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Minimal Edge Addition for Network
Controllability

Ximing Chen, Sérgio Pequito, George J. Pappas, and Victor M. Preciado

Abstract—We address the problem of optimally modifying
the topology of a directed dynamical network to ensure
structural controllability. More precisely, given the structure
of a directed dynamical network (i.e., an existing networked
infrastructure), we propose a framework to find the minimum
number of directed edges that need to be added to the
network topology in order to render a structurally controllable
system. Our main contribution is twofold: (i) we provide a full
characterization of all optimal network modifications, and (ii)
we propose an algorithm able to find an optimal solution in
polynomial time. We illustrate the validity of our algorithm
via numerical simulations in random networked systems.

I. INTRODUCTION

Network control theory provides a plethora of tools to
analyze the behavior of dynamical processes taking place
in complex networked systems, such as epidemic outbreaks
in human contact networks [1], information spreading in
social networks [2], or synchronization in power systems [3].
The analysis and design of complex networks using tools
from graph theory have gained a growing interest in recent
years [4]; in particular, the classical control problem of
steering the state of a dynamical network towards a desired
state [5, 6]. However, in many practical scenarios, an exact
quantitative description of the edges in the network may not
be available due to measurement errors and/or modeling un-
certainties [7]. In this scenario, it is still possible to analyze
network control problems resorting to tools developed in the
context of structural systems theory [8–11].

Structural controllability extends the classical controlla-
bility concept to the case of networks with uncertain edges.
Loosely speaking, a network is structurally controllable if
it is controllable for almost all realizations of edge weights
(see Section II for a formal description of this concept). In
this context, given a structurally uncontrollable system, one
may be interested in enforcing structural controllability by
either (i) adding actuation capabilities to the networked sys-
tem, or (ii) modifying the topology of the dynamical network
by, for example, adding new edges to the network topology.
The former case is explored in [12–19]. Briefly, in [12,
18, 19], the authors proposed graph-theoretical algorithms
to find the minimum number of driving nodes to ensure
structural controllability in complex networks. In [13, 14],
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the authors complement this work to obtain the minimum
number of driven nodes in polynomial-time. Subsequently,
the minimum number of driven nodes required while ac-
counting for actuation costs was addressed in [15, 16].
Alternatively, if one seeks the minimum collection of inputs
from an a priori defined collection of actuation capabilities,
then the problem is NP-hard [17]. Notwithstanding, there
are several cases when adding actuation capabilities to the
network is either too expensive or not feasible. Therefore,
whenever possible or cost-efficient, one can opt to modify
the topology of the dynamical network. This case is the
focus of the current paper, where we propose a polynomial-
time algorithm to determine the minimum number of extra
connections that must be added to a given structural system
in order to ensure structural controllability.

In [20], Wang et al. proposed an approach to perturb the
structure of an undirected network to ensure structurally
controllability when only one driving node was considered.
In [21], Ding et al. studied a similar problem for directed
networks. However, they assumed that all the nodes are
already reachable from the driving nodes. Altough they
solved the problem using a constrained integer program
which is, in general, NP-hard [22], they did not discuss
the complexity of their algorithm. In contrast with previous
works, we address the case of arbitrary directed network
topologies with any number of driving nodes and show that
the problem can be solved in polynomial time without any
assumption on reachability. These are the contributions of
this paper: (i) we characterize all possible solutions to the
problem of determining the minimum number of additional
edges required to ensure structural controllability, and (ii)
we provide a polynomial-time algorithm to find a solution
suitable for large complex networks.

The rest of the paper is organized as follows. A formal
description of the problem under consideration are intro-
duced in Section II. Preliminaries on graph theory and
structural system theory are introduced in Section III. The
main results are provided in Section IV. In Section V, we
illustrate our results in several complex network topologies.
Finally, conclusions and discussion of future research are
presented in Section VI.

II. PROBLEM STATEMENT

The dynamics of a linear networked dynamical system
can be described as follows:

ẋ(t) = Ax(t) +Bu(t), (1)
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where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
input vector, A ∈ Rn×n is the state transition matrix and
B ∈ Rn×m is the input matrix. In the sequel, we refer to
the system (1) by the matrix pair (A,B), and if the system
is controllable, we say that the pair (A,B) is controllable.
Furthermore, we define Ā ∈ {0, 1}n×n to be the structural
pattern of A, i.e., Āij = 0 if [A]ij = 0, and Āij = 1
otherwise. Similarly, B̄ ∈ {0, 1}n×m encodes the sparsity
pattern of B where B̄ij = 0 of [B]ij = 0, and B̄ij = 1
otherwise. We say that the structural pattern (Ā, B̄) is
structually controllable if there exists a pair (Â, B̂) with the
same structural pattern as (Ā, B̄) that is controllable [23].
Furthermore, if such pair (Â, B̂) exists, then almost all
possible matrix pairs with the same structural pattern as
(Ā, B̄) are controllable [23].

In this paper, given a structurally uncontrollable pair
(Ā, B̄), we are interested in the problem of adding a
minimum number of entries in Ā to obtain a structurally
controllable system. Intuitively, if we add sufficient edges
in the network such that the resulting network is a complete
graph, then the resulting system is structurally controllable,
provided that at least one node is actuated, i.e., B̄ 6= 0.
Nonetheless, adding new edges corresponds, in practice, to
building new infrastructure. Therefore, from a design and
implementation perspective, one seeks to add the minimum
number of edges to attain the design objective, which, in our
case, consists in ensuring structural controllability. Formally,
the problem is described as follows:

Problem 1. Given the pair (Ā, B̄) with B̄ 6= 0, find

Ã∗ = arg min
Ã∈{0,1}n×n

‖Ã‖0 (2)

s.t. (Ā+ Ã, B̄) is structurally controllable,

where ‖Ã‖0 denotes the number of non-zero entries in a
matrix Ã, and the operator + : {0, 1}n×n × {0, 1}n×n →
{0, 1}n×n is the element-wise exclusive-or for binary ma-
trices. ◦

If (Ā+ Ã, B̄) is structurally controllable, we refer to the
matrix Ã as a feasible edge-addition matrix, and to Ã∗ in (2)
as the optimal edge-addition matrix. As part of the solution
proposed in this paper, we provide a characterization of
all possible optimal edge-addition matrices by resorting to
graph-theoretical tools. Further, we provide a polynomial-
time algorithm to obtain one such solution.

III. NOTATION AND PRELIMINARIES

In the rest of the paper, |S| denotes the cardinality of
a set S. Let G = (V, E) denote a directed graph with
vertex-set V = {1, . . . , n}, and edge-set E ⊆ V × V .
Given an edge (i, j) ∈ E , we say that the ‘tail’ vertex i
is pointing towards the ‘head’ vertex j, which we denote by
i → j. A path of length K in G is defined as an ordered
sequence of distinct vertices (v0, v1, . . . , vK) with vk ∈ V
and (vk, vk+1) ∈ E for all k = 0, . . . ,K−1. A cycle is either
a path (v0, v1, . . . , vK) with an additional edge (vK , v0),
or a vertex with an edge to itself (i.e. self-loop). A vertex

v2 ∈ V is reachable from v1 ∈ V if there exists a path in
G from v1 to v2. A directed graph Gs = (Vs, Es) is a sub-
graph of G if Vs ⊆ V and Es ⊆ E . In particular, if Vs = V ,
then Gs is said to span G. Given a vertex set S ⊆ V, we
define the S-induced subgraph of G by S as GS = (S, ES),
where ES = E ∩ (S × S) .

A graph is said to be strongly connected if there exists
a path between any two vertices in the graph. A strongly
connected component (SCC) is a maximal subgraph Gs that
is strongly connected. A condensation of G is a directed
acyclic graph (DAG) generated by representing each SCC
in G as a virtual vertex in the condensation and a directed
edge between two virtual vertices in the condensation exists,
if and only if, there exists a directed edge connecting the
corresponding SCCs in G [24]. An SCC is said to be linked
if it has at least one incoming/outgoing edge from another
SCC. In particular, a source SCC has no incoming edges
from another SCC and a sink SCC has no outgoing edges
to another SCC.

