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High-density wireless sensor networks (HDWSNs) are usually deployed randomly, and each node of the network collects data from
complex environments. Because the energy of sensor nodes is powered by batteries, it is basically impossible to replace batteries or
charge in the complex surroundings. In this paper, a QoS routing energy consumption model is designed, and an improved
adaptive elite ant colony optimization (AEACO) is proposed to reduce HDWSN routing energy consumption. This algorithm
uses the adaptive operator and the elite operator to accelerate the convergence speed. So, as to validate the efficiency of AEACO,
the AEACO is contrast with particle swarm optimization (PSO) and genetic algorithm (GA). The simulation outcomes show
that the convergence speed of AEACO is sooner than PSO and GA. Moreover, the energy consumption of HDWSNs using
AEACO is reduced by 30.7% compared with GA and 22.5% compared with PSO. Therefore, AEACO can successfully decrease
energy consumption of the whole HDWSNs.

1. Introduction

Nowadays, emerging high-density wireless sensor network
(HDWSNs) technologies have attracted a large number of
scholars to study new QoS routing optimization algorithms
in this field. With the further development and populariza-
tion of wireless communication technology, HDWSNs have
been used in many application fields such as community
monitoring, smart home, military, traffic control, environ-
mental and detection [1]. HDWSNs combine computing
technology with wireless mobile communication technology
and sensor node technology to revolutionize the architecture
and mode of traditional networks [2, 3]. However, due to the
constraints of the sensing environment, in HDWSNs, a lot of
nodes only provide restricted energy through batteries.
Therefore, effectively cut down the energy consumption of
nodes and realize energy-saving routing and data transmis-
sion have important research and application value for
improving the performance and stability of HDWSNs [4, 5].

For multicondition restricted QoS routing optimization
problems, the purpose is to find the best path from beginning
to end for specific problems in HDWSNs, rather than the
shortest path. And this path should meet multiple QoS con-
straint requirements such as delay jitter, delay, packet loss
rate, and link bandwidth. These QoS routing conditions are
used as the criteria for QoS routing considerations [6]. Due
to energy limitations, how to maximize the reduction of rout-
ing energy consumption and extend the lifetime of sensor
networks have become a bottleneck problem faced by
HDWSNs.

Generally speaking, the volume and mass of sensors are
very small. It is necessary to take into account the completion
of specific communication tasks and to ensure that the inter-
nal energy utilization rate is increased [7]. The QoS routing
optimization algorithm is an efficient way to cut down energy
consumption within the network [8].

In this paper, a QoS routing optimization based upon
AEACO is recommended to minimize the energy consumption
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of HDWSNs. In order to assess the effectiveness of the
AEACO, the model of QoS routing is first given. To improve
the execution effectiveness of the algorithm, the routing fit-
ness function is designed. Moreover, the adaptive and elite
mechanisms are introduced into the ant colony optimization.
We designed a new adaptive mechanism to improve the
global search ability in the pheromone update phase and
avoid falling into local optimum. A new elite mechanism is
designed to retain the optimal ants and improve the optimi-
zation ability of the algorithm.

In the simulation, AEACO showed a good ability to find
the best individual. It speeds up the convergence of the algo-
rithm. The simulation results show that implementing
AEACO in HDWSNs has higher performance than the par-
ticle swarm optimization (PSO) and genetic algorithm
(GA). The consequence also shows that the adaptive and elite
strategies proposed in this paper improve the global search
capability of ant colony optimization.

The main contributions are as follows:

(1) First, we propose an improved adaptive elite ant col-
ony optimization (AEACO), which can effectively
minimize the routing energy consumption in
HDWSNs. After several iterations, the energy con-
sumption of routing optimized by AEACO is
reduced by 22.5% and 30.7%, respectively, com-
pared with PSO and GA under the same experi-
mental conditions. In addition, when the number
of nodes increases, a similar conclusion can be
drawn by comparing the experimental results with
the other two algorithms. Therefore, the AEACO-
based routing method can effectively improve
energy utilization

(2) Secondly, the AEACO that combines adaptive opera-
tors and elite operators has better performance in the
absence of premature convergence. Increased global
search capabilities. When the number of sensor
nodes is 50 and 70, respectively, AEACO has a higher
convergence speed than PSO and GA. Compared
with the other two algorithms, the fitness after
AEACO optimization converges to a small value after
iteration

(3) Finally, the total routing energy consumption of
HDWSNs depends on the transmission and recep-
tion energy consumption of all nodes. Under the
algorithm’s adaptive mechanism, the overall energy
consumption will be reduced. With the increase in
the number of sensors in HDWSNs, the demand for
data transmission increases, and the effect of AEACO
in optimizing routing energy consumption also
increases accordingly

The continuation of this paper is shown below. Section 2
discusses the author’s related work for this article. Section 3
describes the QoS routing model. In Section 3, AEACO is
used to optimize the QoS routing algorithm process. Section
5 presents the simulation results and comparison. The con-
clusion is given in Section 6.

