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Abstract. Many statistical practices involve selecting a model (a reduced model
from the full model) and then use it to do estimation with possible thresholding.
Is it possible to do so and still come up with an estimator always better than the
naive estimator without model selection? The James-Stein estimator allows us to
do so. However, the James-Stein estimator considers only one reduced model, the
origin. What should be more desirable is to select a data chosen reduced model
(of an arbitrary dimension) and then do estimation with possible thresholding. In
this paper, we construct such estimators. We apply the estimators to the wavelet
analysis. In the finite sample settings, these estimators are minimax and perform the
best among the well-known estimators trying to do model selection and estimation at
the same time. Some of our estimators are also shown to be asymptotically optimal.
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1. Introduction.

In virtually all statistical activities, one constructs a model to summarize the

data. Not only could the model provide a good and effective way of summarizing

the data, the model if correct often provides more accurate prediction. This point

has been argued forcefully in Gauch (1993). Is there a way to use the data to
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select a reduced model so that if the reduced model is correct the model based

estimator will improve on the naive estimator (constructed using a full model) and

yet never do worse than the naive estimator even if the full model is actually the

only correct model? James–Stein estimation (1961) provide such a striking result

under normality assumption. Any estimator such as the James-Stein estimator

that does no worse than the naive estimator is said to be minimax. See the precise

discussion right before Lemma 1 of Section 2. The problem with the James–Stein

positive part estimator is however that it selects only between two models: the

origin and the full model. It is possible to construct estimators similar to James–

Stein positive part to select between the full model and another linear subspace.

However it always chooses between the two. The nice idea of George (1986a,b) in

multiple shrinkage does allow the data to choose among several models; it however

does not do thresholding as is the aim of the paper.

In many applications, wavelets is a very important model in statistics. To use

the model, it involves model selection among the full model or the models with

smaller dimensions where some of the wavelet coefficients are zero. Is there a way

to select a reduced model so that the estimator based on it does no worse in any

case than the naive estimator based on the full model, but improves substantially

upon the naive estimator when the reduced model is correct? Again, the James–

Stein estimator provides such a solution. However it selects either the origin or

the full model. Furthermore, the ideal estimator should do thresholding, namely

it should truncate the components which are small and preserves (or shrinks) the

other components. However, to the best knowledge of the authors, no such minimax

estimators have been constructed. In this paper, we provide minimax estimators
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which perform thresholding simultaneously.

Section 1 through Section 3 develop the new estimator for the canonical form

of the model by solving Stein’s differential inequality. Sections 4 and 5 provide an

approximate Bayesian justification and an empirical Bayes interpretation. Sections

7 and 8 apply the result to the wavelet analysis. The proposed method outperforms

several prominent procedures in the statistical wavelet literature.

2. New Estimators for a Canonical Model.

In this section, we shall consider the canonical form of the problem of a multinor-

mal mean estimation problem under the squared error loss. Hence we shall assume

that our observation

Z = (Z1, . . . , Zd) ∼ N(θ, I)

is a d–dimensional vector consisting of normal random variable with mean θ =

(θ1, . . . , θd), and a known covariance identity matrix I. The case when the variance

of Zi is not known will be discussed in Section 7.

The connection of this problem with wavelet analysis will be pointed out in

Sections 7 and 8. In short Zi and θi represent the wavelet coefficients of the

data and the true curve in the same resolution, respectively. Furthermore d is

the dimension of a resolution. For now, we shall seek for an estimator of θ based

on Z. We shall, without loss of generality, consider an estimator of this form

δ(Z) = (δ1(Z), . . . , δd(Z)), where

δi(Z) = Zi + gi(Z)

where g(Z) : Rd → R and search for g(Z) = (g1(Z), . . . , gd(Z)). To insure that

the new estimator (perhaps with some thresholding) do better than Z (which does
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no thresholding), we shall compare the risk of δ(Z) to the risk of Z with respect to

the `2 norm. Namely

E‖δ(Z)− θ‖2 = E

d∑
i=1

(δi(Z)− θi)2.

It is obvious that the risk of Z is then d. We shall say that an estimator strictly

dominates the other if the former has a smaller risk for every θ. We shall say

one dominates the other if the former has a risk no greater than the latter for

every θ, but has smaller risk for some θ. Note that Z is a minimax estimator,

i.e., it minimizes sup
θ

E|δ0(Z) − θ|2 among all δ0(Z). Consequently any δ(Z) that

dominates Z is also minimax.

To construct estimator dominates Z, we use the following lemma.

Lemma 1. (Stein 1981) Suppose that g : Rd → Rd is a measurable function with

gi(·) as the ith component. If for every i, gi(·) is almost differentiable with respect

to ith component. If

E
(∣∣∣ ∂

∂Zi
gi(Z)

∣∣∣) <∞, for i = 1, . . . , d

then

Eθ‖Z + g(Z)− θ‖2 = Eθ{d + 2∇ · g(Z) + ‖g(Z)‖2},

where ∇ · g(Z) =
d∑
i=1

∂gi(Z)
∂Zi

. Hence if g(Z) solves the differential inequality

2∇ · g(Z) + ‖g(Z)‖2 < 0, (0)

the estimator Z + g(Z) strictly dominates Z.

Remark: gi(z) is said to be almost differentiable with respect to zi, if for almost

all zj , j 6= i, gi(z) can be written as a one dimensional integral of a function with



MINIMAX ESTIMATION WITH THRESHOLDING 5

respect to zi. For such zj ’s, j 6= i, using Berger’s (1980) terminology, one calls

gi(Z) to be absolutely continuous with respect to zi.

To motivate the proposed estimator, note that the James–Stein positive estima-

tor has the form

θJSi =
(
1− a

‖Z‖2
)

+
Zi

when c+ = max(c, 0) for any number c. This estimator, however, truncates indepen-

dently of the magnitude of |Zi|. Indeed, it truncates all or none of the coordinates.