Given a directed graph G = (V, E) and two vertex sets
S1, S2 ⊆ V , we define the (undirected) bipartite graph
B(S1, S2, ES1,S2) as a graph, whose vertex set is S1 ∪ S2

and edge set1 ES1,S2 = {{s1, s2} ∈ E : s1 ∈ S1, s2 ∈ S2}.
Given B(S1, S2, ES1,S2

), a matching M is a set of edges
in ES1,S2

that do not share vertices, i.e., given edges e =
{s1, s2} and e′ = {s′1, s′2}, e, e′ ∈ M only if s1 6= s′1 and
s2 6= s′2. The vertex v is said to be right-unmatched (resp.,
left-unmatched) with respect to a matching M associated
with B(S1, S2, ES1,S2

) if v ∈ S2 (resp., S1), and v does
not belong to an edge in the matching M . A matching is
said to be maximum if it is a matching with the maximum
number of edges among all possible matchings. Addition-
ally, a matching is called a perfect matching if it does not
contain right-unmatched vertices. Given a bipartite graph
B(S1, S2, ES1,S2

), the maximum matching problem can be
solved efficiently in O(

√
|S1 ∪ S2||ES1,S2

|) time [24].
Given a structural pair (Ā, B̄), we associate a directed

graph G(Ā, B̄) = (X ∪ U , EX ,X ∪ EU,X ), which we refer
to as the system digraph, where X = {x1, . . . , xn} and
U = {u1, . . . , um} denote the set of state vertices and
input vertices, and EX ,X = {(xi, xj) : [Ā]ji 6= 0} and
EU,X = {(uj , xi) : [B̄]ij 6= 0} denote its edge sets. In
the remaining of the paper, unless otherwise specified, a
state vertex being reachable means that it is reachable
from some input vertex. Similarly, a vertex set is reachable
if every vertex in the set is reachable. Also, due to the
graph representation of the pair (Ā, B̄), when (Ā, B̄) is
structural controllable, we interchangeably say that G(Ā, B̄)
is structurally controllable. In addition, we can associate
an undirected bipartite graph with G(Ā, B̄), called the
system bipartite graph and denoted by B(Ā, B̄) = B(X+ ∪
U+,X−, EX+,X−∪EU+,X−), in which {x+

i , x
−
j } ∈ EX+,X−

if (xi, xj) ∈ EX ,X , and {u+
i , x

−
j } ∈ EU+,X− if (ui, xj) ∈

EU,X . Subsequently, for ease of notation, we use a signal-
notation mapping s : EX ,X ∪ EU,X → EX+,X− ∪ EU+,X− to

1We denote undirected edges using curly brackets {vi, vj}, in contrast
with directed edges, for which we use parenthesis.
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map edges from the system digraph into edges of the system
bipartite graph, as follows: s((ui, xj)) = {u+

i , x
−
j } and

s((xi, xj)) = {x+
i , x

−
j }. In addition, due to the bijectivity of

the signal-notation mapping, we have that s−1({u+
i , x

−
j }) =

(ui, xj) and s−1({x+
i , x

−
j }) = (xi, xj).

The concepts introduced in this section can be used to
determine if a structural system is structurally controllable,
as follows:

Theorem 1 ([11, 13]). The pair (Ā, B̄) is structurally
controllable if and only if the following two conditions hold:

(a) every state vertex x ∈ X in the system digraph
G(Ā, B̄) = (X ∪ U , EX ,X ∪ EU,X ) is reachable (from
some input vertex u ∈ U);

(b) any maximum matching M of the system bipartite graph
B(Ā, B̄) = B(X+ ∪ U+,X−, EX+,X− ∪ EU+,X−) has
no right-unmatched vertices. �

Notice that both conditions in Theorem 1 can be verified
in polynomial time [11]. Hence, one could naively try to
ensure both conditions by adding edges iteratively, but such
an approach is, in general, non-optimal and does not provide
optimality guarantees.

IV. MINIMUM TOPOLOGICAL CHANGES TO ENSURE
STRUCTURAL CONTROLLABILITY

In this section, we provide the main results of the
paper. First, in Section IV-A, we reformulate Problem 1
as a graph-theoretical problem. Next, in Section IV-B, we
sharpen our intuition by exploring two particular network
topologies. In Section IV-C, we show that iterative solutions
are sub-optimal. Next, using graph-theoretical tools, we
characterize the set of feasible solutions to Problem 1
(Theorem 2). Subsequently, we obtain a feasible solution
containing the minimum number of additional edges to
ensure structural controllability (Theorem 3). Finally, we
provide a polynomial-time algorithm (Algorithm 3) to obtain
an optimal solution to Problem 1, whose correctness and
computational complexity are proved in Theorem 4.

A. Graph-Theoretical Optimization Problem

At a first glance, Problem 1 may seem a purely com-
binatorial problem. Naively, one may find a solution by
exhaustively exploring the set of n × n binary matrices.
However, Theorem 1 can be leveraged to shrink the search
domain of (2). This motivates us to recast (2) as the
following graph-theoretical problem.

Recall that the system digraph is given by G(Ā, B̄) =
(X ∪ U , EX ,X ∪ EU,X ). Therefore, given a feasible edge-
addition matrix Ã, we can associate a digraph with the
perturbed structural system (Ā+Ã, B̄), which we denote by
G(Ā+Ã, B̄) = (X∪U , EX ,X∪EU,X∪Ẽ), where the edge set
Ẽ ⊆ X ×X is such that (xi, xj) ∈ Ẽ if and only if Ãji = 1.
Subsequently, since there is an one-to-one correspondence
between Ẽ and the structural matrix Ã, we can provide the
following equivalent formulation of Problem 1:

Problem 2. Given the system digraph G(Ā, B̄) = (X ∪
U , EX ,X ∪ EU,X ), find

Ẽ∗ = arg min
Ẽ⊆X×X

|Ẽ |

s.t. G(Ā+ Ã, B̄) = (X ∪ U , EX ,X ∪ EU,X ∪ Ẽ)

is structurally controllable.

Additionally, we define a feasible edge-addition config-
uration as a set of edges that is a feasible solution of
Problem 2. Also, an optimal edge-addition configuration is
defined as an optimal solution of Problem 2.

B. Special Cases

Next, before showing that iterative strategies can be
suboptimal, we discuss two special cases to sharpen our
intuition. First, recall that according to Theorem 1, the
pair (Ā, B̄) is structurally controllable, if and only if, two
conditions are satisfied. Therefore, we explore two special
cases, where in each case only one of the conditions in
Theorem 1 is satisfied; hence, only the remaining condition
needs to be ensured to attain feasibility.

Case I: Consider a structured system (Ā, B̄) such that
only Condition (a) in Theorem 1 holds, while Condi-
tion (b) is not satisfied. In other words, all state vertices
are reachable while there exists a maximum matching of
the system bipartite graph with right-unmatched vertices.
As a result, the cardinality of a maximum matching M
with respect to B(Ā, B̄) is strictly less than n. Subse-
quently, let us denote by UL = {vli : i ∈ {1, . . . , nl}}
and UR = {vri : i ∈ {1, . . . , nr}} the left- and right-
unmatched vertices associated with a maximum matching
M , respectively. In particular, notice that nl ≥ nr since
|X+ ∪ U+| ≥ |X−|, and |M | = n − nr. Therefore, to
ensure that G(Ā + Ã, B̄) is structurally controllable, it is
sufficient to add edges between UL and UR without com-
mon end-points and such that all right-unmatched vertices
belong to one of such edges. However, such approach is
not necessarily a solution to Problem 2 since some of the
newly considered edges may correspond to edges between
input and state vertices, while we are only allowed to
connect pairs of state vertices. Consequently, let (without
loss of generality) UXL = {vli : i ∈ {1, . . . , nr}} ⊆ UL

be the set of nr left-unmatched state vertices. Therefore,
an optimal edge-addition configuration can be obtained as
E∗ = {(vli, vri ) : vli ∈ UXL , v

r
i ∈ UR, i ∈ {1, . . . , nr}}. In

other words, M ∪ E∗ is a maximum matching with respect
to the bipartite graph B(Ā+ Ã, B̄) without right-unmatched
vertices, which implies that Theorem 1-(b) holds. Thus,
Ẽ∗ = {s−1({vli, vri })) : {vli, vri } ∈ E∗} is an optimal solu-
tion to Problem 2. Since there may exist multiple maximum
matchings of the system bipartite graph, the optimal edge-
addition configuration constructed using the above procedure
may not be unique. However, the number of right-unmatched
vertices are the same for all maximum matchings due to
maximality. As a result, in this case, all optimal edge-
addition configurations contain nr edges. ◦
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Remark 1. Under the assumption that all state vertices in
the system digraph are reachable, Problem 1 can be also
solved via an integer program, as proposed in [21]. �

Case II: Suppose that a network (Ā, B̄) is such that
Condition (b) in Theorem 1 holds, while Condition (a) does
not, i.e., some state vertex might be unreachable in G(Ā, B̄).
Since at least one state vertex is assumed to be actuated
(i.e., B̄ 6= 0), the set of reachable state vertices is non-
empty. Therefore, we propose to partition the state vertices
of the system digraph into two disjoint sets according to
their reachability. Let R1 and N be the sets containing all
the reachable and unreachable state vertices, respectively.
Then, we define Gr (respectively, Gu) as the R1-induced
(respectively, N -induced) subgraph.

Now, notice that if an edge is added to ensure the
reachability of any vertex v in some source SCC in Gu (i.e.,
the tail of the edge is a reachable state vertex), then all state
vertices reachable from this particular source SCC become
reachable as well. Consequently, to ensure reachability of
all state vertices, it is sufficient to add edges to ensure
reachability of one vertex per each unreachable source
SCCs. Additionally, it is also necessary to have an edge
pointing towards each source SCC in Gu, since otherwise
the vertices belonging to it remain unreachable. Therefore,
we first need to identify the source SCCs in the DAG
associated with the unreachable subgraph Gu (these source
SCCs can be efficiently found using, for example, [24]).
Also, without loss of generality, assume there are r of these
source SCCs, whose vertex sets are denoted by Sj ⊆ N ,
j = 1, . . . , r. Subsequently, to ensure the reachability of
all state vertices in N , we need to add r edges which tails
are in a reachable vertex and each head points towards one
of the vertices in one of the r source SCCs. Thus, the
set Ẽ∗ = {(vr, vj) : vr ∈ R1, vj ∈ Sj , j ∈ {1, . . . , r}}
is an optimal edge-addition configuration. Notwithstanding,
notice that Ẽ∗ does not characterize all possible optimal
edge-addition configurations, since when an edge is added
from a reachable vertex towards an unreachable source SCC,
all state vertices reachable from this particular source SCC
become reachable; thus, the tail of an edge in an optimal
edge-addition configuration should be in R1 and its head
should be in an unreachable source SCC. ◦

From Case I, we notice that selecting new edges for the
edge-addition configuration do not increase the number of
right-unmatched vertex associated with the system bipartite
graph. Similarly, adding more edges never decreases the
number of reachable state vertices in the system digraph.
As a consequence, one may select edges to ensure both con-
ditions in Theorem 1 are satisfied iteratively. Nonetheless,
such a selection scheme often leads to sub-optimal solutions,
as we show next.

C. Iterative Solutions are Sub-Optimal

In order to motivate the need for an algorithm that solves
a general instance of the problem proposed in Problem 2,
we describe below a naive iterative approach leading to
suboptimal solutions. The steps in this iterative algorithm are
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𝑢
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𝑢
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𝑢

𝑥2
(a) (b) (c) (d)

Figure 1: In (a), we illustrate a system digraph G({u, x1, x2}, {(u, x1)})
with three vertices and one edge depicted in black. The goal is to find the
smallest subset of state edges (depicted by red edges) to ensure structural
controllability. Let us consider the iterative strategy described in Subsection
IV-C. In (b), we depict a possible solution to the first step described in Case
I, i.e., the edge (x2, x2) suffices to satisfy Theorem 1-(b). In (c), we depict
a possible solution to the second step described in Case II when the system
digraph considered is the one depicted in (b). In contrast, the edge (x1, x2)
suffices to satisfy Theorem 1-(a), resulting in the system digraph in (d).

𝑥2

𝑥1

𝑢

𝑥3𝑥2

𝑥1

𝑢

𝑥3 𝑥2

𝑥1

𝑢

𝑥3 𝑥2
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𝑢

𝑥3
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Figure 2: In (a), we illustrate a system digraph
G({u, x1, x2, x3}, {(u, x1)}) in black. The goal is to find the
smallest subset of state edges (depicted by red) to ensure structural
controllability. Let us consider the iterative strategy described in
Subsection IV-C. In (b), we depict a possible solution to the first step
described in Case II. In (c), we depict a possible solution to the second
step, which was computed by performing the solution described in Case
I when the system digraph considered is the one depicted in (b). In
contrast, the edge (x2, x3) suffices to satisfy Theorem 1-(b), resulting in
the system digraph in (d).

based on the cases described in Section IV-B. Specifically,
each iteration consists of a two-stage process. In the first
stage, we find the minimum number of edges required to
satisfy Theorem 1-(b) using the methodology described in
Case I. The second stage in each iteration is described in
Case II, whose aim is to satisfy Condition (a) in Theorem 1.

To show how this iterative approach can lead to subop-
timal solutions, we show in Figure 1 an instance where
we initially use the method proposed in Case I to ensure
that Theorem 1-(b) holds, followed by the method proposed
in Case II is applied to ensure Theorem 1-(a). As we
explain in the caption of Figure 1, the naive strategy requires
two edges, whereas the digraph depicted in Figure 1-(d) is
also feasible and requires only one edge. Alternatively, in
Figure 2, we provide an instance where the strategy adopted
aims first to ensure Theorem 1-(a), followed by Theorem 1-
(b), using the solutions in Case II and Case I, respectively.
Again, in this case, the naive strategy requires three edges,
whereas the digraph depicted in Figure 2-(d) is also feasible
and requires only two edges. In summary, naive strategies
are (in general) sub-optimal.

D. General Case

Hereafter, we characterize the solutions to Problem 2
when no assumptions are made on the topology of the
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network. First, we introduce a definition required to char-
acterize the smallest collection of edges needed to attain
reachability, i.e., satisfy Condition (a) in Theorem 1. In order
to introduce this definition, we need to define the following
notation. Let G(Ā, B̄) = (X∪U , EX ,X∪EU,X ) be the system
digraph, and partition the set of state vertices X into two
sets based on their reachability (from an input), namely,
X = R1 ∪ N , where R1 is the set of reachable vertices
and N is the set of unreachable vertices. Additionally,
without loss of generality, let us assume there are r source
SCCs that are unreachable, which vertex sets are denoted
by N1, . . . ,Nr ⊆ N . Also, let ∆(Nh) denote the set of
vertices that are reachable in G(Ā, B̄) from the vertices in
Nh, for h = 1, . . . , r.