2. Related Work

In HDWSNs, there is a direct relationship between lifetime
and performance. Appropriate and efficient routing algo-
rithms can decrease the energy consumption in the sensor
networks, which is of excellent meaning to extend the
HDWSN life span. Therefore, in [9], the author proposed a
multimobile trajectory scheduling method based on cover-
age, using PSO and GA for optimal scheduling. The paper
[10] combined the PEGASIS algorithm and Hamilton loop
algorithm together, designed the best route, and effectively
reduced energy consumption. The paper [11] proposed an
enhanced high-performance aggregation algorithm, deter-
mine the best communication distance, set thresholds, and
use mobile technology to reduce energy consumption
between nodes. The paper [12] proposed a maximum data
generation rate routing algorithm based on data flow control
technology, which greatly reduced the time synchronization
energy consumption. The paper [13] proposed a new cover-
age control algorithm based on PSO, by dividing the entire
network into multiple A grid to increase coverage and reduce
energy consumption.

Research on optimization of energy consumption in sen-
sor networks has attracted scholars recently. The paper [14]
proposed an energy-conscious green opponent model used
in a green industrial environment, which can improve the
hardware and software of the electronic physical system to
reduce its energy consumption. The paper [15] uses the bat
algorithm to select the best monitoring sensor node and the
best path to reduce energy consumption. The paper [16] uses
the whale optimization algorithm to solve the RA problem,
achieves the best RA, and reduces the total communication
cost. The paper [17] uses linear adaptive congestion control
to improve the situation of greedy routing and data
distribution.

HDWSNs has developed speedily in recent years, and it
can well solve the problems of physical control and sensing.
Based on the performance of the routing scenario used, com-
puting and processing power is minimal considering the lim-
ited battery power [18]. For this reason, in paper [19], the
author uses the genetic algorithm (GA) for simulation exper-
iments in multihop QoS routing wireless networks, and the
performance of the algorithm is analyzed from the aspects
of scalability, energy consumption, and HDWSN life cycle.
It can maximize the activity of the sensor by saving energy,
thereby extending the service life of the network.

For QoS problems in high-quality wireless sensor net-
works, the simulated annealing algorithm is first found in
[20], and the performance of SA is evaluated through routing
energy consumption. Routing optimization for wireless
sensor networks is with limited resources and computing
power. The results show that the computational complexity
increases with the rise of the quantity of network nodes in
the case of limited computing capacity.

Paper [21] analyses a wireless powered sensor network,
where the energy efficiency maximization problem is devel-
oped as a nonlinear fractional problem, which is hard to
address for global best due to the absence of convexity. To
prolong the life span of the network and reduce energy loss,
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a PSO routing strategy is proposed. With the PSO method,
routing and forwarding can be performed quickly and
directly. In this way, the algorithm searched for the optimal
solution to the energy optimization problem. Results show
the stability and fast convergence of the suggested algorithm.
However, the algorithm is very easy to fall under premature
convergence.

In [22], an SFLA sensor network routing scheme is put
forward to cut down the total energy consumption of the net-
work system. The SFLA is applied to resolve QoS routing
issues of wireless sensor networks with mobile receivers.
The authors describe the above problem as an optimization
problem. To solve the NP-hard problem, the authors propose
an improved shuffled frog-leap algorithm with delay con-
straints. The algorithm uses chaos technology to obtain a
diverse group of frogs and gives an adaptive operator to speed
up the algorithm. Operating speed: the author also proposes
a new task scheduling algorithm which takes surplus energy
into account to balance the network load. Finally, a large
number of simulation experiments validate the efficiency of
the algorithm. By this means, the best route delivery path
can be selected to reduce network delay and energy con-
sumption. However, the execution speed of the SFLA is still
slow and cannot satisfy the requirements of QoS routing.

In [23], the QoS routing algorithm determines the lowest
energy consumption path for information transmission from
the start point to the endpoint. Because wireless sensor net-
work nodes lack sufficient energy, energy efficiency utiliza-
tion is an essential sign of wireless sensor network data
transmission. The basic significance of HDWSNs in the
current scene is to decrease the energy consumption of nodes
in the network, improve data transmission effectiveness and
availability, and extend entire network lifetime. In this
regard, author demands to find the best route for data trans-
mission in HDWSNs. To resolve this problem, authors put
forward to an energy-saving routing algorithm for HDWSNs
based on ant colony optimization (ACO). The improved low-
energy routing method selects the cluster head by consider-
ing the energy and the distance between nodes. In order to
decrease the energy consumption between nodes, the
remaining energy is taken as a factor to extend the network
life and improve the efficiency of routing data transmission.
However, due to the high complexity of the algorithm, the
efficiency of the program is not ideal.

In [24], in the design of HDWSNs, the energy consump-
tion of HDWSNs has become a serious problem due to the
limited battery energy. Therefore, a fast and robust algorithm
is needed to optimize QoS routing in HDWSNs. Battery

power is needed to run the network. In order to extend the
life cycle of the network, it is necessary to optimize the energy
consumption. Energy consumption and QoS are two impor-
tant factors. In HDWSNs based on low-energy consumption
standard, energy consumption lies in activities such as data
collection, data forwarding, and exchange with the gateway.
Therefore, improving the routing efficiency of HDWSNs is
an important task to extend the network life cycle. In the pro-
cess of solving the problem, the author improved the hybrid
leap-frog algorithm and modified the number of leap-frog
and the population size appropriately. The author carried
out extensive simulations on the proposed routing algorithm
according to various performance parameters. However, the
algorithm has poor robustness and cannot meet the require-
ments of HDWSN’s QoS routing algorithm.