To construct an estimator that truncates only the coordinate with small |Zi|’s, it

seems necessary to replace a by a decreasing function h(|Zi|) of |Zi| and consider

θ̂+
i =

(
1− h(|Zi|)

D

)
+
Zi

where D, independently of i, is yet to be determined. (In a somewhat different ap-

proach, Beran and Dümbgen (1998) constructs a modulation estimator correspond-

ing to a monotonic shrinkage factor.) With such a form, θ̂+
i = 0 if h(|Zi|) ≥ D,

which has a better chance of being satisfied when |Zi| is small.

We consider a simple choice h(|Zi|) = |Zi|−2/3, and find a D = Σ|Zi|4/3 to solve

the differential inequality (0). This leads to the untruncated version θ̂ with the ith

component

θ̂i(Z) = Zi + gi(Z) where gi(Z) = −aD−1sign(Zi)|Zi|1/3. (1)

Here and later sign(Zi) denotes the sign of Zi. It is possible to use other decreasing

functions h(|Zi|) and other D.

In general, we consider, for a fixed β ≤ 2, an estimator of the form

θ̂i = Zi + g(Z), (2)
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where

gi(Z) = −a
sign(Zi)|Zi|β−1

D
and D =

d∑
i=1

|Zi|β . (3)

Although at first glance, it may seem hard to justify this estimator, it has a Bayesian

and Empricial Bayes justification in Sections 4 and 5. It is also a class of estimators

which include, as a special case, the James-Stein estimator corresponding to β = 2.

Now we have

Theorem 2. For d ≥ 2 and 1 < β ≤ 2, θ̂(Z) dominates Z if and only if

0 < a ≤ 2(β − 1) inf
θ

Eθ
(
D−1

∑p
i=1 |Zi|β−2

)
Eθ(D−2

∑p
i=1 |Zi|(2β−2))

− 2β.

Proof: Obviously for Zj 6= 0, ∀ j 6= i, gi(Z) can be writen as the one–dimensional

integral of

∂

∂Zi
gi(Z) = β(−a)(−1)D−2|Zi|(2β−2) + (β − 1)(−a)D−1(|Zi|β−2)

with respect to Zi. (The only concern is at Zi = 0.) Consider only nonzero Zj ’s,

j 6= i. Since β > 1, this function however is integrable with respect to Zi even over

an integral including zero.) It takes some effort to prove that E(| ∂∂Zi gi(Z)|) <∞.

However one only needs to focus on Zj close to zero. Using the spherical–like

transformation r2 =
∑
|Zi|β , we may show that if d > 2 and β > 1 both terms in

the above displayed expression is integrable.

Now

‖g(Z)‖2 = a2D−2
d∑
i=1

|Zi|2β−2.

Hence

Eθ‖Z + g(Z)− θ‖2 ≤ d, for every θ,
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if and only if,

Eθ{2∇ · g(Z) + ‖g(Z)‖2} ≤ 0, for every θ,

i.e.,

Eθ

(
a
(
(2β)D−2

d∑
i=1

|Zi|(2β−2) − (2β − 2)D−1
d∑
i=1

|Zi|β−2
)

+ a2D−2
d∑
i=1

|Zi|2β−2
)
≤ 0,

for every θ, (4)

which is equivalent to the condition stated in the Theorem. ¤

Theorem 3. The estimator θ̂(Z) with the ith component given in (2) and (3)

dominates Z provided 0 < a ≤ 2(β − 1)d− 2β and 1 < β ≤ 2.

Proof: By the correlation inequality

d
( d∑
i=1

|Zi|2β−2
)

<
( d∑
i=1

|Zi|(β−2)
)( d∑

i=1

|Zi|β
)
.

Hence

Eθ
(
D−1

∑d
i=1 |Zi|β−2

)
Eθ(D−2

∑d
i=1 |Zi|2β−2)

>
EθD

−1
∑
|Zj |β−2

1
dEθD

−1
∑
|Zi|β−2

= d.

Hence if 0 < a ≤ 2(β − 1)d − 2β, then the condition in Theorem 2 is satisfied,

implying domination of θ̂(Z) over Z.

The following theorem is a generalization of Theorem 6.2 on page 302 of Lehmann

(1983) and Theorem 5.4 on page 356 of Lehmann and Casella (1998). It shows that

taking the positive part will improve componentwise. Specifically for an estimator

(θ̃1(Z), . . . , θ̃d(Z)) where

θ̃i(Z) = (1− hi(Z))Zi,

the positive part estimator of θ̃i(Z) is denoted as

θ̃+
i (Z) = (1− hi(Z))+Zi.
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Theorem 4. Assume that hi(Z) is symmetric with respect to the ith coordinate,

then

Eθ(θi − θ̃+
i )2 ≤ Eθ(θi − θ̃i)2.

Furthermore, if

Pθ(hi(Z) > 1) > 0, (5)

then

Eθ(θi − θ̃+
i )2 < Eθ(θi − θ̃i)2.

Proof: Simple calculation shows that

Eθ(θi − θ̃+
i )2 − Eθ(θi − θ̃i)2 = Eθ((θ̃+

i )2 − θ̃2
i )− 2θiEθ(θ̃+

i − θ̃i). (6)

Let’s calculate the expectation by conditioning on hi(Z). For hi(Z) ≤ 1, θ̃+
i = θ̃i.

Hence it is sufficient to condition on hi(z) = b where b > 1 and show that

Eθ((θ̃+
i )2 − θ̃2

i | hi(Z) = b)− 2θiEθ(θ̃+
i − θ̃i | hi(Z) = b) ≤ 0,

or equivalently,

−Eθ(θ̃2
i | hi(Z) = b) + 2θiEθ(θ̃i | hi(Z) = b) ≤ 0.

Obviously, the last inequality is satisfied if we can show

θiEθ(θ̃i | hi(Z) = b) = θi(1− b)Eθ(Zi | hi(Z) = b) ≤ 0,

or equivalently

θiEθ(Zi | hi(Z) = b) ≥ 0.

We may further condition on Zj = zj for j 6= i and it suffices to establish

θiEθ(Zi | hi(Z) = b, Zj = zj , j 6= i) ≥ 0. (7)
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Given that Zi = zj , j 6= i, consider only the case where hi(Z) = b has solutions.