Definition 1. A set SB is called a set of bridging edges if
it can be generated by the following recursive algorithm:

Algorithm 1 Set of bridging edges

Input: Sets R1 and N1, . . . ,Nr;
1: Initialize K = {1, . . . , r}, t1 as any value in K, and the

set SB to contain a single edge (i, j) where i is any
vertex in R1 and j is any vertex in Nt1 ;

2: for k = 2 : r do
3: Rk ← Rk−1 ∪∆(Ntk−1

);
4: Assign tk to any value in K \

⋃k−1
h=1{th};

5: SB ← SB∪{(i, j)} for any i ∈ Rk and any j ∈ Ntk ;
6: end for

Algorithm 1 is illustrated in Figure 3. In particular, notice
that at the end of this algorithm N =

⋃r
h=1 ∆(Ntk),

which implies that all unreachable states become reachable.
Furthermore, notice that the set of bridging edges contains
the minimum number edges required to ensure that all state
vertices are reachable. In fact, it readily follows that the
solutions to Case II in Section IV-B can be characterized
by the possible sets of bridging edges. Furthermore, the set
of bridging edges only ensure Condition (a) in Theorem 1,
which is not sufficient to ensure structural controllability
in general. More specifically, to ensure structural controlla-
bility and, subsequently, to obtain a feasible edge-addition
configuration, two types of edges are required: (i) a set of
bridging edges, and (ii) edges that connect left-unmatched
state vertices to right-unmatched vertices in some maximum
matching associated with the system bipartite graph (recall
Case I in Section IV-B). In what follows, we state necessary
and sufficient conditions to obtain a feasible edge-addition
configuration:

Theorem 2. Let G(Ā, B̄) be a system digraph and B(Ā, B̄)
be its bipartite representation. Furthermore, let M be a
maximum matching associated with B(Ā, B̄) and UL(M) =
{vli : i ∈ {1, . . . , nl}} and UR(M) = {vri : i ∈ {1, . . . , nr}}
be the left- and right-unmatched vertices of M . Without loss
of generality, let UXL (M) = {vli : i ∈ {1, . . . , nr}} denotes
the set of nr left-unmatched state vertices of M . A set Ẽ is a
feasible edge-addition configuration if and only if it contains
the union of the following two sets:

𝒩1 𝒩2

ℛ1

𝑒1

𝑒2

𝑢 𝒩1 𝒩2

ℛ1

𝑒1
′

𝑒2
′

𝑢

(a) (b)

Figure 3: This figure provides an illustration of Algorithm 1. All vertices
(blue or black), together with all black edges, form the initial system
digraph G(Ā, B̄). The black vertices, except the input vertex u, constitute
the set of reachable state vertices R1 (enclosed by the black dashed
ellipsoid). Blue vertices constitute the set of unreachable state vertices N .
The unreachable state source SCCs, N1 and N2, are contained in red
dashed squares. In Figure (a), we depict one possible result for Algorithm
1. In the initialization step, our algorithm initializes SB as the set containing
edge e1 only. Subsequently, after e1 is added to SB , all the states reachable
from N1 become reachable (we encircle these reachable states by a blue
dashed ellipsoid in Figure (a)). Afterwards, in the FOR loop, edge e2 in
Figure (a) is added to SB (in Step 5 of Algorithm 1), resulting in a digraph
in which all vertices are reachable from the input node. An alternative
output of Algorithm 1 is plotted in Figure (b). Notice that both in Figures
(a) and (b), all vertices are reachable after adding two red edges. Therefore,
SB = {e1, e2} and S′B = {e′1, e′2} are two possible sets of bridging
edges.

(a) SB is the set of bridging edges; and
(b) SM = {s−1({vli, vri }) : vli ∈ UXL (M), vri ∈

UR(M), and i = {1, . . . , nr}}, for some maximum
matching M associated with the system bipartite graph.

�

From Theorem 2, we can readily obtain a lower-bound
on the number of edges in a feasible edge-addition config-
uration.

Corollary 1. The cardinality of an optimal edge-addition
configuration Ẽ∗ satisfies |Ẽ∗| ≥ max{nr, r}, where nr
is the number of right-unmatched vertices of any given
maximum matching M associated with the system bipartite
graph B(Ā, B̄), and r is the number of unreachable state
source SCCs in the DAG associated with the system digraph
G(Ā, B̄). �

In particular, it is easy to verify that the equality in
Corollary 1 is ensured when both special cases addressed
in Section IV-B are considered.

Although Theorem 2 characterizes feasible edge-addition
configurations, we seek to find a feasible edge-addition
configuration of minimum cardinality. To achieve this goal,
we notice that it is preferable to obtain a maximum matching
whose set of right-unmatched vertices are spread across
different unreachable source SCCs. This is because the edges
connecting left- to right-unmatched vertices in this particular
maximum matching are useful to simultaneously satisfy both
Conditions (a) and (b) in Theorem 2. To formalize this
reasoning, we introduce the following concept.

Definition 2. Let G(Ā, B̄) be the system digraph and
M be a maximum matching associated with its bipartite
representation B(Ā, B̄). Furthermore, denote by UR(M) the
set of right-unmatched vertices of M . An unreachable state
source SCC of the DAG associated with the system digraph
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G(Ā, B̄) is said to be unreachable-assignable if it contains
at least one right-unmatched vertex in UR(M). �

Whether an unreachable state source SCC S is
unreachable-assignable depends on the specific maximum
matching M . In other words, given two sets UR(M1) and
UR(M2) of right-unmatched vertices associated with two
different maximum matchings M1 and M2, it is possible
that UR(M1) contains a vertex from S while UR(M2) does
not. We introduce the following definition to characterize the
maximum number of possible unreachable-assignable state
source SCCs.

Definition 3. The unreachable source assignability number
(USAN) of the system digraph G(Ā, B̄) is defined as the
maximum number of unreachable-assignable state source
SCCs among all the maximum matchings associated with
the system bipartite graph B(Ā, B̄). �

Remark 2. According to Definition 3, for every system
digraph G(Ā, B̄), the USAN must be less or equal to the
number of right-unmatched vertices associated with any
maximum matching of the B(Ā, B̄) and the total number
of unreachable state source SCCs in G(Ā, B̄). �

To find a maximum matching associated with the system
bipartite graph that attains the USAN, one can naively
enumerate all possible maximum matchings associated with
B(Ā, B̄), but this approach incurs into a problem that is
computationally ]P -complete2 [25]. Instead of using an
exhaustive search, it is possible to determine in polynomial-
time a maximum matching attaining the USAN using the
following algorithm.

Algorithm 2 Maximum matching attaining the USAN

Input: A system digraph G(Ā, B̄);
Output: A maximum matching M attaining the USAN;

1: Partition the set of state vertices in the system digraph
G(Ā, B̄) based on their reachability. Obtain the set
containing all the unreachable vertices of G(Ā, B̄),
denoted as N , and its N -induced subgraph, denoted
as Gu.

2: Obtain the source SCCs of Gu and denote their vertex
sets as N1, . . . ,Nr, where r is the total number of
source SCCs in Gu;

3: Define a vertex set I = {γ1, . . . , γr} comprising r
slack vertices. Construct a weighted bipartite graph
Bw = B(X+ ∪ U+ ∪ I,X−, EX+,X− ∪ EU+,X− ∪ EI),
where EI =

⋃r
i=1{{γi, x

−
j } : xj ∈ Ni}. The weights in

Bw are as follows: every edge in EX+,X− ∪ EU+,X− is
assigned to have unit weight, whereas every edge in EI
has weight two;

4: Let M ′ be the minimum-weighted maximum matching
of Bw;

5: Return M = M ′ \ EI .

2The class of ]P -complete problems is a class of computationally
equivalent counting problems that are at least as difficult as the NP-complete
problems.
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Figure 4: This figure presents an example illustrating Algorithm 2. The
black vertices and edges in (a) form the initial system digraph G(Ā, B̄).
In this case, N = {x2, x3, x4} is the set of unreachable state vertices.
Moreover, there is only one unreachable source SCC, whose vertex set is
N1 = {x2, x3}. The black vertices and edges in (b) constitute the original
system bipartite graph B(Ā, B̄), while the blue vertex γ1 represents a slack
variable associated with N1. In addition, the blue dashed edges {γ1, x2}
and {γ1, x3} together constitute EI . The minimum-weighted maximum
matching M ′ of Bw is depicted using red edges in (c). By removing
{γ1, x−2 } ∈ EI , we have that M = {{u, x−1 }, {x+2 , x

−
3 }, {x+3 , x

−
4 }}

is a maximum matching of B(Ā, B̄). In (d), we depict in red the edges
from the system digraph G(Ā, B̄) associated with those in the maximum
matching M. Notice that x2 is a right-unmatched vertex of M and it is in
N1; hence, M is a maximum matching attaining the USAN of G(Ā, B̄).

