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Online social media
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Online social media

• Fierce debates take place online
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Human biases

Source: Valdis Krebs, http://www.orgnet.com/divided.html

• Political books co-purchase graph

• Three connected components, corresponding to the two big parties

- Those who buy books for Obama don’t other political books
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(Human biases)
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Filter bubbles

Mark Zuckerberg principle: “A squirrel dying in front of your house
may be more relevant to your interests right now than people dying
in Africa.”
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Filter bubble and echo chambers

Echo chamber: A situation in which information, ideas, or beliefs are
amplified or reinforced by communication and repetition inside a
defined system.
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Disagreement and Polarization

• Suppose we have two humans with two opposite opinions on a
certain topic.

• Question: Should we recommend a link between the two?

• Approach 1: No! No disagreement is caused between the two!

• Approach 2: Yes! Through an exchange of arguments they may end
up approaching each other, i.e., become less polarized!
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Opinion Dynamics

• Opinion dynamics model social learning processes.

• Survey by Mossel and Tamuz [Mossel et al., 2017]

• DeGroot model: Describes how a set of individuals can reach
consensus [DeGroot, 1974]

Setup

• Social network G (V ,E ,w).

• Node opinions at time 0: s : V → [0, 1].

• Basic idea: People re-peatedly average their neighbors actions

• Convergence guaranteed. 1

• For more, see tutorial by Garimella, Morales, Gionis,
Mathioudakis http://gvrkiran.github.io/polarization/

1The underlying Markov chain is irreducible and a-periodic.
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Opinion Dynamics

• Friedkin Johnsen model: Each node i maintains a persistent
internal opinion si .

• Social network: G (V ,E ,w), where wij ≥ 0 is the weight on
edge (i , j) ∈ E and N(i) denotes the neighborhood of node i

• Repeated averaging: Each node i updates its expressed
opinion zi

zi =

si +
∑

j∈N(i)

wijzj

1 +
∑

j∈N(i)

wij
.

• Equilibrium: z∗ = (I + L)−1s
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Key Question

• Given n agents, each with its own initial opinion that
reflects its core value on a topic,

• and an opinion dynamics model (Friedkin Johnsen
model)

• what is the structure of a connected social network with
a given total edge weight that minimizes polarization and
disagreement simultaneously?
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Formalizing the key question

• Disagreement of an edge (u, v): squared difference between the
opinions of u, v at equilibrium: d(u, v) = wuv (z∗u − z∗v )2

We define total disagreement DG ,s as:

DG ,s =
∑

(u,v)∈E
d(u, v). [Disagreement] (1)

• Polarization: Let z̄ = z∗ − z∗T~1
n
~1. Then the polarization PG ,s is

defined to be:

PG ,s =
∑
u∈V

z̄2u = z̄T z̄ [Polarization] (2)
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Polarization-Disagreement index

Polarization-Disagreement index is the objective we care about.

IG ,s = PG ,s + DG ,s [Polarization-Disagreement index]

Example.
• Three agents, with innate opinions s = [0, 0, 1].
• We wish to recommend one link with weight 1 between these

three agents.

Recommended link PG ,s DG ,s IG ,s

(1, 2) 0.667 0 0.667
(1, 3) 0.111 0.222 0.333
(2, 3) 0.111 0.222 0.333
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Some observations

Recall, z̄ is the centered equilibrium vector. We make some
important observations:

• Observation 1: DG ,s =
∑

(u,v)∈E
wuv (z̄u − z̄v )2.

• Observation 2: DG ,s = z∗TLz∗ = z̄TLz̄

• Observation 3: Let s̄ = s − sT~1
n
~1 be the mean-centered innate

opinion vector. Then, z̄ = (I + L)−1s̄.
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Formal Statement

• Given our observations 1,2,3,

• our key question becomes equivalent to the following
optimization problem

minL∈Rn×n z̄T z̄ + z̄TLz̄
subject to L ∈ L

Tr(L) = 2m
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Convexity

Lemma

The objective z̄T z̄ + z̄TLz̄ is a convex function of the edge weights in
the graph G corresponding to the Laplacian L.

• To see why, recall that z̄ = (I + L)−1s, and notice that we can
rewrite the objective as follows:

z̄T z̄ + z̄TLz̄ = s̄T (I + L)−1(I + L)−1s̄ + s̄T (I + L)−1L(I + L)−1s̄

= s̄T (I + L)−1(I + L)(I + L)−1s̄ = s̄T (I + L)−1s̄,

• and f (L) = (I + L)−1 is matrix-convex
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Convexity – Algorithm

• Therefore, our problem can be solved in polynomial time using
off-the-shelf first or second order gradient methods.