In this research, the key parameters of AEACO, PSO, and
GA are listed in Tables 1–3.

3. System Model

This section introduces the QoS routing optimization model
with multiple constraints. The mathematical model of
HDWSNs can be expressed as the path set between each node
in the sensor network, which is represented by GðV , EÞ.
Graph theory is used to represent the source, destination,
and multiple relay nodes and links. The node set includes
the source nodev1, terminal node vn, and numerous interme-
diate nodes v2 ⟶⋯⟶vn−1. The source node is the No:1
node, the intermediate nodes are No:2 to No:ðn − 1Þ nodes,
and the terminal node is the No:n node. Therefore, the route
from the starting node to the terminal node can be expressed
as rðv1, vnÞ = fv1 ⟶ v2⟶⋯⟶vn−1 ⟶ vng.

Two nodes form a link. In this way, the sequence
numbers of the adjacent 2 nodes are a and b, which can be
expressed as e = fva ⟶ vbgða ≠ bÞ. Transmission perfor-
mance over links is restricted by 4 parameters of link band-
width, packet loss rate, delay jitter, and delay. The energy
consumption in every path may be expressed as LSðeÞ, the jit-
ter may be expressed as DðeÞ, the link bandwidth may be
expressed as BWðeÞ, the packet loss rate may be expressed
as PLðeÞ, and the delay jitter may be expressed as DJðeÞ.

Table 1: The key parameter of AEACO.

Algorithm Number of generations Population size Pheromone volatilization factor Information heuristic factor Pheromone weight

AEACO 100 50 0.98 1 3

Table 2: The key parameter of PSO.

Algorithm Number of generations Population size Maximum speed Social factor Individual factor

PSO 100 50 10 2 2

Table 3: The key parameter of GA.

Algorithm
Number of
generations

Population
size

Crossover
probability

Mutation
probability

GA 100 50 0.75 0.06
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3.1. Radio Energy Model. Before the algorithm starts, we
assume that constraints such as jitter, delay jitter, bandwidth,
and packet loss rate in QoS routing already exist, and sensor
nodes are randomly distributed in a two-dimensional
coordinate.

On a link consisting of two conjoining nodes a and b, the
energy consumption is consisting of data transmission and
data reception energy consumption, and the total energy
consumption LSðeÞ between the two adjacent nodes can be
expressed as

LS eð Þ = LSs + LSr , ð1Þ

where LSs can denote energy consumption of data transmis-
sion between neighboring nodes, and LSr can denote the
energy consumption of data receiving between neighboring
nodes.

Suppose the distance between two conjoining nodes is l
and the bits of transmitted data can denote q, and the energy
cost of data transmission over a link can be expressed as

LSs q, lð Þ = Ee ⋅ q + ηamp ⋅ q ⋅ l
3, ð2Þ

where Ee is the electronics energy parameter. LSs is the trans-
mitter dissipated energy. The power amplification parameter
for multipath fading ηamp determine the energy of the ampli-
fier. The distance between two nodes is l, and the length of
bits is q. The receiving energy consumption can be shown as

LSr qð Þ = Ee ⋅ q: ð3Þ

We can assume some parameters under constraints. For
example, suppose when two sensor nodes are 0:5m apart
and q = 1Mbit. We can set ηamp = 10pJ/bit/m3. According

to Equation (3), LSrðqÞ = Ee ⋅ q = 50nJ/bit ⋅ 106bit = 0:05J
can be obtained.

3.2. Route Functions

3.2.1. Energy Consumption Functions.Assume that the data is
from v1 to vn, the energy consumption of link rðv1, vnÞ can be
calculated by formula (4).

LS r v1, vnð Þð Þ = 〠
e∈r v1,vnð Þ

LS eð Þ: ð4Þ

3.2.2. Delay Functions. The whole delay of data from node v1
to node vn can be calculated by formula (5):

D r v1, vnð Þð Þ = 〠
e∈r v1,vnð Þ

D eð Þ, ð5Þ

where Dðrðv1, vnÞÞ is the total delay time of routing, rðv1, vnÞ
is a routing from v1 to vn, and e is a link on the route rðv1, vnÞ.
The delay of link e can be expressed as DðeÞ.

3.2.3. Bandwidth Functions. The whole link bandwidth from
node v1 to vn can be expressed as formula (6)

BW r v1, vnð Þð Þ =min BW eð Þf g, ð6Þ

where BWðrðv1, vnÞÞ is the bottleneck bandwidth of routing
rðv1, vnÞ, and e is a link on routing rðv1, vnÞ. The bandwidth
on the routing e can be represented as BWðeÞ.
3.2.4. Delay Jitter Functions. The whole delay jitter of data
from node v1 to vn can be expressed by formula (7).

