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1 Introduction

Morphology (from ancient Greek “μορφή” (form) + -logy) is defined as the scientific
study of form. In linguistics, morphology tries to identify, analyze and describe
processes for generating words in a natural language, or it can be defined as the
study of forms of words, where one studies the construction of words; a subfield of
linguistics that is said to have been given less credit than it deserves [Mat74].

This thesis focuses on methods for learning morphology of a given natural language
in an unsupervised fashion. The term morphology is broad in this sense and one
should make it clear what is meant by learning the morphology of a language.

From an analytic point of view, morphology could be defined as analyzing a given
word of the language by describing the underlying processes the word at hand is
formed by. From a synthetic point of view, it can be defined as generating the
proper word form based on the stem1 and the sense in which the word is going to
be used and the role it will take in the sentence. From a descriptive point of view,
morphology can be defined as scientific expression of the word formation processes
of the language, possibly in form of a set of rules or a grammar. These three points
of view are, of course, closely related.

In this thesis, we focus on finding the correct segmentation of words into their
morphs—word segments that represent the smallest meaningful units of the lan-
guage, based on only a list of words of the language and without any further infor-
mation about the language at hand.2 This is what the unsupervised part reflects.
We want to verify whether it is possible to learn the underlying word formation rules
of the language solely based on the words and possibly well understood universal
linguistic principles. In other words, whether the morphological system is inherently
encoded in the language.

Although answering the question of whether the structure of words of a language
can be explained only based on a list of words from that language, which helps
answer questions about human languages [AAAK04], is a fascinating problem in
itself, there are other practical motivations for developing such tools as well. Some
of these motivations are briefly explored here.

There have been many efforts to create automatic morphological analyzers for hu-
1Stem is defined as a form of the word that cannot be further analyzed.
2In the literature this is sometimes reflected as knowledge-free, however in this thesis indepen-

dence from language or being knowledge-free is implied when discussing unsupervised methods.
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man languages [PO09, Çöl10]. Such tools, given a word in a language, will output
the base form of the word along with several morphological tags. Morphological
analyzers are used in many natural language processing tasks such as parsing, ma-
chine translation, speech recognition, information retrieval, etc. Construction of
automatic morphological analyzers is often a labor-intensive task which requires
considerable amount of expert knowledge. As a result of this, such projects are of-
ten very expensive in terms of human labor and no such analyzers have been created
for many of the underresourced languages. A substantial amount of subjectivity is
involved in the manual creation of analyzers and two different analyzers for the same
language might result in different way of modeling the morphology of the language,3

hence different analyses for the same input word.

Supervised methods for morphology learning can ease this process, but they also
need expert knowledge in form of annotated data to achieve the goal. Unsuper-
vised and knowledge-free (language-independent) methods for inferring morpholog-
ical processes of languages, if proved successful, can play a crucial role in creation
of analyzers, since they eliminate the need for huge expert knowledge.

Morphological analyzers are not the only tools that benefit from these unsupervised
methods. For example compilation of MRDs (Machine-Readable Dictionaries) which
are intended to include every possible words that one is ever likely to encounter is an
example of other resources that can take advantage of unsupervised learning meth-
ods [SJ00]. It has been stated that "the quest for an efficient method for the analysis
and generation of word-forms is no longer an academic research topic" [KK97].

In the rest of this chapter, after a brief introduction to unsupervised machine learn-
ing, we give an introductory review of the minimum description length principle
(MDL), which is the core of our approach. The thesis is structured as follows: in
Chapter 2 the linguistic terminology used throughout the thesis is briefly reviewed
followed by definition of the problem; Chapter 3 reviews some of the prior research
related to this work; in Chapter 4 our method to address the problem is explained
in detail; in Chapter 5 we present a new approach to evaluation of the performance
of the method, and corresponding gold-standard annotation guidelines;4 Chapter 6
reviews several linguistically inspired modifications and extensions to the algorithm
followed by results of the system tested on Finnish, Turkish, and Russian, as well
as comparison of the results to a state-of-the-art method: Morfessor CatMAP; the

3Even if they use the same technology.
4Parts of this work have been published elsewhere.
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thesis is concluded with a discussion of the important features of this work and ideas
about potential future work in Chapter 7.

1.1 Unsupervised Machine Learning

Machine learning is a subfield of computer science that deals with learning from
data. Attempts to use computers for learning are not new and go back to as early
as 1960s. With the ever growing amount of data, machine learning methods are
constantly improving and the role of learning from data is growing more and more.
Machine learning methods try to build a model based on observations (data) which
capture and discover patterns in data and possibly perform predictions for future
instances.

Machine learning methods are primarily categorized into supervised and unsuper-
vised methods, based on the task they are expected to perform and the type of data
they deal with. If the data is labeled, meaning that there are output values for each
data item that will not be available for future data, and the task is to discover a
mapping from input data to the output values, the task is said to be supervised. The
most well-known example of supervised machine learning problems is the problem
of classification, in which data items are divided into multiple classes and the task is
to find underlying rules that help predict the class for future unlabeled input data.

Unsupervised machine leaning deals with raw data that are not labeled in any way
and the goal is to discover patterns in the data. A very well-known unsupervised
learning problem is clustering, in which the goal is to divide the input data into
several groups which are not known beforehand. The problem we address in this
thesis work is of unsupervised nature; we deal with a list of words of a language,
without any further information and the goal is to find underlying morphological
processes and rules and learn to segment them in a linguistically-sensible fashion,
without providing the algorithm with any segmentations.

1.2 The Minimum Description Length Principle

The minimum description length principle, abbreviated as MDL, which was intro-
duced by Jorma Rissanen in 1978 [Ris78], is a formalization of Occam’s razor and
provides a generic solution to the problem of model selection [Grü07]. Suppose that
we have several models that try to explain a set of limited observations and one
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needs to choose one of the models which better explains the data. This is the prob-
lem of model selection. Model selection is one of the most important questions in
statistical inference and data modeling.

According to the MDL principle, the best model is the one that compresses the data
the most. Viewing the problem of learning as a data compression task is the core of
the MDL principle. The ultimate goal of learning is to find the underlying rules and
processes that help describe the data; the more rules one can discover from the data,
the better the data will be described. The amount of regularities one can find in
the data is also in correlation with how much that data can be compressed; finding
more rules results in shorter description of the data.

The length of the shortest computer program that can be written to print out the
data is called the Kolmogorov complexity of the data [Kol63, Grü07]. In general,
the more complex the data is, the higher its Kolmogorov complexity will be. Kol-
mogorov complexity is closely related to data entropy defined by Shannon [Sha01].
Kolmogorov complexity is defined relative to a programming language in which the
program is written. This means that it depends on the chosen programming lan-
guage. It has been proven that Kolmogorov complexity is not computable. This
has been done by showing that no program P can be constructed that given data D
will return the shortest program that produces D [Grü07]. Although the invariance
theorem states that Kolmogorov complexity of data D relative two programming
languages L1 and L2 differ only in a constant number of bits provided that data D
is long enough, because of aforementioned problems Kolmogorov complexity is not
useful in practice [Grü07].

The MDL principle provides a practical solution to model selection in absence of
practicality of Kolmogorov complexity. Given a model class from which a model
should be selected, choose the one that yields the best compression of the data. MDL
has several features that makes it distinct from other approaches. MDL automati-
cally avoids overfitting by trading off the goodness-of-fit and the model complexity
(by formalizing Occam’s razor) and does not require other ad hoc modifications to
avoid overfitting. Also in general the MDL-based methods, unlike many statistical
methods, do not assume any specific true processes that generate the data. In many
cases such “underlying truth” does not even exist [Grü07].