Remark 3. The proof of correctness of the algorithm
described above is very similar to the proof of Theorem
11 in Section VI of [13]. �

Essentially, in order to find a maximum matching attain-
ing the USAN, we associate a slack vertex γi with each un-
reachable source SCC Ni. We create additional edges from
each slack vertex to every state vertex of its corresponding
SCC. In other words, we let EI =

⋃r
i=1{{γi, x

−
j } : xj ∈

Ni}. Next, we set the weights of edges EI higher than
the weights of edges in B(Ā, B̄). With this particular selec-
tion of weights, the minimum-weighted maximum matching
M ′ prefers selecting edges in B(Ā, B̄) to edges in EI .
In particular, edges are selected from EI if it helps to
increase the matching. As a consequence, the vertices that
are matched using edges in EI must correspond to right-
unmatched vertices in the matching M ′ \ EI . Furthermore,
these right-unmatched vertices are spread across different
unreachable source SCCs. Finally, due to maximality of
matching, we can ensure that M achieves the USAN. To
further illustrate the algorithm, we present an example in
Figure 4.

Remark 4. Due to maximality, the USAN is unique for
every system digraph G(Ā, B̄). Nonetheless, there may
exist multiple maximum matchings that attains this value.
Algorithm 2 obtains one particular solution. �

Although the maximum matching that achieves the USAN
can be efficiently obtained as described in Algorithm 2, this
is not sufficient to obtain an optimal feasible edge-addition
configuration. To illustrate this claim, let us consider the
example depicted in Figure 5. In this case, the optimal fea-
sible edge-addition configuration depends on the maximum
matching achieving the USAN. Specifically, if all the left-
unmatched vertices are unreachable state vertices, then, after
fulfilling Condition (b) in Theorem 2, we should add extra
edges to form a set of bridging edges to ensure Condition (a)
in Theorem 2. This would result in a sub-optimal solution.
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Figure 5: This figure presents two examples where different maximum
matchings lead to sets of feasible edge-addition configurations with differ-
ent cardinalities. The black vertices and edges in (a) form the initial system
digraph G(Ā, B̄). The red edges in (c) and (e) constitute two different
maximum matchings associated with B(Ā, B̄). The red edges in (b) and (d)
are direct graph representations of the edges determined by the maximum
matchings in (b) and (d), respectively. The edge-set Ẽ2 = {(x1, x2)}
(depicted by blue dashed arrows in (d)) is a feasible edge-addition configu-
ration, since the addition of (x1, x2) ensures both conditions in Theorem 1.
In contrast, in Fig. (b) we also need to add edge (x2, x2) (in addition to
(x1, x2)) to ensure that Theorem 2-(b) holds, which leads to a feasible
edge-addition configuration given by Ẽ1 = {(x1, x2), (x2, x2)}. Thus,
Ẽ2 is an optimal edge-addition configuration with cardinality 1 while Ẽ1
is not.

Since ‖B‖0 6= 0, one can find a path rooted at an
input vertex u ∈ U whose end vertex is some state vertex
x ∈ X . Thus, x− is a left-unmatched vertex in the maximum
matching containing the path. Consequently, it is always
possible to obtain a maximum matching associated with
B(Ā, B̄) with at least one reachable left-unmatched state
vertex – see Proof of Theorem 3 in Appendix A for more
details. Moreover, when an edge is added from the reachable
left-unmatched vertex to a right-unmatched state vertex in an
unreachable source SCC, the set of reachable state vertices
can be extended. We will use this fact to circumvent the
sub-optimality issue mentioned above. In our next result,
we characterize the relationship between the USAN and the
optimal value to Problem 2:

Theorem 3. Given the system digraph G(Ā, B̄) and its
bipartite representation B(Ā, B̄), if ‖B̄‖0 > 0, then the car-
dinality of an optimal edge-addition configuration p∗ = |Ẽ∗|
satisfies

p∗ = nr + r − q, (3)

where nr is the number of right-unmatched vertices in
any maximum matching associated with B(Ā, B̄), r is the
number of unreachable source state SCCs in the DAG
associated with G(Ā, B̄), and q is the USAN. �

In fact, based on the constructive proof of Theorem 3
in Appendix A, we propose a procedure (described in
Algorithm 3) to find an optimal edge-addition configura-
tion in polynomial-time. Briefly, Algorithm 3 consists of
the following four main steps: (Step 1) Decompose the
system digraph based on the reachability of state vertices.
(Step 2) Determine a maximum matching that achieves
the USAN; if the obtained maximum matching admits no
reachable left-unmatched vertex, then we alter the matching
by finding a path rooted at certain input vertex. (Step 3)
Based on the obtained maximum matching, in order to
ensure both conditions in Theorem 2, select the edges
from reachable left-unmatched vertices to right-unmatched
vertices in unreachable source SCCs iteratively. (Step 4) If
the system is still not structurally controllable, then add the

smallest collection of edges ensuring that both conditions
in Theorem 2 hold independently. The correctness and
computational complexity of this procedure are described
in the following result.

Theorem 4. Given the system digraph G(Ā, B̄) = (X ∪
U , EX ,X ∪ EU,X ), Algorithm 3 provides an optimal solution
to Problem 2. Furthermore, the computational complexity of
Algorithm 3 is O(|X ∪ U|3). �

Remark 5. The computational complexity incurred by
Algorithm 3 is comparable to that incurred by the al-
gorithms required to solve the special cases described
in Section IV-B. Specifically, the solution to Case I
can be determined through the computation of a maxi-
mum matching, whose computational complexity is given
by O(

√
|X ∪ U||EX+,X−∪EU+,X− |) [24]. Alternatively, the

solution to Case II can be obtained by determining the
strongly connected components of the system digraph, which
can be obtained by running a depth-first search algorithm
twice [24] and incurring in O(|X ∪ U|2) computational
complexity. A MATLAB implementation of Algorithm 3 can
be found in [26]. �

V. SIMULATIONS

In this section, we illustrate the use of the main results of
this paper. In particular, given a structurally uncontrollable
system, we determine the minimum number of additional
edges required for ensuring structural controllability in a
some artificial network models. First, in Section V-A, we
provide a pedagogical example capturing the outcome of the
different steps of Algorithm 1. In Section V-B, we evaluate
the minimum number of edges required in the context of
large-scale randomly generated networks.

A. Illustrative Example

Consider the pair (Ā, B̄), whose system digraph is de-
picted in Figure 6. Notice that the system is not structurally
controllable since both conditions in Theorem 1 fail to
hold. Therefore, additional edges are required to ensure
structural controllability. Towards this goal, we invoke Al-
gorithm 3 to obtain an optimal edge-addition configuration
that solves Problem 1 given (Ā, B̄). In this algorithm, we
need to decompose the system digraph G(Ā, B̄) accord-
ing to the reachability of its state vertices. In particular,
the set of reachable state vertices is given by R1 =
{x1, . . . , x4}, while the set of unreachable state vertices is
N = {x5, . . . , x10}. Subsequently, we find the unreachable
source SCCs, whose vertex sets are denoted by N1,N2, and
N3 in Figure 6; hence, the set of states in unreachable source
SCCs is {x5, x7, x8, x10}. Step 2 of Algorithm 3 computes
a maximum matching M̄ using Algorithm 2. In Figure 7-
(a), we present in red such maximum matching, whose
set of left-unmatched state vertices and right-unmatched
vertices are UXL (M̄) = {x2, x9} and UR(M̄) = {x5, x10},
respectively. Notice that x5 and x10 belong to two different
unreachable source SCCs; hence, the unreachable source
assignability number (USAN) equals two, i.e., q = 2. As
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Algorithm 3 Computing an optimal edge-addition configu-
ration Ẽ∗ to Problem 2
Input: The system digraph G(Ā, B̄);
Output: An optimal edge-addition configuration Ẽ∗;

Step 1: System digraph decomposition
1: Obtain the set of all reachable (resp. unreachable) state

vertices R1 (resp. N in G(Ā, B̄).
Step 2: Maximum matching attaining the USAN

2: Obtain a maximum matching M̄ associated with
B(Ā, B̄) attaining the USAN q using Algorithm 2;

3: if UXL (M̄) ∩R1 = ∅ then
4: Find v such that v ∈ R1 and (u, v) ∈ EU,X \ M̄ ;
5: Find v̂ such that {v̂+, v−} ∈ M̄ ;
6: M ←

(
M̄ \ {{v̂+, v−}}

)
∪ {{u+, v−}};

7: else
8: Set M equal to M̄ ;
9: end if

Step 3: Add edges to satisfy (a) and (b) in Theorem 2
10: Obtain the unique set of disjoint paths P =

⋃q
i=1 Pi in

the matching M , where the starting vertex of each Pi

is in some unreachable source SCC and the end vertex
is a left-unmatched state vertex;
. We remark that the uniqueness of P is a direct consequence of M
being a matching.

