

Minimizing Risk: The Bridge Between Wet Collections & Safety *In The Design For The* **National Museum of Natural History**

Presenters: Walter L. Crimm, AIA and Bryan L. Stemen, CSP, CFPS

Bottle of Mescal

Hipopta agavis

Saturday • May 15, 2004 • 4:40 P.M American Museum of Natural History • New York, NY

National Museum of Natural History Wet Collections

- Wet collections are among the largest in the world
 - 18 million wet collection specimens
 - VZ IZ Herps Fishes
- Containers
 - Several hundred-gallon stainless steel tanks
 - 100-year-old 5-gallon (18.921 liters) brittle glass
 - 2 oz. (.0591 liters) vials
 - Primary medium 75% ethyl alcohol the key hazard commodity
- Key factors driving the project
 - Safety of the public, staff, and collections
 - Preservation of these collections
 - Open up space at the NMNH building on the National Mall

Team

- NMNH staff Collections Managers and Researchers
- Museum Support Center (MSC) staff
- Office of Facilities Engineering and Operations (OFEO)
- SI Office of Safety and Environmental Management (OSEM)
- EwingCole Architects and Engineers

8 Key Elements Influencing Design

1. User Programmatic Space Needs

Storage Pod 91,248 SF (8,477.21 sq m)

- Measure by face area of shelving
- Shelves 12" (.30480 m) or 18" (.45720 m) deep
- Maximum Height seven feet (2.1336 m) to the top of the highest shelf
- Compacted shelving
- Large tank lab
- Growth goal accommodate 20 years

Collections Management Space 29,369 SF (2,728.46 sq m)

- Shared bulk alcohol, glass jar, & shipping material storage area
- Independent space for each collection management (CM) team
 - Different work styles
 - Frequency of collection movement
 - Processing incoming collections
 - Relabeling

Research Space 19,720 SF (1,832.04 sq m)

- Semi-customized 4 modular lab prototypes
- Separate office/paper from collection/research work

Circulation/mechanical 9,649 SF (896.42 sq m)

2. User and Facility Operational Protocols

Storage Pod Activities

- Minimal collections maintenance and no research activity
- Design for "limited occupancy" to simplify building systems
- Examination lab for large tanks

Collection Management and Research Activities

- Modular labs for flexibility
- Fixed equipment: fume hoods, snorkels, and sinks
- Glassed-in office space as a safe separate environment

Emergency Response Protocols

- Protocol developed for response to different events:
 - When to respond themselves
 - When to call building security/safety staff

alt Crimm & Bryan Ster

- When to call the local fire department
- Space provided for emergency equipment

3. Site Issues

- Zoning
 - SI is a Federal Government entity, public review is minimal
- Geotechnical reports
 - Different settlement a heavy building with heavy contents
- Utility capacity deficiencies:
 - Electrical power unreliable
 - Dual incoming services
 - Fire protection water supply 10-inch (.254 meters) main
 - Limited sub-compartment size to less than 5,000 square feet (464.51 sq. meters) with two-hour fire-rated barriers
- Site Footprint
 - Limited by setbacks from the road
 - Distances to existing facilities and parking
 - Forced three story solution

4. Codes/Local Jurisdictional Issues

Lack of clear **PRESCRIPTIVE CODES**

- International Building Code (IBC)
- National Fire Protection Association (NFPA)
- Distilled Sprits Council
- SI's OSEM supplemented performance-based criteria
 - Factory Mutual Criteria

PERFORMANCE-BASED DESIGN

informed by **PRESCRIPTIVE CODES**

5. Safety and Risk/Hazard Assessment

- Properly define the potential hazards
- Determine acceptable level of fire safety
 - Identify hazard
 - Postulate scenarios or events with consequences (Failure Mode vs. Consequences)
 - Determine the likelihood of the event occurring
 - Establish a reasonable baseline
 - Design an umbrella of protective features
 - Outcome: Balanced Design
 - Does not rely upon one system or protective feature
 - Builds in layers of protection that strive for a higher level of protection beyond basic code minimums

Guidelines for the Assessment of Risk

6. Building Core and Shell Design

- Structure concrete
 - Minimize pockets in the structure
 - Ability to provide a four-hour rating
 - Vibration during construction
- Building Shell
 - Precast building already on site
 - Achieve a four-hour fire rating
 - Roof material selected for fume compatibility
- Sub-Compartments within the Pod
 - Eighteen two-hour fire-rated sub-compartments
 - Draft curtains divide sub-compartments in half

alt Crimm & Bryan Ster

- Compact Shelving
 - Six-inch (.1524 m) stops to space units
 - Manual operation grounded
 - Spill reservoirs between rails

7. Building Systems Selection and Design

- HVAC Systems
 - 65°F (18.3 °C) Reduce evaporation rate for ETOH
 - Hydrocarbon detectors Emergency HVAC shut-offs
 - **Electrical Systems**
 - Devices outside the Pods
 - Hazardous location lighting
 - Self-illuminated exit signs
 - UV protection
- Plumbing Systems
 - Spill containment and dilution within the Pod
 - Containment criteria of the local water authority
 - Trap primer
 - Piped alcohol system not used

7. Building Systems Selection and Design

- Fire Protection
 - Automatic sprinkler protection
 - Coordinated with heat baffles
 - Spread control trench drains
 - Hydrocarbon gas detection
 - Fire detection and alarm system
 - Standpipe and hose station connections
 - Passive features
 - Two-hour fire barriers
 - Four-hour fire-rated walls

8. Schedule and Budget

- Fast Schedule
- Tough Budget

Conclusions:

In planning a wet collections facility, consider the following recommendations:

- 1. Spend planning money upfront for a workshop to define complete scope prior to going to your Board or funding agencies for an allocation.
- 2. Based on the eight key elements, develop a list of knowns and unknowns under each item and work to define this scope completely prior to budgeting.
- 3. Bring in the local authority having jurisdiction at the beginning of discussions, and frequently thereafter throughout the design process.
- 4. Create a task force of users and others to make sure they can live with the decisions operationally.
- 5. Hire consultants who understand the complexity of this kind of building.

Afterword

Since the project is defined by the influences of safety and operations on a series of decisions about a building and its systems, it fits the dictionary definition of a POD—"A protective container or housing"—to preserve the NMNH collections for the future.

So why is *Hipopta agavis* in the bottom of the bottle? According to *Ask Jeeves* search engine, "as proof of alcohol content and it apparently alters taste, color and smell of the liquor."

Walter L. Crimm, AIA, is Vice-President of Cultural Practice at EwingCole, an A/E firm in Philadelphia, Washington, Cleveland, Irvine, and Las Vegas. He can be reached at 1-215-805-4691 or at wcrimm@ewingcole.com.

Bryan L. Stemen, CSP, CFPS, is Fire Protection Engineer with the Smithsonian Institution's Office of Safety and Environmental Management in Washington, D.C. He can be reached at 1-202-275-0732 or at stemenb@si.edu.