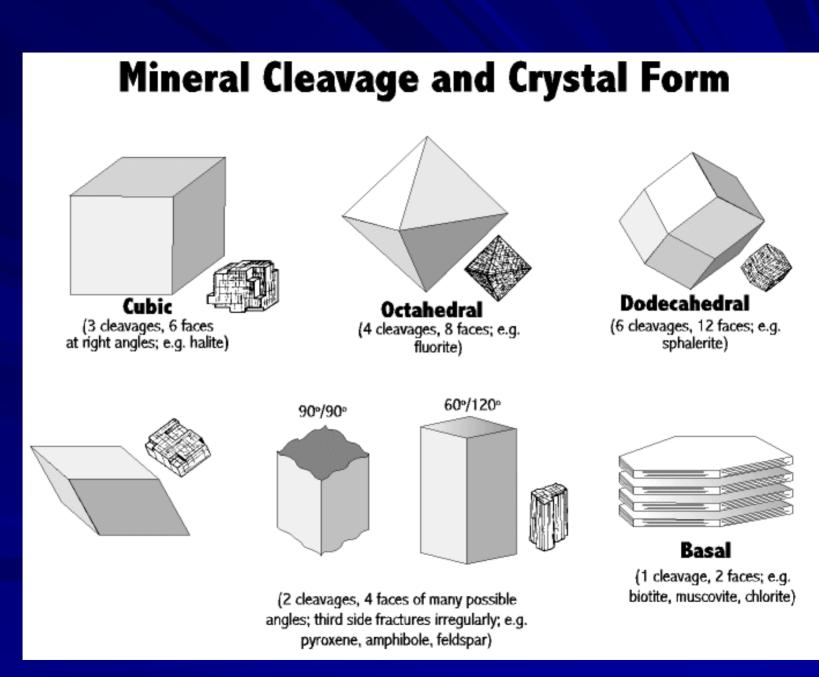
Copyright © 2005 Pearson Prentice Hall, Inc.

Physical properties of minerals Cleavage

- Tendency to break along planes of weak bonding
- Produces flat, shiny surfaces
- Described by resulting geometric shapes
 - Number of planes
 - Angles between adjacent planes


Fluorite, halite, and calcite all exhibit perfect cleavage



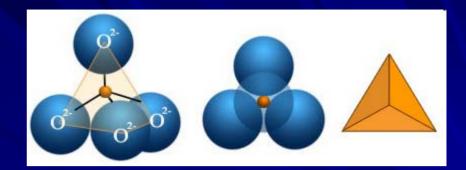

Cleavage

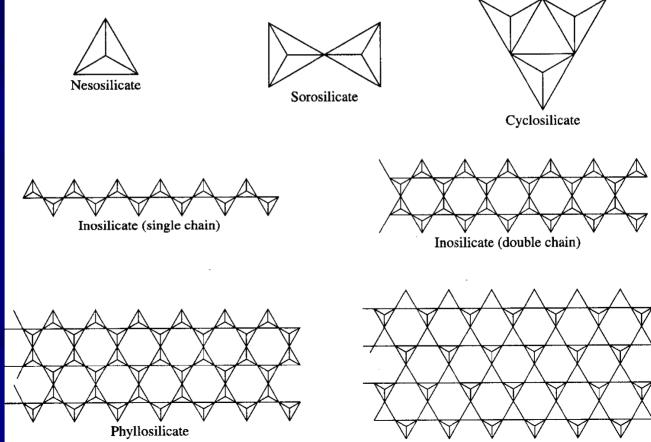
Due to planes of weakness caused by alignment of the common crystal faces

Physical properties of minerals Fracture

- Absence of cleavage when a mineral is broken
 Specific Gravity
- Weight of a mineral / weight of an equal volume of water
- Average value = 2.7