Due to symmetry of hi(Z), these solutions are in pairs. Let ±yk, k ∈ K, denote

the solutions. Hence the left hand side of (7) equals

θiEθ(Zi | Zi = ±yk, k ∈ K)

=
∑
k∈K

θiEθ(Zi | Zi = ±yk)Pθ(Zi = ±yk | Zi = ±yk, k ∈ K).

Note that

θiEθ(Zi | Zi = ±yk) =
θiyke

ykθi − θiyke
−ykθi

eykθi + e−ykθi
, (8)

which is symmetric in θiyk and is increasing for θiyk > 0. Hence (8) is bounded

below by zero, a bound obtained by substituting θiyk = 0 in (8). Consequently we

establish that (6) is nonpositive, implying the domination of θ̃+ over θ̃.

The strict inequality of the theorem can be established by noting that the right

hand side of (6) is bounded above by Eθ[(θ̃+
i )2−θ̃2

i ] which by (5) is strictly negative.

Theorem 4 implies the following Corollary.

Corollary 5. Under the assumption of Theorem 3, Z is dominated by θ̂ which in

turn, is strictly dominated by its positive part θ̂+ with ith component

θ̂+
i = (1− aD−1|Zi|β−2)+Zi. (9)

It is interesting to note that estimator (9), for β < 2, does give zero as the esti-

mator when |Zi| are small. When applied to the wavelet analysis, it truncates the

small wavelet coefficients and shrinks the large wavelet coefficients. The estimator

lies in a data chosen reduced model.

Moreover, for β = 2, Theorem 3 reduces to the classical result of Stein (1981)

and (9) to the positive part James-Stein estimator. The above bound of a for
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domination stated in Theorem 3 works only if β > 1 and d > β/(β − 1). Although

we cannot provide a domination result for β < 1, it does not mean that such a result

is impossible. We are particularly interested in β > 1
2 , since in our experiences with

wavelet analysis, β may sometimes be below 1 and is usually large than 1
2 . The

asymptotic result in Section 8 only assumes that β > 0.

Section 3. What is the Largest Possible a?

In wavelet analysis, for a reasonable smooth function, a vast majority of the

wavelet coefficients are zero. Based on such information, it seems reasonable to

choose an estimator that shrinks the most as long as it does not overshrink. Over-

shrinking can be prevented as long as the resultant estimator dominates Z. Hence

in this section we shall set out to find the largest possible a. The pursuit also yields

domination result for 1
2 < β < 1. Since ultimately we will recommend the positive

part estimator, the reduction in risk will be maximized for small θi’s, a situation

that happens often in the wavelets analysis.

To investigate the largest possible shrinkage, we evaluate the Bayes risk of θ̂ in

(2) and (3), assuming that θi are i.i.d. N(0, τ2). Note that the difference of the

Bayes risk of θ̂ and Z equals ED, where

D =
d∑
i=1

(
(Zi + gi(Z)− θi)2 − (Zi − θi)2

)
=

d∑
i=1

(2(Zi − θi)gi(Z) + g2
i (Z)),

and

gi(Z) = −a sign(Zi)D−1|Zi|β−1.

To calculate the expectation with respect to Zi and θi, we first calculate the con-
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ditional expectation given Zi. Since E(θi | Zi) = τ2Zi
1+τ2 , we obtain

ED = EE(D | Z1, . . . , Zp) = E
( d∑
i=1

[
2

Zi
1 + τ2

gi(Z) + g2
i (Z)

])
= E

( d∑
i=1

[ −2a|Zi|β
(1 + τ2)D

+
a2|Zi|2β−2

D2

])
= E

( a2

D2

d∑
i=1

|Zi|2β−2 − 2a

(1 + τ2)

)
.

Note that D ≤ 0 if

0 ≤ a ≤
2

(1+τ2)

E
(

1
D2

∑d
i=1 |Zi|2β−2

) (10)

where the expectation is taken over Zi which are i.i.d. and

Zi ∼ N(0, 1 + τ2).

Let ξi = Zi/
√

1 + τ2 and consequently ξi ∼ N(0, 1). We see that condition (10) is

equivalent to

0 ≤ a ≤ aB = 2/
(E

∑p
i=1 |ξi|2β−2

(
∑
|ξi|β)2

)
. (11)

Hence we have the following theorem.

Theorem 6. Assume the prior distribution that θi are i.i.d. N(0, τ2). Then the

Bayes risk of θ̂ is no greater than Z = (Z1, . . . , Zp) for every τ2 if and only if

0 ≤ a ≤ aB where aB is defined in (11).

Obviously the bound aB is a necessary bound for θ̂ to dominate Z. Our numerical

studies not reported here, however, show that it is sufficient for the domination of

θ̂ and hence θ̂+ over Z by Theorem 4.

There is a good reason for the domination result of θ̂+ when a = aB intuitively.

Note that for every τ2, and in particular for τ2 → ∞, Theorem 6 implies that θ̂
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has Bayes risk no greater than Z. Since θ̂+ dominates θ̂, this implies that θ̂+ tend

to have smaller risk than Z for large θ. However θ̂+ shrinks Z toward the origin,

it seems intuitively reasonable that it should have smaller risk than Z for small θ.

Consequently its risk should have a good chance to be no greater than Z for all θ.

This is similar to the argument of tail minimaxity of Berger (1976).

The normal assumption of θi seems limited. However, the domination result of

Theorem 6 holds for many other distributions. Indeed for any variance mixture

of normal, i.e., taking τ2 to be random with an arbitrary distribution, Theorem 6

holds. A special case of variance mixture of normal is the multivariate t distribution.

That is, θi has the same distribution as ξi/S. Here, as before, ξi are i.i.d. standard

normal and S independent of ξi’s, has the same distribution as
√

χ2
N/N where χ2

N

is a chi–squared random variable with N degrees of freedom.