MDL is closely related to Bayesian methods and also is believed to select models
with good prediction abilities of unseen data. MDL is closely related to the concept
of universal codes. A universal code for a model is the code that represents the
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data almost as compactly as the best model, i.e. the model that compresses the
data the most. One type of such codes is the two-part MDL code in which the
code length for the data consists of two parts: L(M)—code-length of the model—
and L(D|M)—code-length of data given the model— This allows automatic tradeoff
between model complexity (by which L(M) grows) and goodness of fit (by which
L(D|M) decreases), hence avoiding overfitting. Other types of universal codes are
Bayesian universal codes, normalized maximum likelihood (NML) universal codes,
prequential plug-in universal codes which are used in this work and will be discussed
further in Section 4.1, etc [Grü07].

2 Problem Definition

In this chapter, after a brief linguistic introduction and review of some linguistic
terms used in the thesis, we define the problem that is being addressed in this work.

2.1 Terminology

In this section we define the (mostly linguistic) terminology that will be used
throughout the thesis. The linguistic terminology and detailed discussions of mor-
phology can be found in [Mat74] and [AF11].

• Word: A word is an independent and meaningful unit of speech or writing,
which usually is accompanied by other words to form sentences. Some exam-
ples in English are dog, football, dishes, etc.

• Morph: A morph is a segment of the word that represents the smallest mean-
ingful unit of the language and cannot be further split into other meaningful
units. For example the English word dogs consists of two morphs: dog (an
animal) + s (signifying more than one dog).

• Morpheme: A morpheme is the smallest meaningful unit of the language.
Morpheme is an abstract notion and can be defined as a set of morphs that
correspond to the same meaningful unit. Morphs are realizations of morphemes
in the words. For example the first morphs of the Finnish words kansi, kannen,
kanteen, and kantta are all realizations of one morpheme: {kansi, kanne-,
kante-, kant-}—meaning: cover, lid, cap.
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It is also crucial to distinguish morphemes from words, as morphemes do not
always appear as words. In fact a morpheme may or may not appear on its
own in the language, but a word is by definition an independent unit. Mor-
phemes can be classified to be free or bound. Free morphemes can appear in
the language as an independent word, whereas bound morphemes have to be
accompanied by at least one free morpheme to form a word. For example the
English word unattractive consists of three morphemes: un- is a bound mor-
pheme which signifies negation of the next adjective or past participle, attract
is a free morpheme,5 and -ive is a bound morpheme for forming adjectives
from verbs.

• Allomorphy: Allomorphs are morphemes that are semantically the same,
but differ in pronunciation and perhaps in writing as well. A simple example
of allomorphy in English is the morpheme for forming plural of nouns which
is a /z/ in dogs, but manifests itself as /Iz/ in ashes. Depending on the
target language there are different types of allomorphs. For example vowel
harmony in Finnish prescribes at least two allomorphs for most suffixes, such
as “-ton” and “-tön” for indication of lack of something respectively for words
containing back and front vowels. In Turkic languages the same principle of
vowel harmony results in four variants of some suffixes.6

• Inflection: Inflection is a morphological process which involves addition of
an inflectional morpheme to a base. Inflectional morphemes create new words
from the base, but do not change the semantics or part of speech of the base
word. For example it can change the tense, person, or number of a verb, or
it can be used to form the plural of nouns. An example in English is the
morpheme for forming plurals (written as “s”) which is used to form dogs from
dog.

5More accurately, if one wants to account the history of the words in ancestor languages (or
source languages in case of borrowings) one could break attract into two morphemes, since attract
descends form Latin attractus which is the past participle of attrahere (to draw to), which is in
turn formed by Latin prefix ad- (to) + trahere (to draw). This exhibits one potential source of
subjectivity in describing the morphology of languages. One could argue that the word is old
enough in English to forget the historical structure of it since it would not help much in practical
applications of the morphological analysis, whereas others might want to include it because it
reveals more information about the language and the word than attract by itself does.

6For instance the analogous suffix for indicating lack of something in Turkish has 4 variants:
-sız, -siz, -suz, or -süz depending on the position of tongue (front or back) and roundedness of the
vowels in the preceding morpheme.
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• Derivation: As opposed to inflectional processes, derivation is a morpholog-
ical process in which the semantic or part of speech of the base words may
change. It can be said that these processes create new words, whereas in-
flection only changes the form of the word. An example that we encountered
earlier is adding the suffix “-ive” in English which is used to create adjectives
out of other words, such as attractive, collective, massive, constructive, etc.
Although the resulting words are semantically related to the base words, they
do not exactly signify the same thing and usually the meaning of the word
changes.

• Compounding: Compounds are words that have more than a free morpheme
or root in them. Some languages such as German and Finnish make exten-
sive use of compounding. For example the word football consists of two free
morphemes foot + ball. Other examples that use more complex morphological
structures are Götterspeise in German and talvikunnossapitoa in Finnish.

2.2 Morphological Typology

Morphological typology refers to a way of classification of natural languages based
on their morphological structures.

Generally, languages are divided into two major groups: analytic languages and
synthetic languages. Analytic languages are the ones that use little inflection in
their structure and instead use other non-morphological mechanisms such as word
order to clarify the underlying role of the words. On the other hand, synthetic
languages are the ones that have a higher morpheme per word ratio. In other
words, one word can appear in many different inflected forms to reflect the role it is
taking in the sentence. Synthetic languages usually trade this added complexity off
by removing word order constraints, thus the order of words in a sentence can be
chosen more freely.

There have been efforts to classify synthetic languages based on how morphemes
are combined together to form a word. Synthetic languages are categorized as ag-
glutinative or fusional. Agglutinative languages, also known as concatenative
languages, use agglutination as the primary approach to morpheme combination. In
this type of languages, the morphemes remain mostly unchanged when combined to
form a new word, as if they have been concatenated and the word is a sequence of
morphemes. This is in contrast to fusional languages where there is fusion in com-
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bining the morphemes and it may be difficult to distinguish morpheme boundaries.
Although scholars tend to categorize languages in this way, it is essential to note
that it is not plausible to refer to a language as fully agglutinative or fully fusional
since languages employ both types of processes in their structure to some extent
and care must be taken when categorizing languages as such.

In contrast to concatenative languages, some languages are known to be non-con-
catenative. These languages are said to use discontinuous morphology in which
words are formed by other means that stringing morphemes together [HS13]. One
example is Arabic which uses transfixation for morphological generation. In Arabic,
certain vowels and consonants are added in between the consonants of the root to
create new morphemes. One example of such a process can be found in Figure 1.
Other non-concatenative morphological processes include ablaut, reduplication, and
truncation.

Figure 1: Example of Arabic transfixation from a three-consonant root. The root
is shown in the first row and root symbols are underlined in each word. New words
are created by placing the root in certain patterns, which can put sounds anywhere
between or around the root consonants. The vowels and consonants of the pattern
are shown in red (not underlined, short vowels appear as diacritics in red above or
under the consonants). As an example, the template “ya12u3u” will result in the
masculine 3rd person present tense verb, where 1, 2, and 3 denote the first, second
and the third consonant of the root, respectively.
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In this work we focus on concatenative morphological systems. A more universal
system that can learn the morphology of non-concatenative languages is in our future
work plans.

2.3 Input Data

The input to our algorithm is a list of distinct words of the target language. We do
not use any information about the context of the words, nor any information about
the frequency of their usage; adapting the model to use such information is part of
the future plans.

Although morphology of the language might be better reflected in the spoken form
of the language, we use the written form of the words, since it is the easiest form
to collect data for, and gives an approximation of the spoken form. We collect and
preprocess the data from books that are freely available in digital format for public
use. The list of words are then extracted from these books.