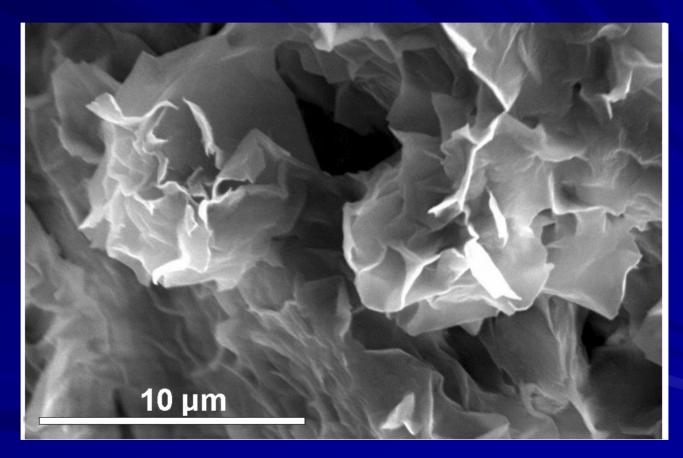
Other properties Magnetism Reaction to hydrochloric acid Malleability Double refraction Taste Smell Elasticity


Department Environmental, Earth, & Atmospheric Sciences


Table 7-1. Mineral classes

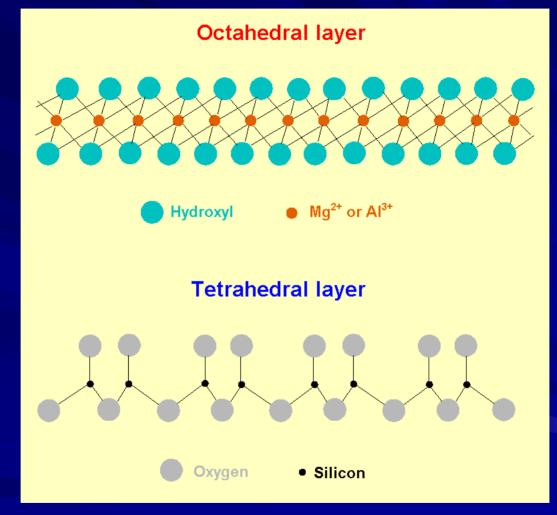
Class	s Chemical characteristics	
Borates	Various elements in combination with boron	Borax [Na ₂ B ₄ O ₇ ·10H ₂ O]
Carbonates	Metals in combination with carbonate (CO_3^{2-})	Calcite [CaCO ₃] Cerrusite [PbCO ₃]
Halides	Alkali metals or alkaline earths in combination with halogens (F, Cl, Br, I)	Halite [NaCl] Fluorite [CaF ₂]
Hydroxides	Metals in combination with hydroxyls (OH-)	Brucite [Mg(OH) ₂]
Native elements	Pure compound of a metallic or nonmetallic element	Gold [Au] Graphite [C]
Oxides	Metals in combination with oxygen	Hematite [Fe ₃ O ₄]
Phosphates, arsenates, vanadates, chromates, tungstates & molybdates	Various elements in combination with the ZO_4 radical where $Z = P$, As, V, Cr, W, Mo	Apatite $[Ca_5(PO_4)_3(F,Cl,OH)$ Carnotite $[K_2(UO_2(VO_4)_2\cdot 3H)$ Scheelite $[CaWO_4]$
Silicates	Metals in combination with silic a tetrahedra (SiO_4^{4-}) forming three dimensional networks, sheets, chains and isolated tetrahedra	Quartz [SiO ₂] Forsterite [MgSiO ₄] Orthoclase [KAlSi ₃ O ₈]
Sulfates	Alkaline earths or metals in combination with sulfate $(SO_4^{2^-})$	Barite [BaSO4] Epsomite [MgSO4·7H2O]
Sulfides	One or more metals in combination with reduced sulfur or chemically similar elements (As, Se, Te)	Pyrite [FeS ₂] Galena [PbS] Skutterudite [CoAs ₃]

The most common minerals in the Earth's crust are silicate minerals. The basic building block for the silicate minerals is the silica tetrahedron.


Table 7-4. Properties of the silicate crystal classes

Class	Tetrahedral arrangement	# shared corners	Che mic al unit	Si:O	Example
Nesosilicate	Independent tetrahedra	0	SiO ₄ ⁴⁻	1:4	Olivine
Sorosilic ate	Two tetrahedra sharing a corner	1	Si ₂ O ₇ ⁶⁻	1:3.5	Melilite
Cyclosilicate	Three or more tetrahedra sharing two corners, forming a ring	2	SiO ₃ ³⁻	1:3	Beryl
Inosilicate	Single chain of tetrahedra sharing two corners	2	SiO ₃ ³⁻	1:3	Augite
	Double chain of tetrahedra alternately sharing two or three corners	2.5	Si ₄ O ⁶⁻ ₁₁	1:2.75	Hornblende
Phyllosilicate	Sheet of tetrahedra sharing three corners	3	Si ₂ O ₅ ²⁻	1:2.5	Kaolinite
Tektosilicate	Framework of tetrahedra sharing all four corners	4	SiO ₂	1:2	K-feldspar

Clay Minerals


Quartz (SiO_2) and the clay minerals are the most common components of soil.