What is the bound aB? It is easy to numerically calculate the bound aB by

simulating ξi ten thousand times and evaluate aB . Figure 1 below shows that,

for β = 4/3, aB is at least as big as 5
3 (d − 2) for virtually all d, since the ratio

of aB to the latter, which is plotted in Figure 1, is always larger than one. This

bound 5
3 (d − 2) is more than twice as big as the sufficient bound for β = 4

3 given

in Theorem 3.

Putting all these together, we come to the conclusion that the estimator θ̂+, with

ith component

θ̂+
i =

(
1−

5
3 (d− 2)Z−2/3

i∑d
i=1 Z

4/3
i

)
+
Zi, (12)

should have risk smaller than d. For d = 50, it is shown that θ̂+ dominates Z in

Figure 2. This estimator when applied to wavelet examples in Section 7 usually
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produce risks smaller than θ̃+ with a = 2
3 (d − 4), the bound given in Theorem 3

and Corollary 5 for β = 4/3. Also θ̃+ with a larger shrinkage factor a = 6
3 (d− 2) =

2(d−2) does not do as well for the examples of Section 5 either. This seems to have

overshrunk Z. It is interesting that the criterion of dominating Z does provide a

very useful guidance in choosing a. Also using the largest possible a for domination

leads to the best choice especially in the situation that most of θi’s are zero as in

the wavelet case.

It would be convenient to have an approximate formula for the upper bound aβ

for every β. It seems tempting to derive the asymptotic limit of aβ/d as d → ∞,

which, for 1
2 < β ≤ 2, equals

Cβ = 2/(E|ξi|2β−2/(E|ξi|β)2) =
4
(
Γ
(
β+1

2

))2
√

πΓ
(

2β−1
2

) . (13)

It may seem tempting to use Cβ(d − 2). For the case of β = 4/3, this is about

(5.17)/[3(d − 2)] rather than 5/[3(d − 2)] as suggested by (12). Note that 97% of

(5.17)/3 is approximately 5/3. Hence we end up with the suggested formula

a = 0.97Cβ(d− 2). (14)

Although this formula is suggested by β = 4/3, further numerical investigation not

reported here shows that using (14) for a in (9) leads to a θ̂ that dominates Z.

4. Approximate Bayesian Justification.

It would seem interesting to justify the proposed estimation from a Bayesian’s

point of view. To do so, we consider a prior of the form

π(θ) = 1 ‖θ‖β ≤ 1

= 1/(‖θ‖β)βc, ‖θ‖β > 1
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where ‖θ‖β = (
∑
‖θi‖β)1/β , and c is a positive constant which can be specified to

match the constant a in (9). In general the Bayes estimator is given by

Z +∇ log m(Z)

where m(Z) is the marginal probability density function of Z. Namely,

m(Z) =
∫
· · ·
∫

e−
1
2‖Z−θ‖

2

(
√

2π)d
π(θ)dθ.

The following approximation follows from Brown (1971), which asserts that

∇ log m(Z) can be approximated by∇ log π(Z). The proof is given in the Appendix.

Theorem 7. With π(θ) and m(X) given above,

lim
|Zi|→+∞

∇i log m(Z)
∇i log π(Z)

= 1.

Hence by Theorem 7, the ith component of the Bayes estimator equals approxi-

mately

Zi +∇i log π(Z) = Zi −
cβ|Zi|β−1sign(Zi)∑

|Zi|β
.

This is similar to the untruncated version of θ̂ in (2) and (3).

5. Empirical Bayes Justification.

Based on several signals and images, Mallat (1989) proposed a prior for the

wavelelet coefficients θi as the exponential power distribution with the probability

density function (p.d.f.) of the form

f(θi) = ke−|
θi
α |
β

(15)

where α and β < 2 are positive constants and

k = β/(2αΓ(1/β))
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is the normalization constant. See also Vidakovic (1999, p.194). Using method of

moments, Mallat estimated value of α and β to be 1.39 and 1.14 for a particular

graph. However, α and β are typical unknown.

It seems reasonable to derive an Empirical Bayes estimator based on this class

of prior distributions. First we assume that α is known. Then the Bayes estimator

of θi is

Zi +
∂

∂Zi
log m(Z).

Similar to the argument in Theorem 7 and noting that for β < 2,

e−|θi+Zi|
β/αβ/e−|θi|

β/αβ → 1 as θi →∞,

the Bayes estimator can be approximated by

Zi +
∂

∂Zi
log π(Zi) = Zi −

β

αβ
|Zi|β−1sign(Zi). (16)

Note that, under the assumption that α is known, the above expression is also the

asymptotic expression of the maximum likelihood estimator of θi by maximizing

the joint p.d.f. of (Zi, θi). See Proposition 1 of Antoniadis, Leporini and Desquet

(2002) as well as (8.23) of Vidakovic (1999). In the latter reference, the sign of Zi

of (16) is missing due to a minor typographic error.

Since α is unknown, it seems reasonable to replace α in (16) by an estimator.

Assume that θi’s are observable. Then by (15) the joint density of (θ1, . . . , θd) is

[ β

2αΓ( 1
β )

]d
e−Σ

(
|θi|β

αβ

)]
.

Differentiating this p.d.f. with respect to α gives the maximum likelihood estimator

of αβ as

(βΣ|θi|β)/d. (17)
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However since θi is unknown and hence the above expression can be further esti-

mated by (16). For β < 2, the second term in (16) has a smaller order than the

first when |Zi| is large. Replacing θi by the dominating first term Zi in (16) leads

to an estimator of αβ as (βΣ|Zi|β)/p.

Substituting this into (16) gives

Zi −
d

Σ|Zi|β
|Zi|β−1sign(Zi)

which is exactly estimator θ̂i in (2) and (3) with a = d. Hence we have succeeded

deriving θ̂i as an Empirical Bayes estimator when Zi is large.