2.4 Morphological Segmentation

For languages that are considered to be agglutinative or mostly so, one could define
a segmentation of a word into morphs. If the language at hand were fully ag-
glutinative without more complex morphophonological phenomena such as fusion,
segmenting the words by a human expert would be trivial, since it would be clear
which morph each letter corresponds to. For instance the Finnish word talossa—
meaning “in the house”, can be unambiguously segmented as talo (house) + -ssa
(inessive suffix). But none of the natural languages are fully agglutinative and each
one shows at least several more complex phenomena which leaves the definition of
segmentation somehow subjective. For instance in case of the Finnish word yrityk-
sessä—meaning “in the company”, due to fusion, it is not clear what the segments
should be; yrityks+essä or yritykse+ssä, or perhaps some other segmentation.

We define segmentation of a word as slicing the word in a way that each piece is a
morphologically valid morph as defined in Section 2.1. To each of these segments
can be assigned a label which reflects which morpheme it corresponds to. One might
accurately argue that in languages that are not fully agglutinative, for a given word,
there might be more than one reasonable segmentation. This is in general true since
for that kind of processes the symbols closer to the morpheme boundaries could be
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considered as part of either morph.

In this thesis we are looking for a method for reasonable segmentation of the set
of words, giving the model freedom to make decisions under such circumstances,
provided that the model remains consistent in the decisions it makes. If a system
were evaluated based on one of these alternatives as the correct segmentation, it
would not be fair to the model since it might have obtained a set of alternative,
equally good segmentations. This problem of evaluation and how we address it will
be explained in details in Chapter 5.

We want a method, that given a set of words in a language (and no further a priori
information about the language, except for possibly universal rules which apply to
all languages), will learn to segment each word into strings that in the ideal case
meet the following conditions:

1. Each string is a morph that corresponds to a linguistically meaningful mor-
pheme.

2. Concatenating the segments will result in the original word.

These are the two requirements that this work focuses on. Furthermore, the model
can choose to:

• Assign a label to each morph which gives more information about the mor-
pheme it corresponds to

• Determine other aspects of morphological processes of the underlying language

The latter two points, if addressed, should draw the model closer to full morpholog-
ical analysis of the language, however, full morphological analysis is not our goal in
this work.

Some examples of segmentations for English and Finnish are listed in Figure 2.

3 Related Work

There has been substantial amount of research in unsupervised morphological learn-
ing during the past decades.

Morpho Challenge is a series of events organized for designing statistical machine
learning methods for learning morphology [KCV+06, KCV07, KTV08, KVT+09,
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Word Segmentation
joukoista jouko+i+sta

kokoaisin koko+a+isi+n

mielitelkö miel+it+el+kö

puolustautua puol+us+t+a+utu+a

sanoitte sano+i+tte

taajain taaja+i+n

talossa talo+ssa

virroissa virr+o+i+ssa

(a) Finnish

Word Segmentation
attractive attract+ive

cats cat+s

dogs dog+s

formalize form+al+ize

recalculate re+calculate

strengthened strength+en+ed

unspeakable un+speak+able

walking walk+ing

(b) English

Figure 2: Examples of word segmentation for Finnish and English.

KVTL10]. Data-sets for Finnish, English, Turkish, German, and Arabic (vowelized
and non-vowelized)7 are provided by the organizers for training and evaluating un-
supervised and semi-supervised morphology learning methods.

In-depth surveys of morphological learning methods can be found in [HB11] and
[CM14]. In this chapter we review some of the works that have addressed morphol-
ogy learning and general methods that have been employed to address this prob-
lem. [HB11] categorizes the efforts into four fundamentally different approaches:

Border and frequency methods are the ones that utilize frequency of adjacent
substrings as evidence of morpheme boundaries. In other words, if a substring is
adjacent to many different substrings, it is more likely to be a morpheme. High
frequency of substrings themselves also suggests them as morpheme candidates.

Group and Abstract methods approach the problem by first grouping (clustering)
the words into morphologically related sets. This is often done using some heuristic
such as string edit distance, semantics, etc. These groups are then looked up by an
algorithm for recurrent patterns of morphological processes.

Features and Classes methods try to represent words as sets of features instead
of their written representation. This way features that occur rarely represent a stem
and more frequent features are more likely to represent affixes. This in general is
true since affixes tend to occur much more frequently than stems.

7Arabic uses a consonant-based writing system in which most vowels are omitted in writing.
Vowelization is a way of rewriting the words along with the vowels that are omitted in normal
writing.
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Phonological Categories and Separation methods categorize phonemes of the
words into classes such as vowels, consonants, etc. These techniques are then used
to learn the patterns present in the words. To follow this approach, one needs
the phonemes of the words which are generally approximated by graphemes—the
smallest units in the writing system that in many writing systems are used to rep-
resent sounds. It is worth mentioning that this approach is designed to work with
intercalated morphological systems such as Arabic which follow non-concatenative
processes.

[CM14] on the other hand classifies the methods for unsupervised morphological
learning into a finer list based on what machine learning approach they follow.

LSV (Letter Successor Variety) models: Harris’s [Har55] LSV-based word segmen-
tation algorithm is among the first attempts for unsupervised word segmentation.
These methods work by constructing a trie [De 59] of the input words. The number
of letters that can follow a letter is called the successor variety of that letter. Sym-
metrically the number of letters preceding a letter is called the predecessor varieties
of the letter. These numbers are then used to determine word segment boundaries or
so called split points. This approach is similar to the border and frequency methods
in the earlier typology of algorithms. An illustration of how this family of algorithms
work can be found in Figure 3.

MDLmodels rely on Rissanen’sminimum description length principle [Ris78]. MDL
principle states that the shorter the code length a model assigns to the data, the
better that model describes the data. Our method is also in this family.

ML (Maximum likelihood): In Bayesian statistics, likelihood of model M given the
data D is defined as the probability of data D given model M . Sometimes for ease
of calculation, the logarithm of this function (log-likelihood denoted by `) is used:

L(M |D) =P (D|M)

`(M |D) = logP (D|M)
(1)

In maximum likelihood estimation (MLE), one is looking for the model (or pa-
rameters of the model within a model family) that maximizes the likelihood, or
alternatively the log-likelihood of the model given the data which is believed to be
the best model describing that data:

MML = arg max
Mi

L(Mi|D)

= arg max
Mi

`(Mi|D)
(2)
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Some methods that model morphology using maximum-likelihood can be found
in [CL02, CL04a].

MAP (Maximum a posteriori): As can be seen from equation (2), in ML estimation
method, there is no way of assigning prior probabilities to models. MAP estimation
methods select the model based on their posterior probability, i.e., probability of
the model after data D is observed. According to Bayes’ rule posterior probability
denoted by p(M |D) can be defined as:

P (M |D) =
P (D|M)P (M)

P (D)
(3)

Here, P (M) is the prior probability of the model, i.e., probability of the model
before any data is observed. This reflects our belief of model’s correctness prior to
any evidence. Thus, the model that best describes the data can be computed as:

MMAP = arg max
Mi

P (M |D)

= arg max
Mi

P (D|Mi)P (Mi)

P (D)

= arg max
Mi

P (D|Mi)P (Mi)

(4)

The latter holds because P (D), probability of data, is independent from models and
thus does not affect the maximization. [CL05] is one such method.