DJ r v1, vnð Þð Þ = 〠
e∈r v1,vnð Þ

DJ eð Þ: ð7Þ

3.2.5. Packet Loss Rate Functions. The whole packet loss rate
of data from nodev1 to vn can be expressed by formula (8).

PL r v1, vnð Þð Þ = 1 −
Y

e∈r v1,vnð Þ
1 − PL eð Þð Þ, ð8Þ

where PLðrðv1, vnÞÞ is the whole packet loss rate of routing
rðv1, vnÞ, e is a link on routing rðv1, vnÞ, and PLðeÞ is the
packet loss rate of link e.

3.3. Objective Function. In HDWSNs, many restrictions of
the QoS routing model can be formed by the graph model.
According to the delay energy loss model based on the condi-
tions, the goal of QoS routing of is to find a route from the
start node to the end node with the lowest energy
consumption.

Fitness (fitness) is a parameter of all individuals based on
the degree of adaptation of organisms to the natural environ-
ment. The fitness function refers to the one-to-one corre-
spondence between all basic units in the actual problem
and their own fitness. Normally, it is a constant function. In
this paper, fitness is used to represent the energy consump-
tion of HDWSNs QoS routing, and the fitness function can
be shown by equation (9).

fitness = min LS p v1, vnð Þð Þf g: ð9Þ

3.4. Restrictions. Finding the best route with minimum
energy consumption is the main goal of QoS routing model.
Data transmission begins at source node v1 and ends at ter-
minal node vn. Links between adjacent nodes on this route
need to meet the following restrictions ((10), (11), (12), (13)).

D r v1, vnð Þð Þ ≤Dmax, ð10Þ

BW r v1, vnð Þð Þ ≥ BWmin, ð11Þ
DJ r v1, vnð Þð Þ ≤DJmax, ð12Þ
PL r v1, vnð Þð Þ ≤ PLmax, ð13Þ

where Dmax represents the maximum delay acceptable on the
route, BWmin represents the minimum link bandwidth,
PLmax represents the maximum packet loss rate, and DJmax
represents the maximum delay jitter.
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4. AEACO-Based Routing Minimizes Energy
Consumption in HDWSNs

Aiming at QoS routing problem in HDWSNs, an optimiza-
tion algorithm based on AEACO is put forward. The idea
comes from the ant creature [25, 26]. In our AEACO strat-
egy, a significant improvement is to add adaptive strategy
and elite strategy on the basis of traditional ant colony opti-
mization. These strategies enable AEACO to route well and
direct search to the best solution.

Ant is a kind of social insect with the characteristics of
social life, which has strict social structure and division of
labor. In addition to harmonious division of labor, the
highly complex “ant colony” system also has a mechanism
of information transmission among ants, which makes the
system operate orderly and efficiently. According to
research, ants in nature are able to self-organize and choose
the best route from nest to food source and can spontane-
ously find new good choices based on their surroundings
[27, 28] Ants can use pheromone as a medium to interact
with each other.

The original ant colony optimization is an intelligent
algorithm proposed by Italian Dorigo M. in 1992 and was
successfully applied to solve TSP and QAP [29, 30] and
then gradually developed by many scholars. At present,
ACO has been applied to various fields, such as coloring
problem, vehicle scheduling problem, and job scheduling
problem [31, 32].

AEACO is a group intelligence approximate optimiza-
tion technology. The process of evolution can be divided into
two stages: adaptation stage and cooperation stage. In the ini-
tial stage of search route adaptation, pheromones accumulate
with the increase of evolution time, and the more times ants
pass, the higher the pheromone content in the route is, and
the route is more likely to be selected by other ants. There-
fore, the number of ants choosing this route is increasing.
Finally, all ants will concentrate on the best route with posi-
tive feedback. At this time, the corresponding route is the
optimal route of the routing problem.

This paper discusses several parts of AEACO from the
aspects of parameters and population initialization, fitness
calculation, path selection, operator optimization, phero-
mone change, and condition termination.

4.1. Coding Scheme. The first task of AEACO to solve routing
problem is program coding. In the implementation of
AEACO, coding will greatly affect the routing, fitness evalu-
ation, and pheromone change. There are many coding
methods, including real number and binary number. In order
to increase the search space, real numbers are used to encode.
Suppose there are K ants and s nodes. Each ant generates
a route after it reaches the destination. In the restriction
QoS routing optimization problem, the route of data trans-
mission is expressed as pðv1, vnÞ. The whole number of
nodes on the route can be expressed as n, which satisfies
the formula (14)

n ≤ s: ð14Þ

The population can be described formula (15), xK ,s
represents the single node passed by the No:k ant, and
ðxk,1, xk,2, xk,3 ⋯ xk,sÞ represents the route of the No:k ant.