6. Data Estimated β.

Which β should one use in the estimator (9)? It seems reasonable to let the data

choose. To do so, let us rewrite (9) as

θ̂
(β)
i =

(
1− aβ |Zi|β−2

Dβ

)
+
Zi

where, to emphasize their dependence on β, we use Dβ and aβ to denote D and a

which are specified in (3), (13) and (14). One may then calculate SURE, namely

the Stein’s unbiased estimate of the risk of θ̂(β) = (θ̂β1 , . . . , θ̂βp )′ as

SURE = d +
d∑
i=1

(Z2
i − 2)Ii + aβ

(aβ |Zi|2β−2

D2
β

− 2(β − 1)
|Zi|β−2

Dβ
+ 2

β|Zi|2β−2

D2
β

)
Ici ,

where Ici = 1 − Ii and Ii is one or zero according to whether aβ |Zi|β−2 > Dβ or

not.

Now β̂, the minimizer of SURE, can be used to estimate β in θ̂(β). The resultant

estimator with a data estimated β is denoted as θ̂S . Hence

θ̂S = θ̂(β̂) (18)
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where β̂ minimizes SURE. This estimator turns out to have the smallest risk func-

tion as will be discussed in Section 7.

7. Connection to the Wavelet Analysis and the Numerical Results.

Wavelets have become a very important tool in many areas including Mathe-

matics, Applied Mathematics, Statistics, and signal processing. It is also applied

to numerous other areas of science such as chemometrics and genetics.

In statistics, wavelets have been applied to function estimation with amazing

results of being able to catch the sharp change of a function. Celebrated contribu-

tions by Donoho and Johnstone (1994 and 1995) focus on developing thresholding

techniques and asymptotic theories. In the 1994 paper, relative to the oracle risk,

their VisuShrink was shown to be asymptotically optimal. Further in 1995’s paper,

the expected squared error loss of their SureShrink is shown to nearly achieve the

asymptotic minimax rate over Besov spaces. Cai (1999) improved on their result

by establishing that the Block James–Stein (BlockJS) thresholding achieve exactly

the asymptotic global or local minimax rate over a class of Besov spaces.

Now specifically let y = (Y1, . . . , Yn)′ be samples of a function f , satisfying

Yi = f(ti) + εi (19)

where ti = (i−1)/n and εi are independently identically distributed (i.i.d.) N(0, σ2).

Here σ2 is assumed to be known and is taken to be one without loss of generality.

See a comment at the end of the paper regarding the unknown σ case. One wishes

to choose an estimate f̂ = (f̂(t1), . . . , f̂(tn)) so that its risk function

E‖f̂ − f‖2 = E
n∑
i=1

(f̂(ti)− f(ti))2,
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is as small as possible. Many discrete wavelet transformations are orthogonal trans-

formations. See Donoho and Johnstone (1995). Consequently, there exists an or-

thogonal matrix W , such that the wavelet coefficients of Y and f are Z = WY

and θ = Wf . Obviously the components Zi of Z are independent, having a nor-

mal distribution with mean θi and standard deviation 1. Hence previous sections

apply and exhibit many good estimators of θ. Note that, by orthogonality of W ,

for any estimator δ(Z) of θ, its risk function is identical to W ′δ(Z) as an estima-

tor of f = W ′θ. Hence the good estimators in previous sections can be inversely

transformed to estimate f well.

In all the applications to wavelets discussed in this paper, the estimators (includ-

ing our proposed estimator) apply separately to the wavelet coefficients of the same

resolution. Hence in (12), for example, d is taken to be the number of coefficients of

a resolution when applied to the resolution. In all the literature that we are aware

of, this has been the case as well. Figure 3 gives six true curves (made famous by

Donoho and Johnstone) from which the data are generated. For these six cases,

Figure 4 plots the ratios of the risks of the aforementioned estimator to n, the risk

of Y . Since most relative risks are less than one, this indicates that most estima-

tors perform better than the raw data Y . Our estimators θ̂+ in (12) and θ̂S in

(18), however, are the ones that are consistently better than Y . Furthermore, our

estimators θ̂+ and θ̂S virtually dominate all the other estimators in risk. Generally,

θ̂S performs better than θ̂+ virtually in all cases.

As shown in Figure 4, the difference in risks between θ̂+ and θ̂S are quite mi-

nor. Since θ̂+ is computationally less intensive, we focus on θ̂+ for the rest of the

numerical studies.
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Picturewise, our estimator does slightly better than other estimators. See Figure

5 for an example. Note that the picture corresponding to θ̂+ distinguishes most

clearly the first and second bumps from the right.

Based on asymptotic calculation, the next section also recommends a choice of

a in (20). It would seem interesting to comment on its numerical performance.

The difference between the a’s defined in (14) and (20) are very small when 64 ≤

p ≤ 8192 and when β is estimated by minimizing SURE. Consequently, for such

β, the risk functions of the two estimators with different a’s are very similar, with

a difference virtually bounded by 0.02. The finite sample estimator (where a is

defined in (14)) has a smaller risk about 75% of the times.

James–Stein estimator produces very attractive risk functions, sometimes as

good as the proposed estimator (12). However, it does not seem to produce good

graphs. Compare Figures 6 and 7.

In the simulation studies, we use the procedures MultiVisu and MultiHybrid

which are VisuShrink and SureShrink in WaveLab802. See

http://playfair.stanford.edu/∼wavelab. We use Symmlet 8 to do wavelet transfor-

mation. In Figure 4, signal to noise ratio (SNR) is taken to be 3. Results are similar

for other SNR’s. To include block thresholding result of Cai (1999), we choose the

lowest integer resolution level j ≥ log2(log n) + 1.

8. What if the Variance is not Known to be One?

So far, we have been focusing on the case where Zi has the standard deviation σ

known to be one. When σ is known and is not equal to one, a simple transformation
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applied to the problem suggest that (9) be modified as

(1− aσ2D−1|Zi|β−2)+Zi. (20)

Namely, a is replaced by aσ2.

In real applications, however, σ2 is typically unknown. One could then estimate

σ by σ̂, the proposed estimator for σ in Donoho and Johnston (1995, page 1218)

with this modification in (12) and (18), the resultant estimators are not minimax

according to some numerical simulations. However, they still perform the best or

nearly the best among all the estimators studied in Figure 4.