Authors in [SJ00] mention that most other methods do not use semantics of the in-
put words as a way of unsupervised and knowledge-free morphology induction and
rely only on statistics of affixes, thus resulting in problems such as wrong usage of
valid suffixes (e.g. wrong segmentation of “ally” into “all” and “y” although “y” is a
valid suffix in many other words), failure in identifying morphological relationships
in ambiguous cases such as “rating” which might be grouped with “rat” instead of
“rate”. Their method reads in around 8 million words of random sub-collections of
the TREC data-set [VHB97] and computes conflation sets of words (sets of words
that are morphologically related) as well as a list of induced rules and list of af-
fixes. Although they seek slightly different goals than we do, they demonstrate that
their semantics-aware method helps in morphology induction and rivals Linguis-
tica [Gol01]. They use a trie [De 59] for listing potential affixes which can be used
to identify words that are likely to have the same stem and thus, are morphologically
related. However, identification of such relationships is aided by a semantic similar-
ity measure, since semantically similar words that seemingly have the same stems
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misbehave
misspell
mistreat
misuse
recalculate
recreate
redo

ε[7]

mis-[4]

misusemistreatmisspellmisbehave

behave
spell treat

use
re-[3]

redorec-[2]

recalculaterecreate

reate
alculate

c

re mis

Figure 3: A trie (aka. digital tree, radix tree, or prefix tree) constructed from seven
words on the left. The tree illustrated here is a compact trie in which nodes along
a path without any branching have been united into one edge. Words are placed on
the leaf nodes and the strings inside the middle nodes show the prefix of all words
of the corresponding subtree. The number of words in each subtree can be found in
brackets in the middle nodes. A high enough frequency for the nodes, provided that
they correspond to a long enough string, suggests a potential morphological prefix
in the language.

are more likely to be morphologically related. In their work latent semantic analy-
sis (LSA) [LFL98] is used to measure how semantically close two words are. They
identify semantic relationship by applying singular value decomposition (SVD) on
a term-term matrix, which transforms the words into a k-vector of latent semantic
directions. These vectors are then compared using normalized cosine scores (NCS)
to acquire information about semantic similarities of words. They conclude that
using semantics in knowledge-free induction of morphology can play an important
role and frequency-based and semantic-based methods play complementary roles in
unsupervised morphology induction [SJ00].

Another related work that takes advantage of semantic information is [BMT02].
Their work is based on the observation that many orthographically similar words
are not morphologically related. Most semantically related words are not morpho-
logically related either, but if two words are both orthographically and semantically
similar, they are more likely to have the same morphological root. They, however, do
not use statistical information such as affix frequency and hope that that this would
result in finding rare affixes or words related via non-concatenative morphological
processes. Their system is fed a list of words from a corpus for each language and
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outputs pairs of words that are found to be morphologically related, but no attempts
are made to discover the patterns that relate them. A list of orthographically similar
pairs (based on normalized edit distance), and a second list of semantically similar
pairs (based on mutual information) is maintained and refined, and finally only the
pairs that appear in both lists are reported as morphologically related pairs, ranked
by a weighted score based on both similarity measures. Semantic similarities are
measured by mutual information criteria computed based on cooccurrences of words
in a window. They use an orthographic edit distance for measuring similarities, how-
ever, a phonetically inspired measure would also seem to capture useful similarities.
In their work, German words that are longer than 9 characters are filtered out since
these words end up in the beginning of the list and they do not consider long com-
pounds interesting, however, discovery of stems of compounds specially in languages
that employ compounding as one of their fundamental word formation mechanisms
(such as German) is an interesting problem. Their system is tested on English and
German and they report a high precision in the results and report discovery of sev-
eral non-concatenative morphological processes such as German plurals formed by
umlaut [BMT02].

One of the prior works that is similar to ours both in goal and method, is [AAAK04].
They show how formulation of description length can aid in building an efficient algo-
rithm for morphological segmentation in the following way: the algorithm maintains
and refines a dictionary of word forms, by iteratively creating a list of prefix candi-
dates. At each step, the prefix p that achieves the greatest decrease in description
length is chosen as the next prefix. Then, all words that have p as a prefix are seg-
mented accordingly. This process is continued until convergence. They test several
models of description length including a two-part code approach. They test their
method on a large English corpus and a Turkish corpus, however, evaluation is done
by visual examination of the first N prefixes.

[Ber08] introduces a method that competed in Morpho Challenge [KCV07]. The
method is an unsupervised method that has only three parameters to tune and
produces labeled segmentations from a list of input words. Produced segments are
labeled as “stem”, “prefix”, “suffix”, or “linking element”. It uses the notion of segment
predictability, which states that a potential segment boundary could be hypothe-
sized at points where it is difficult to produce the next character. Such predictions
are based on transition frequencies between characters in the corpus. Once such
potential segments are computed, a list of prefixes and suffixes is computed based
on the segments and their frequencies, followed by a list of stems. There are several
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other restrictions that are imposed to prevent the model from unwanted behavior,
such as elimination of prefixes and suffixes that are only one character long.8 Fre-
quencies of the segments in the entire corpus are used as a measure for ranking the
segments and choosing the best one. This method does not address allomorphy, but
addresses some cases of homography, where one segment could be related to more
than one stem. The method has been tested as part of the Morpho Challenge 2007
competition on 4 languages [KCV07].

Table 1 summarizes some of the methods which have been devised for addressing
learning of morphology.

Name Method Notes
Lingusitica [Gol01] MDL
[AAAK04] MDL, Recursive,
[BMT02] Edit distance,Semantics
Morfessor baseline
[CL02]

MDL, HMM, Recursive

Morfessor FlatCat
[GVSK14]

HMM, Semisupervised

[DN07] Allomorphy
[Har55] LSV
[Gau99]
[JM03] DFA Identifying hubs in DFA
[KM01] Supervised, GA, ILP
[Mon04]
ParaMor [MCLL09,
MLCL08, MLCL04]
[MEB09]
Whole Word Morpholo-
gizer (WWM)[NF02]

Deterministic POS-tagged data as in-
put, Identify morphological
relationships without mor-
phemes (based on the theory
of Whole Word Morphology)

Table 1 – continued on next page

8Although this might be a valid thing to do for the four languages that the method has been
tested on, it will not work for some other languages such as Russian which have single-character
prefixes, besides it builds into the model some a priori non-universal linguistic facts.
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Table 1 – continued from previous page
Name Method Notes
RePortS [KP06] Deterministic Intuitive.
[Dem07] Deterministic
[LL10] Deterministic, Formal Anal-

ogy
[Ber06] Deterministic
[SJ00] Semantics (LSA)
[SKD02, SKD08] Developed for learning mor-

phology of Assamese
[SJB02] Generative probability model
MetaMorph [TMR10] Multiple Sequence Alignment

(MSA)

Table 1: Several of previous algorithms developed for morphological segmentation.
Unsupervised methods have been highlighted in the table.

4 StateMorph: A MDL Approach to Morphology

Learning

In this chapter we describe our method for unsupervised learning of morphology:
StateMorph. We try to model the morphology of a language using a finite-state
automaton. This can be viewed as a first order Markov chain as well, where the
next state is determined only based on the current state and not on the sequence of
previous states. For each word, the automaton starts at state S0 (the initial state),
then with some probability, it transits to another state and emits a morph. The
state that emits the morph is meant to identify which group of morphs the emitted
morph belongs to. This sequence of transition-emission continues until the whole
word is processed. Then the automaton transits to the final state SF and emits a
special “end of word” symbol (denoted by #). This process is depicted in Figure 4.
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S0start

S1

µ1

S2

µ2

SF

S3 µ3

#

Figure 4: The model as a finite-state automaton with three states. The dashed
arrows illustrate emission of strings. S0 emits nothing and SF always emits end-of-
word symbol #.

The model consists of the following components:

• Lexicon :
A list of morphs that a state can emit. Each state maintains is own list of
emitted morphs.

• Transition probabilities:
Probability of each state being the next state, given the current state.

• Emission probabilities:
Probability of emitting each morph given the current state.

Ultimately we want each of the states to emit morphs that are categorically the same,
for instance a state that emits prefixes, or prefixes with certain characteristics.
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This formulation describes the model family that we are going to work with. We
now need to choose the model that best describes the data, hence a model selec-
tion approach is needed here. As stated by Rissanen’s minimum description length
principle, the best model to describe a set of data is the one that compresses it the
most. So our aim here is to find the model in this model family that can be written
down using the smallest number of bits. This raises need for a means of measuring
the number of bits required to transmit the model, which will be called the model
cost or code-length here. Model cost for data D consists of 3 components—lexicon
cost, transition cost, and emission cost:

L(D) = LLex(D) + LTrans(D) + LEmit(D). (5)

For coding the transitions and the emissions, we use the prequential coding method
which is introduced next. The formulas for computing the three components of the
total cost of the data are given in Section 4.2.