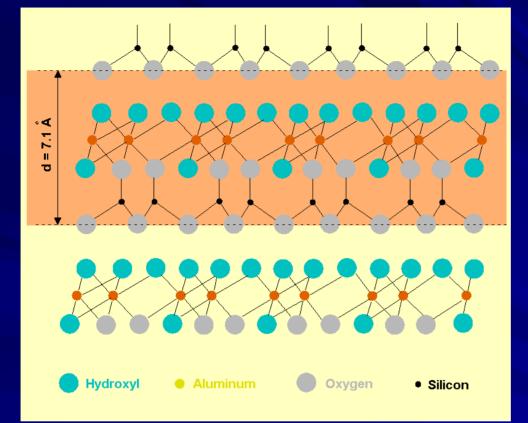
Montmorillonite showing a rose like texture, Miocene arkose, Madrid Basin, Spain.

Clay minerals are built by combining tetrahedral and octahedral layers.

Structure of the octahedral and tetrahedral layer. Mg2+ in the octahedral layer = brucite. Al3+ in the octahedral layer = gibbsite. Al3+ can substitute for Si4+ in the tetrahedral layer.

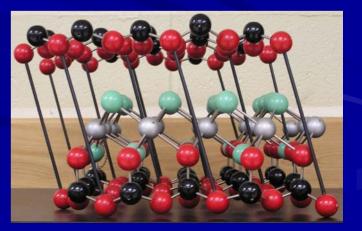
	Kaolinites	Illites	S mectites	Vermiculites
Structure Tetrahedral: Octahedral	1:1	2:1	2:1	2:1
Octahedral layer	Di-octahedral	Mostly di- octahedral	Di- or tri- octahedral	Mostly tri- octahedral
Interlayer cations	Nil	К	Ca, Na	Mg
Interlayer water	Only in halloysite	Some in hydromuscovite	Ca, two layers Na, one to many layers	Ca, two layers K, one layer to nil
Basal spacing	7.1 Å	10 Å	Variable most ~15 Å	Variable 14.4 Å when fully hydrated
Ethylene glycol	Only taken up by halloysite	No effect	Two glycol layers, 17 Å	One glycol layer, 14 Å
Cation exchange capacity (CEC) in meq/100 g clay	Nil 3 - 15	Low 10 - 40	High 80 - 150	High 100 - 150
Formula	Al ₂ Si ₂ O ₅ (OH) ₂ , little variation	$\begin{array}{c} K_{0.5\text{-}0.75}Al_2(Si,Al)_2 \\ O_{10}(OH)_2 \end{array}$	$\begin{array}{l} M^{+}{}_{0.7}(Y^{3+},Y^{2+})_{4\text{-}6} \\ (\text{Si},\text{Al})_8\text{O}_{20}(\text{OH})_4\text{\cdot}\text{n} \\ \text{H}_2\text{O} \end{array}$	$\begin{array}{l} M^{2+}{}_{0.66}(Y^{2+},Y^{3+})_{6} \\ (Si,A1)_{8}O_{20}(OH)_{4}\cdot 8 \\ H_{2}O \end{array}$
Dilute acids	Scarcely soluble	Readily attacked	Attacked	Readily attacked
Heating 200 °C	Except halloysite, unchanged	No marked change	Collapse to approximately 10 Å	Exfoliation, shrinkage of layer spacing
Examples	Kaolinite, dickite, nacrite, halloysite	Illite, hydrous micas, phengite, brammallite, glauconite, celadonite	Montmorillonite, beidellite, nontronite, hectorite, saponite, sauconite	Vermiculite

Table 7-5. Summary of the	principal	characteristics of	the lavered	l clay mineral groups
rusie, consummary of the	principal		une nageret	a chay minor an Sr oa po