9. Asymptotic Optimality.

To study the asymptotic rate of a wavelet analysis estimator, it is customary to

assume the model

Yi = f(ti) + σεi, i = 1, . . . , n (21)

where ti = (i − 1)/n, σ = 1/
√

n and εi are assumed to be i.i.d. N(0, 1). The

estimator f̂ for f(·) that can be proved asymptotically optimal applies estimator

(20) with

a = (2 ln d)(2−β)/2mβ , 0 ≤ β ≤ 2, (22)

and

mβ = E|εi|β = 2β/2B((β + 2)/2)
√

π,

to the wavelet coefficients Zi of each resolution with dimensionality d of the wavelet

transformation of Yi’s. After applying the estimator to each resolution one at a time

to come up with the new wavelet coefficient estimators, one then uses the wavelet

base function to obtain one function f̂ in the usual way.
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To state the theorem, we use βαp,q to denote the Besov’s space with smoothness

α and shape parameters p and q. The definition of the Besov’s spce with respect to

the wavelet coefficients are given in (A.19). Now the asymptotic theorem is given

below.

Theorem 8. Let α, p, q and p > max(β, 1
α ), then there exists a constant C inde-

pendent of n and f such that

sup
θ∈Bαp,q

E

∫ 1

0

|f(t)− f̂(t)|2dt ≤ C(lnn)1−β/2n−2α/(2α+1). (23)

The asymptotic optimality stated in (22) is as good as what has been established

for hard and soft thresholding estimators in Donoho and Johnstone (1994), the

Garrott method in Gao (1998) and Theorem 4 in Cai (1999) and SCAD method

in Antoniadis and Fan (2001). However, the real advantage of our estimator is in

the finite sample risk as reported in Section 7. Also our estimators are constructed

to be minimax and hence have finite risk functions uniformly smaller than the risk

of Z. This estimator θ̂A for β = 4/3 however has a risk very similar to (12). See

Section 7.
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Appendix.

Proof of Theorem 8. Before relating to model (21), we shall work on the canon-

ical form:

Zi = θi + σεi, i = 1, 2, . . . , d

where σ > 0, and εi are independently identically distribution standard normal

random errors. Here θ̂ = (θ̂1, . . . , θ̂d) denotes the estimator in (20) with a defined

in (22). For the rest of the paper C denotes a generic quantity independent of d

and the unknown parameters. Hence the C’s below are not necessarily identical.

We shall first prove Lemma A.1 below. Inequality (A.1) will be applied to the lower

resolutions in the wavelet regression. The other two inequalities (A.2) and (A.3)

are for higher resolutions.

Lemma A.1. For any 0 ≤ β < 2, 0 < δ < 1, and some C > 0, independent of d

and θi’s, we have
d∑
i=1

E(θ̃i − θi)2 ≤ Cσ2d(ln d)(2−β)/2, (A.1)

and

E(θ̂i − θi)2 ≤ C(θ2
i + σ2dδ−1(ln d)−1/2) if

d∑
1

|θi|β ≤ σβ
(2− β

2β

)β
δ2mβd. (A.2)

Here and below, mβ denotes the expectation of |εi|β , defined right above the

statement of Theorem 8. Furthermore, for any 0 ≤ β < 1, there exists C > 0 such

that

E(θ̂Ai − θi)2 ≤ Cσ2 ln d. (A.3)

Proof: Without loss of generality, we will prove the theorem for the case σ = 1.
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By Stein’s identity,

E(θ̂i − θi)2 (A.4)

= E
[
1 + (Zi − 2)Ii +

(a2|Zi|2β−2

D
− 2a(β − 1)

|Zi|β−2

D
+ 2aβ

|Zi|2β−2

D2

)
Ici

]
.

Here Ii denotes the indicator function I(a|Zi|β−2 > D) and Ici = 1 − Ii. Conse-

quently

Ii = 1 if |Zi|2−β < a/D, (A.5)

and

Ici = 1 if a|Zi|β−2/D ≤ 1. (A.6)

From (A.4), and after some straightforward calculations,

E

d∑
i=1

(θ̂i − θi)2 (A.7)

= d + E
[ d∑
i=1

(|Zi|2−β |Zi|β − 2)Ii +
a|Zi|β−2

D

(a|Zi|β
D

− 2(β − 1)− 2β
|Zi|β
D

)
Ici

]
.

Using this and the upper bounds in (A.5) and (A.6), we conclude that (A.7) is

bounded above by

d + E
[ d∑
i=1

a|Zi|β
D

+
a|Zi|β

D
+ 2β

|Zi|β
D

]
+ 2|β − 1|d ≤ C(ln d)(2−β)/2d,

completing the proof of (A.1).

To derive (A.2) for 1 < β < 2, note that

E(1 + (Z2
i − 2)Ii) = θ2

i + E(−Z2
i + 2)Ici .

This and (A.4) imply that

E(θ̂i − θi)2 = θ2
i + E

{[(a|Zi|β−2

D

)2

Z2
i − Z2

i

]
Ici

}
+ E

{[
− 2(β − 1)

a|Zi|β−2

D
+ 2
]
Ici

}
+ E

[(
2βa
|Zi|β−2

D

|Zi|β
D

)
Ici

]
.
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Using (A.7), one can establish that the last expression is bounded above by

θ2
i + E[(−2(β − 1) + 2)Ici ] + E2β

|Zi|β
D

Ici ≤ θ2
i + E[(4 + 2β)Ici ] ≤ θ2

i + 8EIci . (A.8)

We shall show, under the condition in (A.2), that

EIci ≤ C(|θi|2 + dδ−1(log d)−1/2). (A.9)

This and (A.8) obviously establish (A.2). To prove (A.9), we shall consider two

cases: (i) 0 ≤ β ≤ 1 and (ii) 1 < β < 2. For case (i), note that, for any δ > 0, EIci

equals

P (a|Zi|β−2 ≤ D) = P (D ≥ a|Zi|β−2, |Zi| ≤ (2 ln d)1/2/(1 + δ))

+ P (D ≥ a|Zi|β−2, |Zi| ≥ (2 ln d)1/2/(1 + δ)).