4.1 Prequential Coding

Suppose that we want to construct an efficient code for the data at hand. Such an
optimal code could be constructed via a prefix code approach. But constructing
an efficient prefix code requires knowledge about the underlying distribution of the
symbols in the data. Such a distribution is unknown to us, otherwise there would
be nothing to look for and the solution lies in the distribution.

Also one cannot assume that such a real underlying distribution exists. The best
one can do, is to estimate a distribution that describes the data, and construct a
code based on that. A maximum-likelihood estimation would be a good idea to use
here. So the sender can estimate the distribution using the data at hand, construct
a code and start transmitting the data using that code. The receiver, on the other
hand, needs to be able to decode the received message and reconstruct the data. If
this condition is not met, we fail to have a proper code. In order for the receiver to
properly decode the message, it needs to either know what each symbol in the code
stands for, or it should know the distribution of the data that the sender used to
construct the code based on. Clearly the receiver does not possess this information
unless they are transmitted by the sender, which will add to the code length and
make it more cumbersome to compute.

Prequential coding [Daw84] is based on the idea that statistical inference is about
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making predictions for future observation based on previous ones, rather than finding
the parameters of a distribution that fits the model. Suppose that a sender and a
receiver are trying to communicate and the data that needs to be transmitted is a
sequence of events E =

(
ei
)k
i=1

where ei ∈ E . E is the finite set of possible event
types. Initially, both sender and the receiver start with no information about the
distribution of the data that is going to be transmitted, hence they have agreed on
a prior distribution of the events. They both can construct the same code based
on this prior distribution, thus the message will be decodable. The sender then
sends the symbol corresponding to e1, and updates its distribution by adding one e1

observation. The receiver decodes the message as e1 and updates its own estimate
of distribution of events in the same way. So now once again the sender and receiver
have the same distribution, and hence share the same code. This process goes on
until the whole sequence has been transmitted. This way, both sides will maintain
the same distribution at every step. It can be shown that [Wet13, Hil12] using
Bayesian marginal likelihood, one can transmit the events in E using a code the
length of which is equal to

Lprequential(E) =−
N∑
i=1

log Γ(ci + αi) +
N∑
i=1

log Γ(αi)

+ log Γ

[
N∑
i=1

(ci + αi)

]
− log Γ

[
N∑
i=1

(αi)

] (6)

where N = |E|, ci is the number of times event xi ∈ E is observed in the whole
data, and αi is the prior count of xi. log x represents the binary logarithm of x
throughout the thesis. Γ stands for the gamma function. If our counts ci and priors
αi are integers, the gamma function can be rewritten in terms of factorials since
Γ(n) = (n − 1)! for any positive integer n ∈ N. In case of non-integer priors, one
must follow the general definition of Γ

Γ(t) =

∫ ∞
0

xt−1e−xdx.

In our work we use uniform priors (αi = 1), thus the code-length can have a simpler
form of
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Lprequential(E) =−
N∑
i=1

log Γ(ci + 1)

+ log Γ

(
N∑
i=1

ci +N

)
− log Γ(N).

(7)

Equation (7) gives a formula for computing the code length based on only the
frequency of events and the priors which makes it suitable for being used in the
optimization process.

4.2 Computing the Code Lengths

Here we describe how each of the three components of the model are coded and we
give the formulas for computing the respective costs.

• Lexicon code-length: There are several alternatives for coding the lexicon.
The aim here is to efficiently encode a list of morphs which are emitted from
states. One method to do this, used also in [CL02], is to assume uniform
distribution on the symbols and use a fixed-length code for each symbol. The
number of bits required for morph µ is then equal to

L(µ) = (|µ|+ 1) · log(|Σ|+ 1) (8)

where Σ is the augmented alphabet: the set of all symbols used in the language
plus a special end of word symbol (“#”) and |µ| is the number of symbols in
morph µ. As a whole, the lexicon then can be represented in

LLex =
K∑
i=1

[( ∑
µ∈Lexi

L(µ)
)

+ log(|Σ|+ 1)

]
(9)

bits where Lexi represents all morphs that are emitted at least once for state
Si and K is a pre-determined number of states. We need to encode the lexicon
in a way that the receiver can determine when one state ends and the next one
begins. Transmission of an empty morph at the end of each state does this,
which costs log(|Σ| + 1) bits. Note that since the start state does not emit
anything and the end state unconditionally emits the end of word symbol the
cost of lexicon for them is zero since nothing needs to be coded.
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Bearing in mind that when coding the lexicon for the states, the order in
which they appear is not relevant since we are just coding a set, we can more
efficiently code the lexicon using

LLex =
K∑
i=1

[ ∑
µ∈Lexi

L(µ) + log(|Σ|+ 1)− log |Lexi|!

]
(10)

bits. The log |Lexi|! in code-length is saved due to the fact that we do not
need to transmit the lexicon in any specific order, thus the sender is free to
choose the order in which the morphs are transmitted. Since there are |Lexi|!
permutations of the morphs, we can save log |Lexi|! bits.

Transitions and emissions are coded prequentially. To use prequential coding, we
need to formulate the data as a sequence of events. The events here are transitions
between the states and emission of morphs from the state since each segmentation
is a sequence of transitions and emissions. Here we describe the event space for
transitions and emissions.

• Transitions code-length:
A transition from state Si to state Sj can be considered as an event. The event
space then can be defined as ETrans = { (i, j) | 0 ≤ i, j ≤ N } and transitions
can then be coded prequentially.

• Emissions code-length:
Similarly, once the set of possible morphs (lexicon) is known—i.e., has been
coded—it can serve as our event set for prequential coding and each emission
from a given state Si can be an occurrence of the corresponding event: EEmit =

Lexi.

Once the code length function L(D) is defined as in Equation (5), we can use it as
the objective function which the learning algorithm will minimize, using a search
procedure, which we describe next.

4.3 Search Algorithm

Given a list of words, we want to search for the best segmentations for the words,
i.e., the segmentations that minimize the code-length.
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We use an approach based on expectation-maximization (EM) [DLR77]. Expectation-
maximization is a method for estimating the maximum likelihood (ML) or maximum
a posteriori (MAP) parameters of a statistical model where the model has missing
data or latent variables. It consists of two steps: expectation (E) and maximization
(M).

In the E step, the unobserved data are estimated based on the current parameters
of the model. The estimated data along with the observed data form the complete
data, which are fed to the M step which will find the ML (MAP) parameters in order
to calculate new parameters for the model. The algorithm then alternates between
these two steps which guarantees that the objective improves at each iteration.

As listed in Algorithm 1, we start by a completely random segmentation of words
and iteratively search for better segmentations given the rest of the data (the E
step). Once we have a set of new segmentations, we can build the model based on
that (the M step).

Searching for new segmentation is done using a dynamic programming algorithm
that is explained in detail in Section 4.4. A classification for a word segmentation is
simply a list of states that each segment is emitted from. This is called classification
since we use the term class for states as they are meant to correspond to classes of
morphs.

Algorithm 1 StateMorph Search algorithm
1: procedure StateMorph-Search

2: for all word w ∈ W do
3: Si ← Generate a random segmentation
4: Ci ← Generate a random classification for S
5: Register Sr and Cr in the model by updating the event counts.
6: end for
7: repeat
8: for wi ∈ W do
9: Deregister current classification and segmentation of wi
10: (Si, Ci)← Search for a new segmentation and classification for wi
11: Register Si and Ci in the model
12: end for
13: until convergence is achieved
14: end procedure
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It is important to note that since we only compute one segmentation for each word,
our model is following the so-called hard EM approach. To use the soft EM, one
can compute the probability of all possible segmentations and classifications for
each word and adjust the EM algorithm accordingly. This is computationally more
demanding and is left as part of the future work plan.