Department Environmental, Earth, & Atmospheric Sciences

Т


 \mathbf{O}

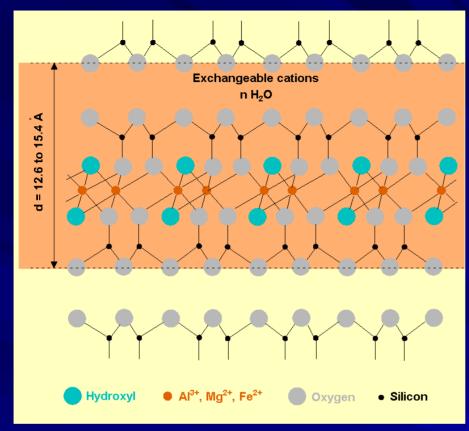
Т

Structure of kaolinite. Each structural unit consists of a gibbsite layer and a tetrahedral layer. Note that only two out of three octahedral sites in the octahedral layer are occupied.

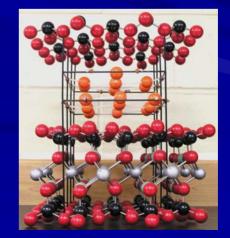
Table 7-6. Substitutions for smectite group clay minerals

Mineral	Tetrahedral cations	Octahedral cations	Exchangeable cations			
Di-octahedral						
Montmorillonite	Si ₈	$Al_{3.3}Mg_{0.7}$	(0.5Ca,Na) _{0.7}			
Beidellite	Si _{7.3} Al _{0.7}	A14	(0.5Ca,Na) _{0.7}			
Nontronite	Si _{7.3} Al _{0.7}	Fe_{4}^{3+}	(0.5Ca,Na) _{0.7}			
Tri-octahed ral						
Saponite	Si _{7.2} Al _{0.8}	Mg_6	$(0.5 \mathrm{Ca},\mathrm{Na})_{0.8}$			
Hectorite	Si ₈	Mg _{5.3} Li _{0.7}	(0.5Ca,Na) _{0.7}			
Sauconite	Si _{6.7} Al _{1.3}	$Zn_{4-6}(Mg,Al,Fe^{3+})_{2-0}$	$(0.5 \text{Ca}, \text{Na})_{0.7}$			

Structure of montmorillonite a 2:1 layer clay


Т

IL


Т

0

Т

Structure of montmorillonite, a 2:1 clay. The octahedral layer is a gibbsite layer. Substitution of Mg^{2+} for Al^{3+} in the octahderal layer is charge balanced by the addition of Na⁺ or Ca²⁺ cations (exchangeable cations) in the interlayer position.

Department Environmental, Earth, & Atmospheric Sciences

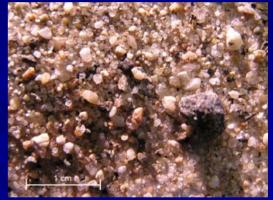
Tools for Identification and Characterization of Minerals

Stereomicroscope

PLM

XRD

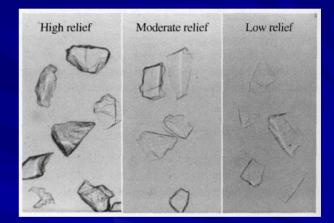
EMP

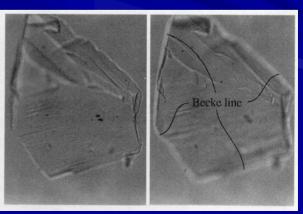


Beach sand

Stream sand

Carbonate sand

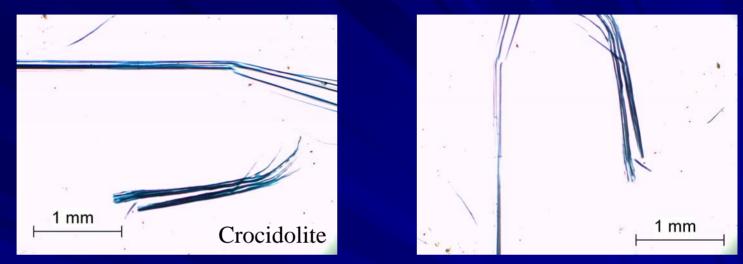

Polarizing Light Microscopy (PLM) – a forensic workhorse



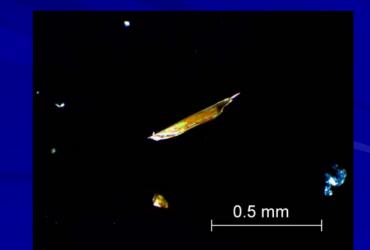
The Becke line method is used to determine if material has a higher or lower refractive index then the mounting media or index oil. Use various optical properties to characterize materials

Index of refraction

Higher relief means higher refractive index relative to the mounting media or index oil.