• We use gradient descent in our experiments. The gradient with
respect to weight wi

∂sT (I + L)−1s

∂wi
= −sT (I + L)−1bib

T
i (I + L)−1s

• where L = Bdiag(w)BT , and bi be the i -th column of B .
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Non-convexity

• Perhaps surprisingly, a slightly more general form of our
objective, where one of the two terms is multiplied by any factor
ρ ≥ 0 (i.e., polarization and disagreement are weighted
differently), is not convex!

Theorem

Let ρz̄T z̄ + z̄TLz̄ , ρ ≥ 0 be our objective. In general, the objective is
a non-convex function of the edge weights.

Proof by counterexample!
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Sparsity lemma

Theorem

There always exists a graph G with O(n/ε2) edges that achieves
polarization-disagreement index IG ,s within a multiplicative
(1 + ε + O(ε2)) factor of optimal for our problem

• Proof based on spectral sparsifiers
[Spielman and Srivastava, 2011, Spielman and Teng, 2011,
Batson et al., 2012, Spielman and Teng, 2014].

• In our experiments, we use the Spielman-Srivastava
sparsification that produces graphs with O(n log n/ε2) edges.
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Key Question II

• Given n agents, each with its own initial opinion that
reflects its core value on a topic,

• a weighted social network G

• an opinion dynamics model (Friedkin Johnsen model),

• and a budget α > 0,

• how should we change the initial opinions using total
opinion mass at most α in order to minimize polarization
and disagreement simultaneously?
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Formal Statement II

An initial mathematical formalization of the problem follows

minds∈Rn z̄T z̄ + z̄TLz̄
subject to z∗ = (I + L)−1(s + ds)

z̄ = z∗ − ~1T z∗

n
~1

~1Tds ≥ −α
ds ≤ ~0
s + ds ≥ ~0

Minimizing Polarization and Disagreement in Social NetworksApril 25th, 2018 21 / 30



Formal Statement II

Proposition: The formulation of Key Question II is solvable in
polynomial time.

Claim (details omitted): We can simplify our formulation to the
following convex (quadratic form) formulation:

minimize (s + ds)T (I + L)−1(s + ds)

subject to ds ≤ ~0
~1Tds ≥ −α
s + ds ≥ ~0
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Experimental Setup

• Datasets. We use two datasets collected by [De et al., 2014].

1 Twitter: n = 548 nodes, and m = 3,638 edges, opinions on the
Delhi legislative assembly elections of 2013

2 Reddit: n = 556 nodes and m = 8,969 edges, topic of interest
politics

• Preprocessing. Opinions extracted from text using NLP and
sentiment analysis. Details in [De et al., 2014].

• Machine specs. All experiments were run on a laptop with 1.7
GHz Intel Core i7 processor and 8GB of main memory.

• Code. Our code was written in Matlab. Our code is publicly
available at https://github.com/tsourolampis/
polarization-disagreement.
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Some findings I

Twitter Reddit
ITwitter ,s 199.84 IReddit,s 138.02
# Edges 3,638 # Edges 8,969
IG∗,s 30.113 IG∗,s 0.0022

# Edges 120,000 # Edges 103,050
IG̃∗,s 30.114 IG̃∗,s 0.0022

# Edges 3,455 # Edges 7,521

• Remark: Third row shows the objective and the number of edges
for the sparsified optimal solution G ∗
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Some findings I

• Lots of controlled experiments in the paper.

• Average polarization-disagreement indices over 5×5 experiments,
over 5 random innate opinion vectors and 5 random graphs.

Proposed method

ER(0.5) PL(2) PL(2.5) PL(3) L∗ L̃∗-sparsified
s ∼ PL(1.5) 14.38 16.10 22.06 53.05 11.60 11.60
s ∼ PL(2) 25.98 45.16 72.11 107.23 19.24 19.27

s ∼ PL(2.5) 94.87 103.62 121.21 166.38 85.55 85.56
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Some findings II

• Lots of controlled experiments in the paper.

Power law random graph (slope 2), uniform innate opinions, budget
α = 5
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Conclusions

Summary

• We provide the first formulation for finding an optimal topology
which minimizes the sum of polarization and disagreement under a
popular opinion formation model.

• We prove various facts about our objective (e.g., sparsity lemma).

• We provide efficient optimization procedures.

• We conduct both controlled experiments, and on real-world data.

Open Problems

• The same questions we asked here can be also asked using other
opinion formation models.

• How good approximation is an expander graph to our objective?

• Approximate non-convex objective?
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Thank you! Questions?

email: babis@seas.harvard.edu

github: https://github.com/tsourolampis

web page: http://tsourakakis.com

project web page:
https://tsourakakis.com/opinion-dynamics/
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