4.4 Segmentation of Words by Dynamic Programming

One crucial part of the algorithm is searching for the best segmentation for a word,
given segmentations for the rest of the words in the word list. We use dynamic
programming for this purpose, similar to the approach we have previously used in
other works for analysis of etymological data [WNRY12, WNRY13, NY14] and
transliteration generation [NPY13].

For a word of length n, there are 2n−1 different segmentations since there are n− 1

potential split points. Furthermore, for each of these segmentations, depending on
the number of segments and number of states in the system (K), there is a finite,
but generally large number of different classifications.

If a word is split into s segments, assuming that there are K classes, because each of
the segments can be emitted from any of the classes, there will be Ks possible ways
to classify it. On the other hand, there are

(
n−1
s−1

)
different segmentations of length

s, thus, the number of different segmentations of length s along with classifications,
denoted by N(s) can be calculated as

N(s) =

(
n− 1

s− 1

)
Ks (11)

and since a word of length n can be segmented into at least 1 and at most n segments
(empty segments are not allowed), the total number of possible segmentations and
classifications for a word is equal to

N(w) =
n∑
s=1

N(s)

=
n∑
s=1

[(
n− 1

s− 1

)
Ks

]
= K(K + 1)n−1.

(12)

Thus, the number of possible solutions for a word of length n given that the system
has K states is exponential, which makes it intractable for an exhaustive search,
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bearing in mind also that there is generally a large number of words in the data
set.9

Dynamic programming is a bottom-up approach to problem solving which works by
taking into account optimal substructures and overlapping subproblems. A problem
is said to have optimal substructure if the optimal solution to it can be constructed
from optimal solution(s) to its subproblems. If subproblems are repeated as parts of
many candidate solutions, the problem is said to exhibit overlapping subproblems.
This can be seen in some recursive algorithms where a call to solve a subproblem is
repeated over and over.

If a problems exhibits both of these characteristics, dynamic programming can be
used to solve it in considerably less time compared to the recursive approach. Time
saving is done via avoiding recalculation of solutions to the subproblems.

Let us start by defining how we break the complex problem into smaller subproblems.

For a word w, we denote by σba a substring of w from position a to position b

inclusive. Indices here are in the range between 1 and n where n is the length of w.

We will write σb1 as σb for simplicity. This is the prefix of w up to b. Similarly
a suffix of w like σna can be written as σa. This way, σn will be equivalent to the
whole word w. Since we add a special end of word symbol to all words, let us denote
the augmented word by σn+1 = w#. Similarly, a special substring σ0 represents the
empty string ε.

Let us denote cost of segmenting σi and being at state Sj with C(σi, Sj). We are after
the solution which minimizes C(σn+1, SF ) (i.e., segmenting the whole augmented
word and ending up in the final state).

By definition, the final state SF can only emit the end-of-word symbol #. Therefore
the whole word σn must have been emitted before the system can transit to SF .
Assuming that we have solved the problem of segmenting σn and arriving at a
particular state and thus know the best way to do so, we simply enumerate transition
from each of those states to SF and emitting # there, and choose the option that
minimizes the cost. This is formulated as

C(σn+1, SF ) = min
0<l≤K

{
C(σn, Sl) + CTrans(Sl, SF ) + CEmit(#|SF )

}
. (13)

9Since we want to model the whole language, ideally we would like to have all possible words
of the language. This of course is impossible because of generative nature of language, but we still
want to work with the longest list of words possible.



26

Similarly we can define the solution of segmenting a prefix and ending up in a
particular state in terms of segmentation of shorter prefixes. The number of different
ways to segment σi and end up in state Sj can be enumerated as different ways to
segment a shorter prefix σk and end up in a state Sl, then transit from Sl to Sj
and emit the rest of the prefix (σik+1). Since we are interested in the best (least
expensive) way to do this, we minimize over these possible ways. This recursive
relation is formulated as

C(σi, Sj) = min
0<k<i
0≤l≤K

{ Cost of segmentation
up to k︷ ︸︸ ︷

C(σk, Sl) +CTrans(Sl, Sj)︸ ︷︷ ︸
Transit from
Sl to Sj

+

Emitting substring
σi
k+1 from Sj︷ ︸︸ ︷

CEmit(σ
i
k+1|Sj)

}
. (14)

This formulation assumes that the problem has optimal substructures, meaning
that for a word, how we have segmented σk and ended up in Sl does not affect
the cost of later transitions and emissions, therefore these parts of the final cost
can be minimized independently. In reality, however, segmentation of the substring
σk might effect the cost of later events in the dynamic programming matrix of the
word. For example introducing a new morph to a state Sk will make it cheaper
to emit the same morph from the same state later in the word if the rest of the
word also contains that morph. This formulation will assign the same cost to both
instances of the emission even though the second emission should be cheaper. This
might change the optimal solution to the word segmentation, however, it is not very
common to have the same morph more than once in a word, thus this should not
have a considerable effect on the overall method. If the input data is large and one
word at a time is resegmented, optimal substructures could be assumed in order to
solve the problem in tractable time. Otherwise one will not be able to address the
problem in this way with tractable time complexity.

We now need to define CTrans(Sx, Sy)—cost of transition from state Sx to Sy— and
CEmit(µ|Sx)—cost of emitting morph µ from state Sx. These functions quantify the
difference in total cost of the data if occurrence of event e is added to the data. This
can be computed by calculating the difference in the prequential cost. Using the
formula for prequential code-length in Equation (7) we have

∆Lprequential =Lprequential
(
E ∪ {e}

)
− Lprequential(E)
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=−
N∑
i=1
i 6=x

log Γ(ci + 1)− log Γ(cx + 2) + log Γ
( N∑
i=1

ci +N + 1
)
− log Γ(N)

−

[
−

N∑
i=1

log Γ(ci + 1) + log Γ
( N∑
i=1

ci +N
)
− log Γ(N)

]
=− log Γ(cx + 2) + log Γ(cx + 1)

+ log Γ
( N∑
i=1

ci +N + 1
)
− log Γ

( N∑
i=1

ci +N
)

=− log
Γ(cx + 2)

Γ(cx + 1)
+ log

Γ
(∑N

i=1 ci +N + 1
)

Γ
(∑N

i=1 ci +N
)

=− log(cx + 1) + log
( N∑
i=1

ci +N
)

=− log
cx + 1∑N
i=1 ci +N

(15)

where x is the index of the event that e belongs to. This is in case e is already
in the event set. If e 6∈ E , cx = 1 and we have to compute the corresponding cost
separately using

∆Lprequential =Lprequential(E ∪ {e})− Lprequential(E)

=−
N∑
i=1

log Γ
(
ci + 1

)
− log Γ

(
cx + 1

)
+ log Γ

( N∑
i=1

ci + cx +N + 1
)
− log Γ

(
N + 1

)
−

[
−

N∑
i=1

log Γ(ci + 1) + log Γ
( N∑
i=1

ci +N
)
− log Γ(N)

]

=− log Γ(2) + log Γ
( N∑
i=1

ci +N + 2
)
− log Γ

( N∑
i=1

ci +N
)

− log Γ
(
N + 1

)
+ log Γ

(
N
)

=− log
Γ
(∑N

i=1 ci +N
)

Γ
(∑N

i=1 ci +N + 2
) − log

Γ
(
N + 1

)
Γ
(
N
)

=− log
Γ
(∑N

i=1 ci +N
)

(∑N
i=1 ci +N + 1
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=− log
N(∑N

i=1 ci +N
)(∑N

i=1 ci +N + 1
) .