Obviously, the last expression is bounded above by

P (D ≥ (1 + δ)2−βdmβ) + P (|Zi| ≥ (2 ln d)1/2/(1 + δ)). (A.10)

Now the second term is bounded above by

C(|θi|2 + (d1−δ√ln d)−1) (A.11)

by a result in Donoho and Johnstone (1994). To find an upper bound for the first

term in (A.10), note that by a simple calculus

|Zi|β ≤ |εi|β + |θi|β

due to 0 ≤ β ≤ 1. Hence the first term of (A.10) is bounded above by

P
( d∑

1

|εi|β ≥ (1 + δ)2−βdmβ −
∑
|θi|β

)
.
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Replacing
∑
|θi|β by the assumed upper bound in (A.2), the last displayed expres-

sion is bounded above by

P
( d∑

1

|εi|β ≥ dmβ [(1 + δ)2−β − (2− β)δ2]). (A.12)

Using the inequality

(1 + δ)2−β > 1 + (2− β)δ,

one concludes that the quantity inside the bracket, is bounded below by

1 + (2− β)(δ − δ2) > 1.

Hence the probability (A.12) decays exponentially fast. This and (A.11) then es-

tablish (A.9) for 0 ≤ β ≤ 1.

To complete the proof for (A.2), all we need to do is to prove (A.9) for case (ii),

1 < β < 2.

Similar to the argument for case (i), all we need to do is to show that the first

term in (4.10) is bounded by (4.11). Now applying the triangle inequality

D1/β ≤
(∑

|εi|β
)1/β

+
(∑

|θi|β
)1/β

to the first term of (A.10) and using some straightforward algebraic manipulation,

we obtain

P (D ≥ (1 + δ)2−βdmβ)

≤ P
( d∑

1

|εi|β ≥ dmβ

[{
(1 + δ)(2−β)/β −

(2− β

2β

)
δ2/β

}β])
. (A.13)

Note that

(1 + δ)(2−β)/β ≥ 1 +
(2− β)δ

2β
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and consequently the quantity inside the bracket is bounded below by[
1 +

2− β

2β
(δ − δ2/β)

]β
≥ 1 + (2− β)(δ − δ2/β)/2 > 1.

Now this shows that the probability on the right hand side decreases exponentially

fast. Hence inequality (A.9) is established for case (ii) and the proof for (A.2) is

now completed.

To prove (A.3) for 0 ≤ β ≤ 1, we may rewrite (A.4) as

E(θ̂i − θi)2 = 1 + E(Z2
i − 2)Ii + E

(
|Zi|2β−2

( a2

D2
+

2βa

aD2

)
Ici

)
+ 2(1− β)E

[ |Zi|β−2a

D
Ici

]
. (A.14)

The inequality (A.3), sharper than (A.1), can be possibly established due to the

critical assumption β ≤ 1, which implies that

|Zi|2β−2 <
( a

D

)−(2−2β)/(2−β)

if Ici = 1. (A.15)

Note that the last term in (A.14) is obviously bounded above by 2(1 − β). Fur-

thermore, replace |Zi|2β−2 in the third term on the right hand side of (A.14) by

the upper bound in (A.15) and replace Z2
i in the second term by the upper bound

below

|Zi|2 < (a/D)2/(2−β) when Ii = 1,

which follows easily for (A.5). We then obtain an upper bound for (A.14)

1 + E(a/D)2/(2−β) + E
[
(a/D)(2β−2)/(2−β)

( a2

D2
+ 2

βa

D2

)
Ici

]
+ 2(1− β)

≤ (3− 2β) + CE(a/D)2/(2−β).

Here, in the last inequality, 2βa/D2 was replaced by 2βa2/D2. To establish (A.3),

obviously the only thing left to do is

E(a/D)2/(2−β) ≤ C ln(d). (A.16)
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This inequality can be established if we can show that

E(d/D)2/(2−β) ≤ C (A.17)

since the definition of a and a simple calculation show that

a2/(2−β) = Ca2/(2−β) ln(d).

To prove (A.17), we apply Anderson’s theorem (Anderson 1955) which implies

that |Zi| is stochastically larger than |εi|. Hence

E(d/D)2/(2−β) ≤ E
[
d/
(∑

|εi|β
)]2/(2−β)

,

which is bounded by A + B. Here

A = E
[
d/
(∑

|εi|β
)]2/(2−β)

I
( d∑

1

|εi|β ≤ dmβ/2
)

and

B = E
[
d/
(∑

|εi|β
)]2/(2−β)

I
( d∑

1

|εi|β > dmβ/2
)

and as before I(·) denotes the indicator function.

Now B is obviously bounded above by

(2/mβ)2/(2−β) < C.

Also by Cauchy–Schwartz inequality

A2 ≤ E
[
d/
(∑

|εi|β
)]4/(2−β)

P
( d∑

1

|εi|β ≤ dmβ/2
)

< C.

Here the last inequality holds since the probabiity decays exponentially fast. This

completes the proof for (A.17) and consequently for (A.3).
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Now we apply Lemma A.1 to the wavelet regression. Applying a discrete wavelet

transformation to model (21) gives a double index data

Zjk = θjk + εjk/
√

n, k = 1, . . . , 2j , (A.18)

where εjk’s are i.i.d. standard normal random variables. Also assume that θ’s live

in the Besov’s space with smoothness α and shape parameters p and q, i.e.,

∑
j

2jq(α+1/2−1/p)
(∑

k

|θjk|p
)q/p

≤Mq (A.19)

for some positive constants α, p, q and M . The estimator θ̂ below for model (A.18)

refers to (20) with a defined in (22) and σ2 = 1/n. For such a θ̂, the total risk can

be decomposed into the sum of the following three quantities:

R1 =
∑
j<j0

∑
k

E(θ̂jk − θjk)2,

R2 =
∑

J>j≥j0

∑
k

E(θ̂jk − θjk)2

and

R3 =
∑
j≥J

∑
k

E(θ̂jk − θjk)2

where j0 = [log2(Cδn1/(2α+1))], and Cδ is a positive constant to be specified later.