X =

x1,1 x1,2 x1,3 ⋯ x1,s

x2,1 x2,2 x2,3 ⋯ x2,s

⋯ ⋯ ⋯ ⋯ ⋯

xk,1 xk,2 xk,3 ⋯ xk,s

⋯ ⋯ ⋯ ⋯ ⋯

xK ,1 xK ,1 xK ,3 ⋯ xK ,s

2
666666666664

3
777777777775

xK ,s ∈ 0, s½ �, k ∈ 1, K½ �ð Þ:

ð15Þ

4.2. Ant Colony Initialization. Ant colony is based on routing
model coding. Its purpose is to establish a link between rout-
ing issues and AEACO. So, before stimulation, K ants were
randomly generated as the initial ant colony. The initial ant
colony holds K ants can be described as X = fX1,X2, ⋯ XK ,g.
The No:i ant can be expressed as Xi = fxi,1, xi,2,⋯xi,sg.
4.3. Fitness Evaluation. Each ant has its own fitness value and
has a path selection solution. Therefore, the fitness function
will greatly affect the performance of the algorithm. In the
multicondition constrained QoS routing optimization issue,
when the delay, link bandwidth, packet loss rate and jitter
delay conditions are met, the fitness value can be calculated
by formula (9); thus, the routing energy consumption of
every one ant in the population in the process of data trans-
mission is got. The lesser the energy consumption is, the bet-
ter the route is.

Therefore, the criterion of evaluating each ant’s path is
the value of energy consumption. The less energy consump-
tion of a route, the better the route.

4.4. Select Path. The K ants in the colony have the following
characteristics: the energy consumption and pheromone
content on the route determine which node the ant will
choose. τij is the summation number of pheromones in the
adjacency link between the 2 nodes. Moreover, the search
rules of ants are as follows: each ant need complete a walk
from the source to the destination, but it does not necessarily
traverse all nodes and cannot access the nodes that have been
traversed. Each ant will leave a certain amount of pheromone
on its routing after completing the journey. In the initial stage
of the algorithm, the pheromone content in the path between
adjacent points is the same. At this moment, the No:k ant
chooses the next node, and the number of pheromones and
the energy consumption value determines which node the
ant will choose. Pj,j+1

d,e represents the probability that ants
choose the next node linkNo:j toNo:ðj + 1Þ. d and e are adja-
cent to each other.

The amount of pheromone on the path and the energy
consumption benefit can be calculated to select the probabil-
ity of other nodes, so as to select the next routing node.
Assuming conditions are met, ants can choose routing nodes.
The chance p of the No:t generation ant accessing node d

5Journal of Sensors



from node e is calculated by formula (16). In formula (16),
the Roulette method can be routed nodes on the route that
ants have not passed.

Pj,j+1
d,e tð Þ = ταde tð Þuβe tð Þ

Σs
l=1τ

α
dl tð Þuβl,j+1 tð Þ

d ∈ 1, s½ �, e ∈ 1, s½ �, ue ∈ uij, ul,j+1 ∈ uij
� �

,

ð16Þ

Cij =

c11 c12 c13 ⋯ c1 s−1ð Þ
c21 c22 c23 ⋯ c2 s−1ð Þ

c31 c32 c33 ⋯ c3 s−1ð Þ

⋯ ⋯ ⋯ ⋯ ⋯

cK1 cK2 cK3 ⋯ cK s−1ð Þ

2
666666664

3
777777775

i ∈ 1, K½ �, j ∈ 1, s − 1½ �ð Þ,

ð17Þ

uij =
1
Cij

: ð18Þ

In formula (16), t is the iteration time. τdeðtÞ is the pher-
omone content of the No:t generation link ðd, eÞ. uij repre-
sents the reciprocal of the energy consumption value from
the No:j node to the No:ðj + 1Þ node, which is called energy
consumption benefit, which is calculated by formula (18). α
and β on behalf of the weighted value of pheromone and
energy consumption correspondingly, which affects phero-
mone concentration and energy consumption. With the value
of α increases, the probability of ant selecting nodes increases.
With the value of β increases, ants will also increase the chance
to select other nodes according to j nodes.

In formula (16), With the increase pheromone concen-
tration and energy efficiency, the probability of ant selecting
routing node increases.

Cij represents the energy consumption value of the ant’s
route, and it is made up of K the same matrixes, which can
be expressed as c1 c1 c1 ⋯ cs−1½ �. uij is a matrix of
fitness of energy consumption, which can be calculated by
formulas ((17) and (18)).

4.5. Pheromone Update. In search of the best route, the pher-
omone needs to be calculated and updated. When ants visit
each routing node, they leave pheromone from the No:d
node to the No:e node. With the continuous evolution of
the algorithm, the content of pheromone will volatilize in
the process of evolution. In AEACO, after each ant completes
a walk from the origin node to the end node, the pheromone
on the route is updated. The pheromone content on the link
ðd, eÞ during ðg, g + 1Þ round is modified in

τde g, g + 1ð Þ = ρ ⋅ τde gð Þ + Δτde g, g + 1ð Þ, ð19Þ

Δτde g, g + 1ð Þ = 〠
m

k=1
Δτkde g, g + 1ð Þ: ð20Þ

In equation (19), Δτdeðg, g + 1Þ represents the phero-
mone content that the ant remaining on the link ðd, eÞ during

ðg, g + 1Þ round. ρ represents the volatility factor of phero-
mone, which is used to reduce the accumulated pheromone
on the link. According to formula (20), Δτkdeðg, g + 1Þmeans
the content of pheromone that theNo:k ant remaining on the
link ðd, eÞduring ðg, g + 1Þ round.