(16)

This holds since log Γ
(
2
)

= 0 and Γ(t+ 1) = tΓ(t) for all t.

Based on these formulas, we can calculate the code-length for transitions among
states using

CTrans(Sx, Sy) = − log
fTrans(x, y) + 1∑K−1

i=0

∑K
j=1

(
fTrans(i, j) + 1

) (17)

where fTrans(x, y) is the number of transitions from Sx to Sy.

For emission of morph µ from state Sx we have two cases:

CEmit(µ|Sx) =


− log fx(µ)+1

f(Sx)+|Sx| µ ∈ Sx
− log |Sx|(

f(Sx)+|Sx|
)(
f(Sx)+|Sx|+1

) + L(µ) µ 6∈ Sx
(18)

where fx(µ) is the number of times µ is emitted from state, f(Sx) =
∑

ν∈Sx
fx(ν),

and |Sx| is the number of distinct morphs emitted from state Sx. In the second case,
if µ 6∈ Sx, we need to add it to the lexicon which will cost L(µ) bits.

Now that we have defined the recursive formulae for finding the best solution, we can
formulate them in terms of a dynamic programming matrix M depicted in Figure
5. Each cell Mji of the matrix is defined as

M[K+2]×[n+2] := [mji = C(σi, Sj)]. (19)

The problem is now reduced to filling in this dynamic programming matrix. The
algorithm to do so is explained here.

Since state S0 is a special start state and does not emit anything, or in other words
emits ε unconditionally, elements of the first row of the matrix which correspond to
a non-empty string are not defined, and we can define a cost of infinity (+∞) for
them:

1: for i from 1 to n do
2: M0i ← +∞
3: end for

And because we start at S0 with empty string ε, the cost of this cell is defined to be
0:
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ε σ1 σ2 ... σj ... σn #
S0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
S1 ∞ ∞
S2 ∞ ∞
... ∞ ∞
Si ∞ C(σj, Si) ∞
... ∞ ∞
SK ∞ ∞
SF ∞ ∞ ∞ ∞ ∞ ∞ ∞ L(w)

Figure 5: Dynamic programming matrix for a word of length n. Rows of the matrix
correspond to the states of the model and columns correspond to the prefix of the
word. Each cell holds the cost of segmentation of the prefix and arriving at the
corresponding state.

4: M00 ← 0

Also in states other than S0, we must have emitted some part of the word, so the
remaining cells in the first column have infinite cost:

5: for j from 1 to K + 1 do
6: Mj0 ← +∞
7: end for

Similarly, by definition, when we are in state SF = SK+1, the whole augmented word
must have been emitted, thus the last row of the matrix is again undefined, except
for the bottom-right element which will hold the cost of the final solution:

8: for i from 0 to n do
9: MK+1,i ← +∞
10: end for

Also only the final state SK+1 can have emitted the whole augmented word and thus
the last column except for the bottom-right element must be equal to +∞:

11: for j from 0 to K do
12: Mj,n+1 ← +∞
13: end for

Now we can start filling in the remaining matrix elements one column at a time
starting from left. This way, the elements of the matrix are calculated before they
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are needed by later matrix elements:

14: for i from 1 to n do
15: for j from 1 to K do . Compute element Mji

16: Candidates ← {}
17: for k from 0 to i− 1 do
18: for l from 0 to K do
19: candidate_cost ←Mlk + CTrans(Sl, Sj) + CEmit(σ

i
k+1|Sj)

20: Append 〈l, k, candidate_cost〉 to Candidates
21: end for
22: end for
23: 〈state, prefix, cost〉 ← arg min〈l,s,c〉∈Candidates{c} . The best candidate
24: Mji ← cost

25: parent(j, i)← (state, prefix) . For obtaining the final segmentation
26: end for
27: end for

In line 20 of the algorithm we keep a list of possible candidates. For a completely
greedy search we could have stored only the solution that minimizes the cost instead
of a list. However, since later we will use simulated annealing for avoiding local
optima where the minimum solution will not necessarily be chosen, we keep a list
for further processing. The simulated annealing approach is explained in Section 4.5.

In line 25 we store the parent cell—the cell from which the transition is made—of
the current cell. This will be useful for reconstructing the path and obtaining the
final segmentation of the word in the later steps.

Now the only thing to do is to compute the final cell M[K+1][n+1] which is computed
in a slightly different way than others as defined in Equation (13).

28: Final Candidates ← {}
29: for l from 1 to K do
30: candidate_cost ←Mln + CTrans(Sl, SF )

31: Append 〈l, n, candidate_cost〉 to Final Candidates
32: end for

And now choose the best one

33: 〈state, prefix, cost〉 ← arg min〈l,s,c〉∈Final Candidates{c} . The best candidate
34: M[K+1][n+1] ← cost

35: parent(K + 1, n+ 1)← (state, prefix)
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The cost of best segmentation for the word is now stored in M[K+1][n+1]. To obtain
the segmentation and classification for the word, one just needs to reconstruct the
path that produced the minimum cost. Information stored via the parent operator
is useful here. The algorithm for path reconstruction can be found in Algorithm 2.

Algorithm 2 Reconstruction of path
1: function Reconstruct-Path(M)
2: Segments ← 〈#〉
3: Classification ← 〈K + 1〉 . Initialize
4: current state ← K + 1 . Start from the last filled matrix element
5: current position ← n+ 1

6: p← current position
7: while current position 6= Nil and current state 6= Nil do
8: 〈current state, current position〉 ← parent(current state, current position)

9: Prepend current state to Classification
10: Prepend σp−1

current position to Segments
11: p← current position
12: end while
13: return Segments, Classification
14: end function

4.5 Local Optima and Simulated Annealing

Due to the greedy nature of the algorithms explained in Section 4.4 and since the
model starts with completely random initial segmentations, the search algorithm
is very vulnerable to converging to a local optimum. In fact, the only thing the
converged model depends on is the initial segmentation and classification of the
words.

This is a potential obstacle in global optimization problems for which no closed
form solutions are available and the search space is too large for an exhaustive
search. In this kind of situations, if the goal can be regarded as finding a sufficiently
good solution in a reasonable time rather than the best possible solution, several
metaheuristic methods could be employed. One such metaheuristic is simulated
annealing which works by deploying similarities between statistical mechanics and
combinatorial optimization.

Simulated annealing has been explained in [KGV83] and [Čer85]. It avoids local
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optima by allowing acceptance of worse solutions while searching for the sufficiently
good one. Probability of accepting a worse solution decreases over time, typically in
a way that in the beginning the solutions are mostly random and at the final stages
of the search a completely greedy approach is followed and no worse solutions are
accepted. This probability of accepting worse solutions is inspired by the concept of
slow cooling. The idea in simulated annealing is that when optimizing for finding a
certain solution, instead of always choosing the best succeeding solution, with some
probability which depends on the current temperature of the model, we choose a
worse solution. As the temperature drops, this probability fades away and at final
stages the algorithm is equivalent to a greedy search.

The greedy search for the best segmentation for the words in the corpus as presented
above quickly converges to local—far from global—optima. To avoid local optima,
the simulated annealing approach is followed, with temperature T varying between
fixed starting and ending values, T0 and TF , and a geometric cooling schedule, α.
In Equation 13, rather than using “min” operator to determine the best cell from
which to jump to the given cell mij in the DP matrix, we proceed as follows: Each
candidate cell mqb in the matrix is a pair (state, symbol-position). We sort all of
the (j − 1)×K + 1 candidate cells for mij, where j − 1 is the number of preceding
columns, by their accumulated cost. We subtract the cost of the cell with smallest
cost c∗ (the best solution for (q, b)) from the rest of the entries in the sorted list,
to get a list {di} of cost differences; now, d0 = 0 ≤ d1 ≤ d2 ≤ ... The di’s are
non-negative and increasing.