11: Construct two sets of vertices S = {s1, . . . , sq} and
T = {t1, . . . , tq} such that si and ti are the starting
and ending vertices of each path Pi, respectively;

12: Let Ẽ∗ ← ∅ and k ← 1;
13: if T ∩ R1 = ∅ then
14: Select a t0 such that t+0 ∈ UXL (M) and t0 ∈ R1;
15: for k ≤ q do
16: Ẽ∗ ← Ẽ∗ ∪ {(tk−1, sk)}; k ← k + 1;
17: end for
18: UXL (M)← UXL (M) \ {t+0 , . . . , t

+
q−1};

19: else
20: Find and apply a permutation of the i indexes asso-

ciated to the paths Pi such that t1 ∈ R1 (accordingly,
permute the elements in S and T );

21: for k < q do
22: Ẽ∗ ← Ẽ∗ ∪ {(tk, sk+1)}; k ← k + 1;
23: end for
24: Ẽ∗ ← Ẽ∗ ∪ {(tq, s1)}; UXL (M)← UXL (M) \ T ;
25: end if
26: UR(M)← UR(M) \ S;

Step 4: Add extra edges to satisfy Theorem 2
27: for v+

l ∈ UXL (M) do % to satisfy Theorem 2-(b)
28: if UR(M) 6= ∅ then
29: Ẽ∗ ← Ẽ∗ ∪ {(vl, vr)}, for some v−r ∈ UR(M);
30: UXL (M)← UXL (M)\v+

l ; UR(M)← UR(M)\v−r ;
31: end if
32: end for
33: Construct a graph Gaug = (X ∪U , EX ,X ∪ EU,X ∪ Ẽ∗).

Let Ci, i = 1, . . . , β, be the vertex-sets of β unreachable
source SCCs in the DAG of Gaug. Additionally, let
Raug be the set of all reachable vertices in Gaug;

34: for i = 1 : β do % to satisfy Theorem 2-(a)
35: Ẽ∗ ← Ẽ∗ ∪ {(vi, zi)}, for some vi ∈ Raug, zi ∈ Ci.
36: end for

a result, by invoking Theorem 3, it follows that an optimal
edge-addition configuration consists of p∗ = 3 edges.

Figure 6: System digraph G(Ā, B̄) containing a single input vertex u and
ten state vertices {x1, . . . , x10} (depicted in black dots). Black arrows
correspond to the edges of G(Ā, B̄). The dashed blue ellipsoid contains
all the reachable state vertices, i.e., R1 = {x1, . . . , x4}, whereas each red
dashed square contains an unreachable source SCC, whose vertex sets are
N1 = {x5}, N2 = {x10}, and N3 = {x7, x8}, respectively.

Now, notice that x2 is a reachable left-unmatched vertex,
i.e., x2 ∈ UXL (M̄) ∩ R1. Thus, Step 2 of Algorithm 3
sets M equal to M̄. To obtain an optimal edge-addition
configuration Ẽ∗, we should add an edge with tail in
x2 and head in some right-unmatched unreachable state
vertex. According to M, we obtain P = P1 ∪ P2, where
P1 = {x5, x6, x1, x2} and P2 = {x10, x9}. From P,
the set S = {s1 = x5, s2 = x10} and T = {t1 =
x2, t2 = x9} are constructed accordingly. As a result, Step
3 in Algorithm 3 adds the edge (x2, x10) to the edge-
addition configuration Ẽ∗. By selecting this edge, all vertices
reachable from x10 become reachable. Subsequently, the
algorithm adds (x9, x5) to Ẽ∗, after which Condition (b)
in Theorem 2 is satisfied, since M ∪ Ẽ∗B is a maximum
matching of G(Ā+ Ã, B̄) without right-unmatched vertices,
where Ẽ∗B = {(x−2 , x

+
10), (x−9 , x

+
5 )} represents the bipartite

representation of the edges in Ẽ∗ in G(Ā+ Ã, B̄).
Finally, it remains to ensure that every state vertex is

reachable, i.e., that Condition (a) in Theorem 2 is satis-
fied by G(Ā + Ã, B̄). Towards this end, notice that the
only remaining unreachable state source SCC is given by
N3 = {x7, x8}. Consequently, it suffices to add (x1, x7) into
Ẽ∗ to ensure their reachability. However, there are multiple
choices of edges to ensure the reachability of N3. More
specifically, instead of adding (x1, x7) into Ẽ∗, one can add
any edge (xi, xj) with i ∈ {1, . . . , 6, 10} and j ∈ {7, 8}
as an alternative. In summary, an optimal edge-addition
configuration, i.e., a solution to Problem 2, is given by
Ẽ∗ = {(x2, x10), (x9, x5), (x1, x7)}, which contains p∗ = 3
edges, as prescribed by Theorem 3.

B. Random Networks

In this section, we explore the minimum number of
edges p∗ contained in an optimal edge-addition configu-
ration Ẽ∗ required to ensure structural controllability of
random networks. We assume that the structure of Ā is
generated using an Erdős-Renyi model, i.e., [Ā]ij = 1 with
probability 0 < pa < 1 for all i, j; 0 otherwise. In our
simulations, the size of Ā is assumed to be n = 1000. We
let c ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.5, 2, 3, 4} and define pa = c

n
for every c accordingly. Thus, c represents the average sum
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Figure 7: This figure shows a maximum matching M̄ obtained using Step
2 in Algorithm 3. In (a), we depict the system bipartite graph associated
with the pair (Ā, B̄), whose edges are depicted in black and red (edges
in red are those in the maximum matching M̄ ). In (b), we depict in red
the edges from the system digraph G(Ā, B̄) associated with those in the
maximum matching M̄ .

of in-degree and out-degree of each vertex in the graph
represented by A. Moreover, we assume B̄ to be a random
diagonal matrix with pbn entries equal to 1, and 0 otherwise,
where pb ∈ (0, 1) represents the fraction of vertices to be
set equal to 1. With this particular setup, we examine the
value of p∗ as we vary c and pb, independently.

In Figure 8, we plot the empirical average of p∗ (over
10 random realizations). Notice that p∗ decreases as c or
pb increase. Intuitively, a larger value of c results in a
denser state digraph. Thus, both conditions in Theorem 1
are more likely to be satisfied. In other words, the number
of right-unmatched vertices associated with the maximum
matching of the system bipartite graph and the number
of unreachable state vertices are smaller as c increases.
Furthermore, when pb becomes close to one, almost every
state vertex is actuated by an individual input. Thus, (a) in
Theorem 1 holds with high probability. Since p∗ = nr+r−q,
it follows that p∗ decreases as c or pb increase.

To emphasize the effect of varying pb (respectively, c) on
the minimum number of additional edges to ensure structural
controllability, we plot in Figure 8-(a) (respectively, Fig-
ure 8-(b)) the evolution of p∗ when c is fixed (respectively,
pb is fixed). In Figure 8-(a), we observe that for a reasonably
small value of c (e.g., c = 3), the impact of pb in the
size of the optimal edge-addition configuration is almost
negligible. Intuitively, as c increases towards log(n), the
number of isolated vertices in the random subgraph induced
by state vertices decreases. In particular, if c ≈ log(n), then
the state digraph presents a unique giant strongly connected
component [27]. Subsequently, p∗ is small even when there
is only one state being actuated by an input. Indeed, in our
experiment, p̄∗ = 1.1 when c = 7 and pb = 0.001. In
Figure 8-(b), we observe an almost exponential decrease of
p∗ with respect to c.