The ant colony pheromone value update calculation of
AEACO is represented by equation (21).

τkde = ueQ: ð21Þ

In equation (21), Q represents a constant and represents
the pheromone unit concentration left by ants on the path to
complete the search. ue is the energy consumption revenue
value between two nodes. In this model, when the ant finds
the optimal route, the ant releases pheromone. Therefore,
the ant colony uses the overall pheromone environment.

4.6. Termination Condition. During the execution of the
AEACO, When the algorithm runs to the stop condition
statement, it will automatically judge whether it meets the
condition. If it meets the upper limit value, it will end the
algorithm and output the result.

4.7. Adaptive Operator. In the process of AEACO, the algo-
rithm adopts an adaptive operator, which reduces the speed
of the algorithm in the iterative evolution process. The main
function of the positive feedback mechanism is to accelerate
the algorithm convergence and make the algorithm have
good performance, but it is very easy to lead the algorithm
to be too premature. Therefore, in the selection operator,
an adaptive method can be used. The purpose of the adaptive
operator is to flexibly adjust the probability of choosing other
paths during the search process. Through multiple loop iter-
ations, the evolution direction of the ant colony can be basi-
cally determined, and the pheromone on the path completed
by the ants can be dynamically adjusted.

Adaptive strategy is a new information update strategy.
When the problem is more complicated, if the pheromone
volatilization factor exists, then the pheromone content on
the path that ants choose less or has not chosen will be
exhausted. Therefore, it will reduce AEACO’s global search
capabilities. However, if the pheromone content in other
paths is very high, then the amount of information in these
paths will increase again, so the chance of finding these
high-content paths again increases. The path traversed by
the previous generation of ants is likely to be selected again
by the next generation of ants, which will lead to local opti-
mal search and reduce global search performance. Therefore,
AEACO’s global search capability can be increased by chang-
ing the pheromone volatilization factor. The adaptive strategy
proposes an adaptive method to change the pheromone, and
the pheromone update formula (22) is expressed as

τde g, g + 1ð Þ = 1 − ρð Þ1+φ wð Þ ⋅ τde gð Þ + Δτde g, g + 1ð Þ τ ≥ τmax

τde g, g + 1ð Þ = 1 − ρð Þ1−φ wð Þ ⋅ τde gð Þ + Δτde g, g + 1ð Þ τ < τmax

(
,

ð22Þ

φ wð Þ =w/c: ð23Þ

6 Journal of Sensors



In formula (23), φðwÞ represents a functional formula pro-
portional to the convergence factor w. The more the times w,
the greater the value of φðwÞ, and c represents a constant.
According to the evolution of the algorithm, adaptive update
pheromone, thereby dynamically adjusting the intensity of the
amount of information on each path, so that the ants are neither

too concentrated nor too scattered, thereby avoiding premature
and local convergence and improving the global search ability.

4.8. Elite Operator. The elite ant operator is an improvement
of the basic ACO. Its design idea is to give the optimal path
extra pheromone after each cycle. The ant that finds the best

Initialize the parameters

Place all ants on the routing source node

Loop every ant

Select next node

Did you reach the
terminal node?

Return
initialization

Are the termination
conditions met?

Output optimal route

No
No

No

Yes

Yes

Yes

⁎Important
improvement

steps

⁎Adaptive operator and elite operator
control pheromone update

Adaptive operator 

Dose the pheromone
content exceed the

maximum value set? 

Increase pheromone
volatilization

Reduce pheromone
volatilization

Elite operator

⁎Adaptive change of pheromone 
volatilization factor

⁎According to the fitness function
evaluation,find the elite ants.

⁎Incrementally update the routes 
that the elite ants pass.

⁎change the pheromone content of the
population

Figure 1: The flow chart of AEACO.

Improved adaptive elite ant colony optimization based on routing energy consumption
Begin

Step 1. Set the parameters and QoS constraints of each node and each edge in the model, and the relevant parameters in the algo-
rithm are set. Set the pheromone volatilization coefficient, initialize pheromone value, and energy consumption revenue value. The
upper limit of iterations is Ng max. The primary value is Ng = 0. The colony size is K .

Set pheromone initial value of τde on the link ðd, eÞ, τdeð0Þ = 1.
While the algorithm has not reached the maximum number of iterations.
Step 2. Increase iteration times, Ng =Ng + 1.
Step 3. Increase the number of ants, k = k + 1.
Step 4. Calculate the selection probability of the next node j, according to Equation (16).
Step 5. If j ≠ s,continue step 4; otherwise, perform step 6.
Step 6. If k ≥Κ, go to step 7; otherwise, go to step 3.
Step 7. Update pheromone adaptive adjustment, according to equation ((16), (22)).
Step 8. Find elite ants and update pheromone incrementally, according to Equation (9).
Step 9. When the condition meets the number of cycles Ng >Ng max, then output the result; otherwise, go to step 2.
End while

End

Algorithm 1: Algorithm flow.
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route is called the elite ant. Denote this optimal route as Rbest.
The additional enhancement for route Rbest is obtained by
adding pheromone to each edge in Rbest. The update formula
of pheromone can be expressed as ((24), (25))

τde g, g + 1ð Þ = ρ ⋅ τde gð Þ + Δτde g, g + 1ð Þ + Δτ∗de, ð24Þ

Δτ∗de = ∂ ⋅Q ⋅ u∗e , ð25Þ
where ∂ is a parameter that defines the weight given to route
Rbest, and Δτ∗de shows the change of pheromone on the link
ðd, eÞ according to the ant that completes the best path. u∗e
shows the benefit value of energy consumption.