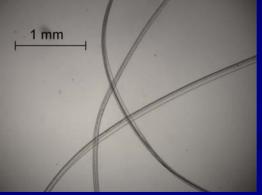
Polarizing Light Microscopy (PLM) – a forensic workhorse


Pleochroism – color changes as stage is rotated – polarized light

Birefringence – color changes under crossed-polars due to retardation

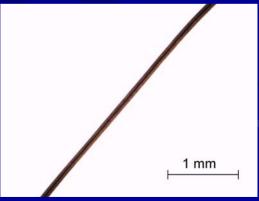
Plane polarized light

Crossed-polars



Polarizing Light Microscopy (PLM) – a forensic workhorse


Morphology and "habit"


Fiber characteristics

Dynel

Dog's hair

Human hair (mongoloid)

A powerful way to identify crystalline materials. The physical basis is Bragg's Law (a Nobel prize for simple trigonometry). The angles required for diffraction and the intensity of the diffracted wavelengths can be used to identify the material.

X-ray diffractometer

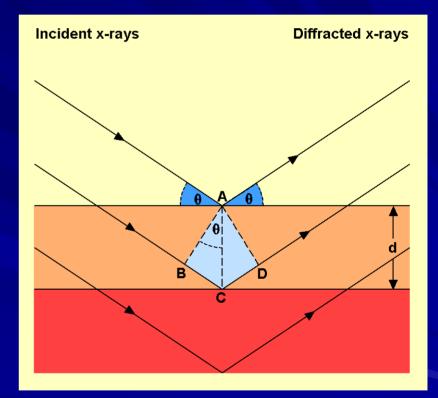
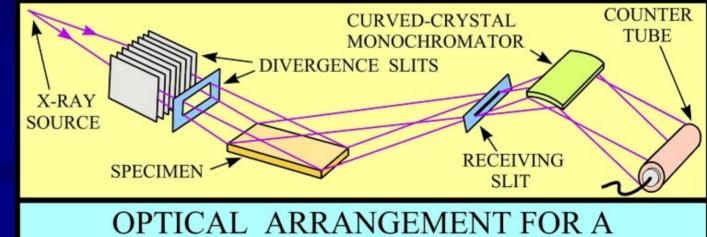
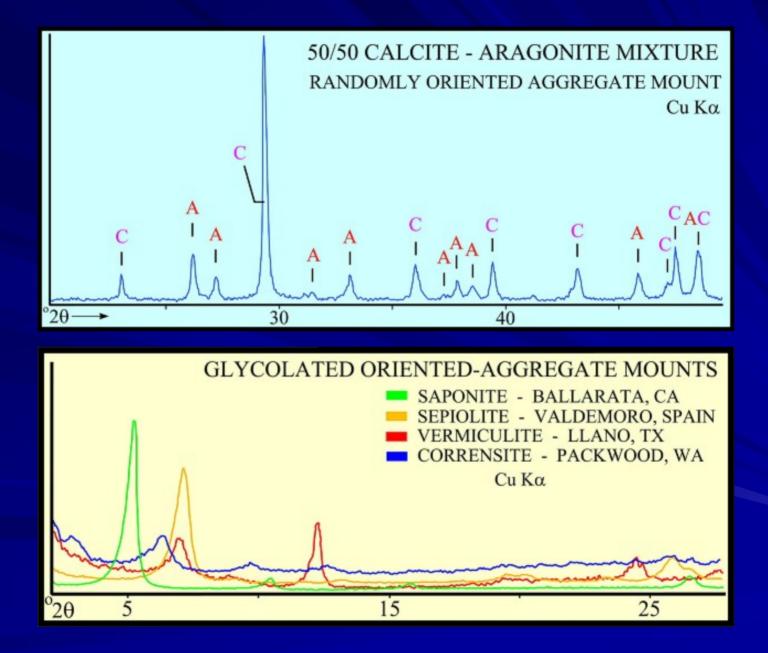



Diagram illustrating Bragg's law. θ = angle of incidence and diffraction when Bragg's law conditions are met. d = inter-planar spacing.