VI. CONCLUSIONS

We have addressed the problem of designing the topology
of a networked dynamical system in order to achieve struc-
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Figure 8: In this figure, we plot the evolution of the average value of p∗

as c and pb vary. In (a), we fix the value of c and show the evolution
of p∗ versus pb, when pb ranges from 0.1 to 0.8 with step size 0.1.
The red, blue, and black lines correspond to c = 0.1, c = 1.5, and
c = 3, respectively. In (b), we plot the evolution of p̄∗ when c varies in
the interval c ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 1.5, 2, 3, 4}, while fixing pb. The
red, blue, and black lines show the value of p̄∗ when pb = 0.1, pb = 0.5,
and pb = 0.8, respectively. In both figures, the error bars represent the
standard deviation of p∗.

tural controllability. In particular, given a system digraph,
we have developed an efficient methodology to find the
minimum number of edges that must be added to the digraph
to render a structurally controllable system. As part of
our analysis, we have characterized the set of all possible
solutions to this problem, and provided a polynomial-time
algorithm to obtain an optimal solution. Additionally, we
have presented scalable algorithms to solve our problem
under additional assumptions that are commonly found
in engineering applications. Finally, we have numerically
illustrated our results in the context of random networked
systems. In future research, we will extend these results to
the case when the cost of adding a particular edge is not
a fixed value. Furthermore, since structural controllability
can be achieved by either (1) adding edges to the system
or (2) actuating more state vertices, we will explore the
trade-offs between these two alternative strategies. In certain
scenarios, it is of definite practical and theoretical interest to
find efficient sub-optimal algorithms with quality guarantees.
Finally, it would be interesting to solve the optimal design
problem under consideration when only a subset of variables
is required to be under control.
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APPENDIX A
Proof of Theorem 2. First, we show that if the set of edges
Ẽ contains SM and SB as subsets, then it must be a feasible
edge-addition configuration. We notice that, given the sys-
tem digraph G(Ā, B̄) = (X ∪U , EX ,X ∪EU,X ), it suffices to

show that SM ∪ SB satisfies both conditions in Theorem 1
when the graph Gaug ≡ (X ∪ U , EX ,X ∪ EU,X ∪ SM ∪ SB)
is considered. Hereafter, we denote the bipartite represen-
tation of Gaug by Baug ≡ B(X+ ∪ U+,X−, EX+,X− ∪
EU+,X− ∪ S±M ∪ S

±
B ), where S±M = {s(e) : e ∈ SM} and

S±B = {s(e) : e ∈ SB}.
To verify Condition (a) of Theorem 1, we decompose

the set of state vertices X , into R1 and N based on their
reachability as in Definition 1. Specifically, R1 contains
all the reachable state vertices and N contains all the
unreachable state vertices. Since N =

⋃r
h=1 ∆(Nth), every

state vertex v ∈ N must be contained in some ∆(Nth)
for some iteration step h. By the recursive construction of
the bridging set SB as described in Definition 1, Nth is
reachable provided that Nth−1

is also reachable. Thus, we
conclude that all v ∈ N become reachable in Gaug.

To verify Condition (b) of Theorem 1, let M be a
maximum matching associated with the system bipartite
graph. Next, we propose to consider a bipartite graph
BM ≡ B(X ∪ U , EX ,X ∪ EU,X ∪ S±M ), which is a sub-
graph of the bipartite graph Baug. By the construction of
SM , M ∪ SM is a matching in BM . Furthermore, it is a
maximum matching since it has no right-unmatched vertices
in BM . Since Baug has the same set of vertices as BM , it
follows that M∪SM is also a maximum matching associated
with Baug. Subsequently, M ∪SM satisfies Condition (b) in
Theorem 1 for the system bipartite graph Baug.

Therefore, if SM ∪SB is added to the system digraph, the
resulting system is structurally controllable, which implies
that SM ∪ SB is a feasible edge-addition configuration.

Next, we show that if Ẽ is a feasible edge-addition
configuration, then it must contain the union of the two
sets as described in the theorem. Assume, by contradiction,
that there is no such SB in Ẽ , then there is a source
SCC containing only state vertices that is unreachable.
This implies that none of its states are reachable, which
precludes the Condition (a) in Theorem 1 to hold; hence,
a contradiction is attained. On the other hand, assume that
for any maximum matchings M associated with B(Ā, B̄),
we have SM \ Ẽ 6= ∅, then there exists at least one right-
unmatched vertex corresponding to the head of an edge in
S±M \M , which precludes Condition (b) in Theorem 1 to
hold; hence, a contradiction is attained. Thus, a set Ẽ is a
feasible edge-addition configuration if and only if it contains
SM and SB as subsets.

Proof of Corollary 1. From Theorem 2, any feasible edge-
addition configuration contains SM , for some maximum
matching M associated with the system bipartite graph, and
SB , the bridging edges as subsets, i.e., Ẽ ⊇ SM ∪ SB .
Consequently, an optimal edge-addition configuration should
satisfy |Ẽ∗| ≥ |SM | = nr and |Ẽ∗| ≥ |SB | = r.

Proof of Theorem 3. Briefly, the proof requires the follow-
ing steps. First, we show that an optimal edge-addition
configuration Ẽ∗ must satisfy |Ẽ∗| ≥ nr + r − q. Then, we
construct a feasible edge-addition configuration such that its
cardinality achieves nr + r − q.
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From Theorem 2, a feasible edge-addition configuration
must satisfy Ẽ ⊇ SM ∪ SB . As a result, the cardinality
of a feasible edge-addition configuration should satisfy
|Ẽ | ≥ |SM ∪ SB |, which implies that |Ẽ | ≥ |SM | +
|SB | − |SM ∩ SB |. Notice that, SM = nr and |SB | = r,
then |Ẽ | ≥ nr + r − |SM ∩ SB |. Thus, an optimal edge-
addition configuration, which we denote as Ẽ∗, must satisfy
|Ẽ∗| ≥ nr + r−maxM,SB

|SM ∩ SB |, where the maximum
is taken over all possible maximum matchings M of the
system bipartite graph and possible bridging sets SB for the
system digraph. To obtain the value of maxM,SB

|SM∩SB |,
we recall that maximizing the intersection between SM

and SB gives the maximum number of right-unmatched
vertices across all possible maximum matchings associated
with B(Ā, B̄) in the unreachable source SCCs, i.e., the un-
reachable source assignability number q, from Definition 3.
Therefore, we have that maxM,SB

|SM ∩ SB | = q, which
implies that |Ẽ∗| ≥ nr + r − q. Next, we show that there
exists a feasible edge-addition configuration that achieves
p∗ = nr + r − q, which we approach by construction.

Given the system digraph G(Ā, B̄), we partition its state
vertices based on reachability. Specifically, we denote R1

as the set of all reachable state vertices and N as the
set of all unreachable state vertices. Moreover, we use
N1, . . . ,Nr ⊆ N to denote the vertex sets of r source SCCs
that are unreachable, as in Definition 1. Furthermore, let Gr

be the R1-induced subgraph of G(Ā, B̄).
Next, we obtain a maximum matching M̄ that attains

the USAN using Algorithm 2. Without loss of generality,
we assume there are q unreachable-assignable source SCCs
whose vertex sets are denoted as N1, . . . ,Nq with q ≤ r.
Let UXL (M̄) and UR(M̄) be the set of left-unmatched and
right-unmatched state vertices associated with M̄ , respec-
tively. We can obtain a digraph G(V(s−1(M̄)), E(s−1(M̄)))
from M̄ , where E(s−1(M̄))) = {s−1(e) : e ∈ M̄} and
V(s−1(M̄)), the vertices used by the edges belonging to
E(s−1(M̄)). In particular, the set of edges E(s−1(M̄))
is spanned by a disjoint union of paths {Pi}i∈I and
cycles {Cj}j∈J , where I and J denote their indices.
Furthermore, to construct an optimal edge-addition con-
figuration, we define the following sets according to the
correspondence between the maximum matching attaining
the USAN q and the path and cycle decomposition captured
by G(V(s−1(M̄)), E(s−1(M̄))). Let VL be the set of ending
vertices of paths in {Pi}i∈I whose starting vertex is in U .
Let S be the set containing q starting vertices corresponding
to disjoint paths in {Pi}i∈I and belonging to different
unreachable source SCCs. Lastly, let S± = {x+

i : xi ∈ VL},
which by construction is a subset of left-unmatched vertices
associated with M̄. Thus, either UXL (M̄) ∩ S± 6= ∅ or
UXL (M̄) ∩ S± = ∅ holds.