4.9. AEACO Steps. As shown in Figure 1, the whole execution
process of the AEACO algorithm is visually displayed.

In Figure 1, we can see the overall flow chart. The first is
to initialize the parameters, place the ants at the source
point of the route, and loop each ant to search. Each ant
selects the next node in turn during its own search. After
the entire population cycle is over, the next most impor-
tant process is pheromone update. We propose an adap-
tive mechanism to determine whether the pheromone
content on the current path exceeds the set maximum
value, so as to adjust the volatilization factor to control
pheromone update. When the entire population is
updated, we evaluate the population according to the fit-
ness function and find the elite ants with the least energy
consumption for routing. Pheromone is incrementally
updated on this path of elite ants. When the predeter-
mined termination condition is reached, the algorithm
ends, and the best route is output.
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Figure 2: Comparison of energy consumption of three algorithms. (a) The energy consumption comparison of three algorithms after 100
generations of 30 nodes. (b) The energy consumption comparison of three algorithms after 100 generations of 40 nodes. (c) The energy
consumption comparison of three algorithms after 100 generations of 50 nodes. (d) The energy consumption comparison of three
algorithms after 100 generations of 30 nodes.

8 Journal of Sensors



Through the detailed explanation of the above flowchart,
we give the specific algorithm pseudo code of the specific
AEACO as shown in Algorithm 1.

5. Discussion on Simulation Results

In the simulation part, we will test the algorithm perfor-
mance of AEACO in HDWSN routing optimization and
compare the results with the simulation results of GA and
PSO for HDWSN routing optimization. Under the condition
that other conditions are the same, HDWSNs of different
numbers of nodes are used for comparison. The software
and hardware environment are uniformly equipped with
Intel (R) Core (TM) i5 2.40GHz CPU computers and the
same version ofWindows 10, and the programming language
is MATLAB. On this basis, to prove AEACO’s superior per-
formance in optimizing QoS routing.

In the simulation, the performance of AEACO is com-
pared with PSO and GA. The three of AEACO, PSO, and
GA output results after 100 iterations of the loop and sets
the population size to 50 individuals. In AEACO, set the
pheromone volatilization factor to 0.98, the energy consump-
tion gain coefficient to 2, the information heuristic factor to 1,
the expected heuristic factor to be 4, and the pheromone
intensity to 3. The crossover probability of genetic algorithm
is 0.75, and the mutation probability is 0.06. In PSO, the value
of the social learning factor is defined as 2, the value of the
individual learning factor is defined as 2, and the absolute
value of the upper and lower speed limits is defined as 10.
These parameter settings are given in Tables 1–3.

Figures 2(a)–2(d) shows the simulation results of
AEACO, PSO, and GA at four different node scales. It can
be clearly seen from Figures 2(a)–2(d) that AEACO has supe-
rior performance than PSO and GA under four different
node scales. Especially when the number of nodes is 70,
AEACO’s performance is more obvious. In the first 20 itera-
tions, the energy consumption of AEACO has changed
greatly, and the convergence speed has increased significantly
after 20 generations. From 20 iterations to 100 iterations, the
energy consumption of AEACO is close to 1.8986 J. At this
time, PSO and GA are 3.1489 J and 3.7012 J, respectively,
using adaptive operators and elite operators to improve
AEACO’s global search capability and convergence speed.
In 100 iterations, the energy consumption of PSO is lower
than that of the GA algorithm, while the convergence speed
of the AEACO algorithm is faster and the energy consump-
tion is the lowest. In Figures 2(a)–2(c), when the number of
nodes is 30, 40, and 50, AEACO performs better than PSO
and GA in solving routing energy consumption problems,
and the convergence speed of PSO and GA algorithms is
slower and easier to fall into a local optimal solution. In gen-
eral, under the same algebra, AEACO has a faster conver-
gence rate, better effect, and better performance than PSO
and GA in terms of routing optimization.

Compare the performance of AEACO, PSO, and GAwith
the histogram in Figure 3. In Figure 3(d), when the number
of nodes is 70 and when iterates 100 times, the energy con-
sumption cost of AEACO is significantly lower than that of
PSO and GA. At this time, the energy consumption cost of
GA is greater than that of PSO, while the energy
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Figure 3: Compare the energy consumption of the three algorithms in the form of a histogram. (a) Comparison of energy consumption of
three algorithms with 30 nodes. (b) Comparison of energy consumption of three algorithms with 40 nodes. (c) Comparison of energy
consumption of three algorithms with 50 nodes. (d) Comparison of energy consumption of three algorithms with 70 nodes.
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consumption cost of AEACO is relatively the lowest and the
performance is the best. In Figures 3(a)–3(c), when the num-
ber of nodes is 30, 40, and 50, respectively, the same conclu-
sion can be drawn as in Figure 3(d). The performance of
AEACO is always better than PSO and GA.