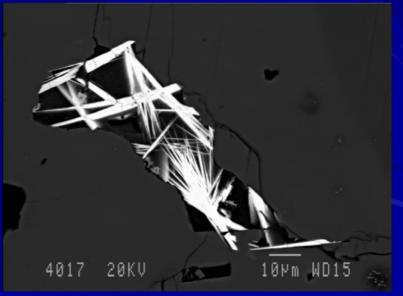
Configuration for a typical Xray powder diffractometer.

PHILLIPS X-RAY DIFFRACTOMETER

Can be used to characterize materials at the micron level.

The material illustrated here is tinitite, the glass formed from the desert sand at Alamogordo when the first atomic bomb was detonated. The shades are related to the atomic number of the elements. Areas with lower atomic number elements are darker. Using EDAX, quantitative elemental abundances can be determined.

Back scatter electron image



Department Environmental, Earth, & Atmospheric Sciences

This instrument is not commonly used in forensic investigations, but it can be used to determine the abundance of a variety of elements on areas as small as one micron in diameter. There may be specific cases where such data would be useful.

Rare-earth carbonate minerals in carbonatite. Analyses were done on 1 micron diameter spots.

First Forensic Geology Case

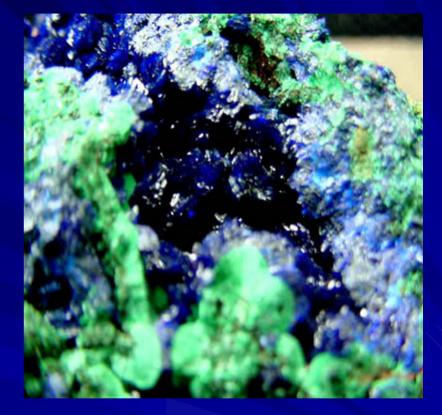
In October of 1904 the strangled body of Eva Disch was found near Frankfurt, Germany

When Georg Popp was called in he examined a filthy handkerchief found at the scene that contained bits of hornblende, snuff and, coal

First Forensic Geology Case

A suspect, Karl Laubach, used snuff, worked at the coal-burning local gas works and at a quarry that had hornblende bearing rocks

The suspect also had mica in the cuffs of his trousers that matched mica at the murder scene



Junger Case

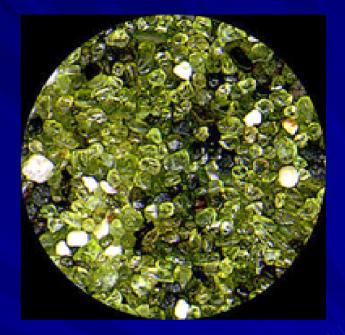
Location: Front Royal, Va.

Crime: Homicide

Evidence: Soil on the Suspect's vehicle compared with soil from the crime scene at a river crossing. Samples contained Malachite and Azurite from an abandoned copper mine just up stream. The soft copper minerals were not found a short distance downstream. (thanks to Ray Murary)

The Reeves Murder Case

In September of 1958 a woman's body was found at the edge of the Anacostia River in Washington, D.C. A peculiar black sand was found on the victim, in a suspects car, and at the murder scene. Geologic investigation showed that the sand was blast furnace slag that had been spread on a small section of highway to test it for use in the control of snow and ice. (Block, 1979 p.149-152)


Sand from a Construction Site

In another example, in southern Ontario a man was arrested and charged with the beating death of the young girl. The scene of the crime was a construction site adjacent to a newly poured concrete wall. The soil was sand that had been transported to the scene for construction purposes. As such, the sand had received additional mixing during the moving and construction process and was quite distinctive. The glove of the suspect contained sand that was similar to that found at the scene and significantly different in composition and particle size from the area of the suspect's home. This was important because the suspect claimed the soil on the gloves came from his garden. (Murray and Tedrow, 1992, p. 16)

Commercial Foundry Sand

- Sands of heavy minerals, olivine, zircon, etc. are used in foundry work
- In a breaking and entering case at a foundry in Toronto, Canada a suspect's shoes had grains of olivine sand
- Because olivine sand is not found in place in that part of Canada the sand on the shoes indicated that the suspect had been at the foundry. (Murray and Tedrow, 1992, p. 79)

Department Environmental, Earth, & Atmospheric Sciences

Acknowledgements

Case studies and some of the graphics used in this talk were graciously provided by Jack Crelling, Southern Illinois University

Other tables and graphics are from:

Eby, G.N. (2004) Principles of Environmental Geochemistry. Thomson.