Applying (A.1) to R1, which corresponds to the risk of low resolutions, we establish

some simple calculation

R1 ≤ C(lnn)(2−β)/2n−2α/(2α+1). (A.20)

For j ≥ j0, (A.19) implies

∑
k

|θjk|p ≤Mp2−jp(α+1/2−1/p) = Mp2j2−jp(α+1/2). (A.21)
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Furthermore, for p ≥ β

2−jp(α+1/2) ≤ 2−jβ(α+1/2) ≤ 2−j0β(α+1/2) = (Cδ)−β(α+1/2)σβ .

Choose Cδ > 0 such that

Mp/C
(1/2+α)β
δ =

(2− β

2β

)β( 1
2α + 1

)2

mβ .

This then implies that

∑
k

|θjk|p ≤
Mp

C
(1/2+α)β
δ

2jσβ

≤
(2− β

2β

)β( 1
2α + 1

)
mβ2jσβ ,

satisfying the condition in (A.2) for d = 2j and δ = (2α + 1)−1.

Now for p ≥ 2 we give an upper bound for the total risk.

From (A.2), we obtain

R2 + R3 ≤ C
∑
j≥j0

∑
k

θ2
jk + o(n−2α/(2α+1))

and from Holder inequality the first term is bounded above by

∑
j≥j0

2j(1−2/p)
(∑

k

|θjk|p
)2/p

.

Then inequality (A.21) gives

R2 + R3 ≤ C
∑
j≥j0

2j(1−2/p)2−j2(α+1/2−1/p) + o(n−2α/(2α+1))

= C
∑
j≥j0

2−j2α + o(n−2α/(2α+1))

≤ Cn−2α/(2α+1).

This and (A.20) imply (23) for 0 ≤ β ≤ 2 and p ≥ 2.
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Note that for β = 2, the proof can be found in Donoho and Johnstone (1995).

For β 6= 2, our proof is very different and much more involved.

To complete the proof of the theorem, we now focus on the case 0 ≤ β ≤ 1, and

2 > p ≥ max{1/α, β} and establish (23). We similarly decompose the risk of θ̂ as

the sum of R1, R2 and R3. Note that the bound for R1 in (A.20) is still valid.

Inequalities (A.2) and (A.3) imply

R2 ≤
∑

J≥j≥j0

∑
k

θ2
jk ∧

log n

n
+ o
( 1

n1−δ

)
for some constants C > 0. Furthermore, the following inequality

∑
xi ∧A ≤ A1−t

∑
xti, xi ≥ 0, A > 0, 1 ≥ t > 0

implies ∑
J≥j≥j0

∑
k

θ2
jk ∧

log n

n
≤
( log n

n

)1−p/2 ∑
J>j≥j0

∑
k

|θjk|p.

Some simple calculations, using (A.21), establish

R2 ≤ C
( log n

n

)1−p/2 ∑
J>j≥j0

2−jp(α+1/2−1/p) + o(n−2α/(2α+1))

≤ C(log n)1−p/2n−2α/(2α+1). (A.22)

From Holder inequality, it can be seen that R3 is bounded above by

∑
j≥j0

(∑
k

|θjk|p
)2/p

.

Similar to (A.22), we obtain the upper bound of R3,

R3 ≤ C
∑
j≥J

2−j2(α+1/2−1/p) = o(n−2α/(2α+1)),

where J is taken to be log2 n. Thus for 0 ≤ β ≤ 1 nd 2 ≥ p ≥ max{1/α, β}, we

have

sup
f∈Bαp,q

E‖θ̂ − θ‖2 ≤ C(log n)1−β/2n−2α/(2α+1).



32 HARRISON H. ZHOU AND J. T. GENE HWANG

Acknowledgment. The authors wish to thank Professor Martin Wells at Cornell

for his interesting discussions and suggestions which led to a better version of this

paper. They also wish to thank Professors L. D. Brown, Dipak Dey, Ed George,

Mark Low and William Strawderman, for their encouraging comments. The authors

would like to thank Arletta Havlik for tirelessly typing this manuscript.



MINIMAX ESTIMATION WITH THRESHOLDING 33

0 10 20 30 40 50 60 70 80 90 100
1

1.05

1.1

Figure 1. Ratio of a
B
 in (11) to 5(d-2)/3

p



34 HARRISON H. ZHOU AND J. T. GENE HWANG

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

norm of theta

Figure 2. Relative Frequentist risk of the proposed estimator (12) to d=50  
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                            Figure 3. The curves represent the true curves f(t) in (19).
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Figure 4. In each of the six cases corresponding to Blocks, Bumps, etc., the eight
curves plot the risk function, from top to the bottom, when n = 64, 128, . . . , 8192.
For each curve (see for example, the top curve on the left), the circles “o” from
left to the right give, with respect to n, the relative risks of VisuShrink, Block
James–Stein, SureShrink, and the proposed methods (12) and (18).

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
0

0.5

1

1.5

2

2.5
VisuShrink 

n=64 

BlockJS 

SureShrink 

(12) 

Blocks Bumps Doppler HeaviSine PieceRegular PiecePolynomial 

(18) 



MINIMAX ESTIMATION WITH THRESHOLDING 37

Figure 5. Solid lines represent the true curves, where dotted lines represent the
curves corresponding to various estimators. The simulated risk is based on 500
simulations.
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Figure 6. Proposed Estimator (12) Applied to Reconstruct Figure 3. 

p = 1024
SNR = 3 



MINIMAX ESTIMATION WITH THRESHOLDING 39

0 500 1000 1500
4

2

0

2

4

6

8

10
Blocks

0 500 1000 1500
5

0

5

10

15

20
Bumps

0 500 1000 1500
6

4

2

0

2

4

6
Doppler

0 500 1000 1500
8

6

4

2

0

2

4

6
HeaviSine

0 500 1000 1500
5

0

5

10
PiecePolynomial

0 500 1000 1500
4

2

0

2

4

6

8
PieceRegular

p = 1024
SNR = 3 

Figure 7. JamesStein Positive Part Applied to Reconstruct Figure 3.  