In Figure 4, 20 nodes, 60 nodes, 80 nodes and 100 nodes
are set up, respectively. Data comparison is performed every
10 generations. In Figures 4(a)–4(d), it can be seen that in the
10th iteration, the energy consumption of AEACO is much
lower than that of PSO and GA, and it quickly converges
and stabilizes in the next 90 iterations. At this time, the con-
vergence speed of PSO and GA is slower, PSO performance
is better than GA, and AEACO performance is the best. In
Figures 4(c) and 4(d), AEACO is basically close to the optimal
solution at the 10th generation, while PSO and GA dissociate
to the optimal solution, and the difference is great. The results
show that EIACO is more effective than PSO and GA, and its
performance is always better than PSO and GA.

Aiming at the QoS routing problem with different num-
bers of sensors, the same number of iterations is adopted.
Table 4, respectively, lists the correlation between the energy
consumption and node scale of AEACO, PSO, and GA.

The data in Table 5 shows the percentage improvement
in energy consumption of AEACO compared with the other
two algorithms. When the number of nodes is 30, AEACO’s
improvement in reducing routing energy consumption is
4.76% and 10.00% higher than that of PSO and GA. Espe-
cially when the number of nodes is 70, AEACO’s improve-
ment in reducing routing energy consumption is 39.71%
and 48.70% higher than that of PSO and GA. It can be seen
from Tables 4 and 5 that as the scale of nodes increases, the
degree of optimization of the algorithm proposed in this
paper is more obvious, which is suitable for dense networks

such as HDWSNs. The data shows that this method can
effectively reduce routing energy consumption.

The data in Table 6 shows the calculated convergence
time of the three algorithms under the conditions of 30,
40, 50, and 70 nodes, respectively. It can be seen from
the data that the convergence time of AEACO’s
algorithm is shorter than that of PSO and GA. Especially
as the number of nodes increases, the performance of
AEACO’s algorithm is more obvious than that of PSO
and GA. Therefore, it is proved that the method has
better performance.

Based on the above result data analysis, the AEACO we
proposed has superior performance in reducing energy con-
sumption and algorithm convergence. This is due to the
strategy of combining adaptive and elite design we designed
to control the volatilization of pheromone in the algorithm
flow to increase the algorithm’s global search capability.
Add extra pheromone to the elite ants to increase the ability
of the algorithm to quickly find the best. Simulation results
show that this method can effectively reduce routing energy
consumption.
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Figure 4: The energy consumption of the three algorithms is compared every ten generations. (a) Comparison of 20 nodes every 10
generations. (b) Comparison of 60 nodes every 10 generations. (c) Comparison of 80 nodes every 10 generations. (d) Comparison of 100
nodes every 10 generations.

Table 4: Energy consumption values of different node sizes.

Algorithm 30 nodes 40 nodes 50 nodes 70 nodes

AEACO 5.5195 3.3449 3.0690 1.8986

PSO 5.7957 4.2094 4.0883 3.1489

GA 6.1329 4.8302 4.6283 3.7012

Table 5: Compared with the other 2 algorithms, the percentage of
improvement in energy consumption is optimized by AEACO.

Number of nodes PSO GA

30 4.76% 10.00%

40 20.54% 30.75%

50 24.93% 33.69%

70 39.71% 48.70%

Table 6: Convergence time comparison of three algorithms.

Number of nodes AEACO PSO GA

30 9.63 s 14.26 s 18.95 s

40 15.64 s 20.53 s 25.12 s

50 19.37 s 24.47 s 28.96 s

70 35.49 s 48.37 s 55.83
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In this research, for the energy consumption optimiza-
tion method of high-density wireless sensor network under
multiple constraints, this paper proposes an optimization
method for the network model under the constraints of
delay, jitter, bandwidth, and packet loss rate and only con-
siders two nonmovable situations in the dimensional coordi-
nates. We did not consider more complex situations, such as
three-dimensional space, movable sensors, and other factors.
In the future, it will be further studied under the combined
effect of environmental interference, movable deployment
conditions, and other influencing factors and expanded into
three-dimensional space to optimize network energy con-
sumption. Therefore, these issues are the content of this arti-
cle that needs further research.

6. Conclusion

In order to optimize routing selection, an improved adaptive
elite ant colony optimization (AEACO) is proposed, which
combines the advantages of traditional ant colony optimiza-
tion and adaptive strategy and elite strategy. The process of
AEACO evolution, population coding, and population ini-
tialization calculates fitness, selects path, and updates phero-
mone. By adding an elite operator, additional pheromone
will be added to the path taken by the individual ant with
lower energy consumption to accelerate the algorithm con-
vergence. AEACO after adding adaptive operator evolution
has a more comprehensive global search capability. We com-
pared this algorithm with PSO and GA in simulation. The
outcomes show that the proposed AEACO has a quicker con-
vergence speed and can be more effective find a data trans-
mission path with minimum energy consumption.
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