We now begin to construct a feasible edge-addition
configuration that achieves p∗ under the assumption that
UXL (M̄) ∩ S± 6= ∅ holds. We first initialize Ẽ∗ to be an
empty set. Then, at the initialization (k = 1), we add an edge
(v1, z1) into Ẽ∗, where v+

1 ∈ UXL (M̄)∩S± and z−1 is a right-
unmatched vertex associated with M̄ in some unreachable
source SCCs, i.e., z1 ∈ Nl for some l ∈ {1, . . . , q}.

Since v+
1 ∈ S±, it follows that v1 ∈ R1. Consequently,

if we add the edge (v1, z1) to the system digraph, then
the vertex z1 becomes reachable, which implies that all
the state vertices in ∆(Nl) become reachable as well. On
the other hand, if z−1 ∈ UR(M̄), then there must exist a
path in G(V(s−1(M̄)), E(s−1(M̄))) departing from z1. In
addition, the end of this path is a left-unmatched state vertex
v+

2 ∈ UXL (M̄) with v+
2 6= v+

1 . In particular, v2 ∈ ∆(Nl)
since it is reachable from z1. Then, we can add another
edge departing from v+

2 to another right-unmatched vertex
z−2 in a different unreachable source SCC, i.e., to add the
edge (v2, z2) to Ẽ . We iterate this procedure for another q−1
steps, i.e., k = 2, . . . , q, until all q unreachable-assignable
SCCs become reachable by adding edges into Ẽ∗.

Now, without loss of generality, let Ẽ∗ = {(vk, zk) : k =
1, . . . , q}, where v+

k ∈ UXL (M̄) and z−k ∈ UR(M̄) for all
k = 1, . . . , q, respectively. Nonetheless, there are r − q
remaining unreachable source SCCs, i.e., Nq+1, . . . ,Nr. To
ensure reachability of all state vertices, it suffices to add
edges from the set of reachable state vertices to each one
of the remaining unreachable source SCCs. Consequently,
the complementary set of edges to account in Ẽ∗ is a
set of bridging edges containing r edges by Definition 1.
However, as implied by Theorem 2, to construct a feasible
edge-addition configuration, we still need to include SM

as a subset. Towards this service, we notice that q right-
unmatched vertices, i.e., those in the unreachable-assignable
SCCs, have been matched during the iterative procedure.
Consequently, it suffices to add nr − q edges to ensure that
all the remaining right-unmatched state vertices are matched,
i.e., those in UR(M̄) \ {z−1 , . . . , z−q }. As such, we have
constructed a set of edges considered to be added, i.e.,
Ẽ∗, that contains a set of bridging edges and SM̄ for the
maximum matching M̄. As a result, Ẽ∗ is a feasible edge-
addition configuration by Theorem 2. In addition, it contains
nr + r − q edges, which implies that it is an optimal edge-
addition configuration – the construction considered in this
paragraph leads to Step 4 of Algorithm 3.

Next, we discuss the case when UXL (M̄) ∩ S± = ∅.
First, we define G±r = {x−i : xi ∈ R1} as the set of left-
unmatched state vertices in Gr. As a consequence, two
particular cases may happen: either UXL (M̄) ∩ G±r = ∅
or UXL (M̄) ∩ G±r 6= ∅ holds. Consider the first case,
where UXL (M̄) ∩ G±r = ∅, since UXL (M̄) ∩ S± = ∅, then
the subgraph of G(V(s−1(M̄)), E(s−1(M̄))) constrained to
the vertices in Gr consists only of cycles. Therefore, and
without loss of generality, we let cr be the number of those
cycles, whose set of vertices are denoted as Ci, i = 1, . . . , cr.
According to the assumption ‖B̄‖0 6= 0, there exists an edge
(u, v) ∈ EU,X , with u ∈ U and v ∈ V. Additionally, v
belongs to the vertex set of some cycle, i.e., v ∈ Cj for
some j ≤ cr, which we represent by the ordered sequence
(v, v1, . . . , vk, v). If we replace the cycle (v, v1, . . . , vk, v)
by the path (u, v, v1, . . . , vk), then the new digraph will
correspond to another maximum matching M̂ associated
with B(Ā, B̄) with a reachable left-unmatched state vertex
vk. Additionally, UXL (M̂) ∩ S± 6= ∅, and, as a result, we
may reduce the case with assumptions UXL (M̄) ∩ S± = ∅
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and UXL (M̄) ∩G±r = ∅ to the case previously discussed by
constructing a new maximum matching M̂ – this procedure
corresponds to steps 3 – 9 in Algorithm 3.

Now, we suppose that UXL (M̄) ∩ S± = ∅ and UXL (M̄) ∩
G±r 6= ∅ hold simultaneously. Then, there exists v1 ∈
UXL (M̄) ∩ G±r and vr ∈ UR(M̄) such that (vr, . . . , v1)
is a path whose edges are associated with those in M̄
through a signal-notation mapping. In particular, vr /∈ U .
If vr is not a vertex in some unreachable source SCCs,
then we may apply the procedure introduced in the case
when UXL (M̄) ∩ S± 6= ∅ to construct a feasible edge-
addition configuration containing p∗ edges. Nonetheless, if
vr is a vertex in some unreachable source SCCs, then a
modification of the iterative construction must be adopted.
Specifically, recall that previously, at the basis step of
iteration, we add (v1, z1) into Ẽ∗, in which z1 ∈ Nl is
arbitrarily chosen. Now, if z1 is chosen to be equal to
vr, then (v1, vr) is added into Ẽ∗ and follow-up iteration
steps cannot be performed since the end of the path starting
at z1 is v1. Consequently, we must adopt the following
modification: if q = 1, then we must add an edge (v1, vr)
into Ẽ∗; otherwise, we add an edge (v1, z1) into Ẽ∗ with
z−1 ∈ UR(M̄) being a vertex in some unreachable source
SCCs and z1 6= vr at the basis step. In other words, when
constructing the first q steps of a feasible edge-addition
configuration, we force z−i ∈ UR(M̄), zi ∈ Nl and zi 6= vr
for all i = 1, . . . , q − 1 and zq = vr, whereas the rest of
the construction readily follows as previously discussed. As
such, we can obtain a feasible edge-addition configuration
achieving p∗ if UXL (M̄) ∩ S± = ∅ and UXL (M̄) ∩G±r 6= ∅
simultaneously – this construction procedure is summarized
in steps 20 – 32 in Algorithm 3.

Therefore, we conclude that if ‖B̄‖0 > 0, we can
construct a feasible edge-addition configuration achieving
p∗ = nr + r − q.

Proof of Theorem 4. The correctness of the algorithm fol-
lows from the proof of Theorem 3. To determine the
computational complexity of the algorithm, we consider
the computational complexity incurred by each one of the
major steps in the algorithm. Specifically, Step 1 requires
the computation of strongly connected components, which
can be achieved by applying the depth-first search algorithm
twice with complexity O(|X ∪ U| + |EX ,X ∪ EU,X |) [24].
Finding a minimum-weighted maximum matching in Step 2
incurs in O(|X ∪U|3), and can be achieved as described in
Algorithm 2, and we can guarantee that exists at least one
left-unmatched vertex of M̄ that is reachable in O(|X |).
In Step 3, we iteratively construct an optimal edge-addition
configuration as described in the proof of Theorem 3, which
can be attained in O(|X | + |U|), since it searches over the
computed maximum matching and the source SCCs in the
system digraph. Finally, in Step 4, we add the remaining
edges to ensure conditions in Theorem 2, which incurs
in O(|X |). In summary, the computational complexity of
Algorithm 3 is dominated by the second step, which implies
an overall computational complexity in O(|X ∪ U|3).
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