We divide the list through by the temperature T , to get a list {d̄i}. When T is large,
the numbers d̄i are all small; as T cools, d̄i become very large.

For each d̄i, we let d̂i = e−d̄i , to get a list {d̂i}. Now, d̂0 = 1, and the rest of the
{d̂i} are positive and non-increasing between 0 and 1. When T is large, the numbers
d̂i are all close to 1, and as T cools, all d̂i become close to zero. These values are
defined as

ci := {c| 〈l, s, c〉 ∈ Candidates}

c∗ = min
i
{ci}

d̂i := e−
ci−c∗

T = e−
di
T = e−d̄i .

We next generate a random number r in [0, 1), and define the simulated annealing
window to be [r, 1]. We choose the smallest entry d̂+ from the list that is still within
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the window, i.e., the smallest number for which r ≤ d̂+ = e−d̄+ . Usually in the
simulated annealing process, a random candidate from the window would be selected.
However it would require generation of another random number for each cell for
each word per iteration which increases the running time of the algorithm. We have
experimented with both selection methods and in our experiments no meaningful
differences are visible in their performance.

The process of choosing the solution (a parent cell for cell X) at each iteration for
a given word follows this algorithm:

• Sort all candidate cells by their cost, ascending.

• c∗ ← first element in sorted list (This is the best candidate; the one that would
have been chosen in a a greedy search).

• For each candidate cell with cost c in the list: compute d̂ = e−
c∗−c
T .

• Generate a random number r in [0, 1).

• Choose the smallest item in the list where r ≤ d̂.
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Figure 6: MDL cost in a sample run under simulated annealing

This ensures that the model does not always greedily choose the best solution,
and enables it to initially take random jumps to avoid local optima. The learning
algorithm is run to convergence on the corpus. An example of the curve of the MDL
cost for Finnish is in Figure 6. The initial plateau shows the “burn-in” phase of the
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learning. As can be seen, the model cost does not have steep drops and it rather
decreases more gradually.

4.6 Parallelization

Using simulated annealing with the chosen parameters requires a large number of
iterations to converge. Since this is done in an iterative way and we usually have
a relatively long list of words as the input data, it takes a long time for one run of
the algorithm to converge. The loop in lines 7-13 of Algorithm 1 is one iteration of
the algorithm. Each iteration i requires the previous iteration i− 1 to have finished
so that the new model (lexicon and transitions) are ready to be used for calculating
required costs. Inside each iteration, however, the words can be resegmented in par-
allel. We divide the words into n chunks of roughly the same size and process them
in parallel on different machines to reduce the running time. Several approaches to
parallelization of the algorithm have been tried in the course of this thesis work but
only the final approach is discussed here.

4.6.1 MapReduce Programming Model

MapReduce is a programming model which is designed for processing large data-sets
on clusters of machines [DG08, Läm08]. For addressing problems in this style, input
and output data are represented in a form of key/value pairs. One needs to define
two fundamental operations: Map operation which produces a set of intermediate
key/value pairs from the input pairs. The MapReduce library then groups all pairs
with the same key. These values are then sent to the Reduce operator. This operator
will reduce a key and all values associated with it (merged after map) to a single
(or sometimes zero) key/value pair. It has been shown that many problems can be
formulated to work with this programming model [DG08]. MapReduce helps users
save time compared to iterative runs since it can run map and reduce operations in
parallel. Figure 7 shows an illustration of MapReduce work flow. There are several
implementations of MapReduce such as Apache Hadoop [Whi09], Spark [ZCF+10],
Disco [MTF11] among others.
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Figure 7: MapReduce programming model. Operations for each step are demonstrated. At the initial step, the input data is
split into several partitions, each data item in the partitions is then mapped to a key and value (K,V ) pair. These pairs are
then sorted so that pairs with the same key are in the same group. The resulting groups then undergo the reduce operation
and the results are collected after that.
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In this thesis work, we can define the map operation to be re-segmenting a word
using the fixed model, and reduce operation can be defined as calculating the model
for next iteration based on segmentations of all the words.

4.6.2 Iterative MapReduce and Twister

Most implementations of MapReduce are suitable for single problems that can be
expressed in MapReduce formulation, but they do not necessarily support iterative
MapReduce. In our case, after each iteration ends, segmentations of words are
reduced into a model, which is then used by the next iteration which is another
instance of MapReduce. In most implementations, the workers (processes that do
the map tasks) release all the resources that they have acquired right after they
finish the tasks, however, to save time, we need the workers to do the same task
with the new model. Since there are usually a high number of iterations, if the time
required for initializing an instance of the resegmenter (worker) is high, then the
overall runtime of the program will not be less than the sequential version and no
time is saved.

Twister is an implementation of MapReduce which supports iterative MapReduce
and is suitable for iterative and long-running MapReduce tasks [ELZ+10]. Similar to
other MapReduce implementations, the library requires the user to provide several
operations, such as initialize, map, reduce, etc. An illustration of how the program
works using twister is shown in Figure 8.

The possibility to use the implementation of the search algorithm in a cluster is pro-
vided using Twister, so the user can decide to whether run the program sequentially
on one machine, or use a cluster of machines and choose the number of parallel work-
ers. The input words are then divided among the workers as evenly as possible and
the workers are initialized. At the beginning of each iteration, the master sends the
model to the workers and asks them to re-segment their words based on the model.
Each worker then builds their own local model based on the new segmentations. The
reduce task is to accumulate these local models into one model which is received
by the master and redistributed again for the next iteration. One important point
which helps save time in the process is that the master does not need to receive the
full segmentation for each word at each iteration. Only transitions and emissions
based on the list of words is enough. Only once convergence is reached, master will
need access to the full segmentations for purpose of logging the final results.



37

Master Worker ...

Worker 2

Worker 1

Worker n

Segmentation set 1

Segmentation set 2

Segmentation set ...

Segmentation set n

Next Model
(Mi+1)

Mi

Mi
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Mi
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map
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map

reduce

reduce
reduce

reduce
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Figure 8: Illustration of resegmentation using Twister. The master process ini-
tializes a number of workers (pre-determined by the user based on the available
resources) and assigns a set of words to each of them as evenly as possible. Then,
for each iteration i the master broadcasts the current state of the model Mi (lexicon
and transitions) to the workers and asks them to resegment their assigned words in
parallel, based on Mi. The results are then reduced into a single model Mi+1 which
will be used in the next iteration.

5 Evaluation of Segmentations

Evaluation of methods for unsupervised learning of morphology is a complicated
task. Depending on the goal the method is seeking, the evaluation is different; for
instance a system that is performing full morphological analysis requires a different
evaluation method than one that outputs pairs of morphologically related words.

Since in this work we are interested in morphological segmentation of words, we will
focus on evaluation methods of such outputs. This chapter is organized as follows:
after a brief introduction, an overview of prior work in evaluation is presented,
followed by a discussion of need for a new evaluation method. Finally our proposed
method is explained starting in Section 5.5. This evaluation method is published
in [NY16].
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5.1 Quantitative vs. Qualitative Evaluation

One way of observing how the system is performing is by visual inspection of the
output. Although it is understood that this does not give a rigorous measure of
performance that could be used for comparison across methods, it still gives an
indication of the performance of the methods compared to the expected behavior.
Visual inspection of segmentations and/or discovered morphological patterns and
comparing them to linguistic knowledge is something that we also report for our
work. Although there are methods that only rely on qualitative evaluation, it should
be understood that quantitative measures of performance should be preferred over
qualitative measures. Quantitative methods, if devised carefully, are in general more
objective and give rigorous measures of how methods are performing compared to
each other.

5.2 Direct vs. Indirect Evaluation

Since many methods of unsupervised morphology learning are motivated by using
them as part of larger systems that perform other tasks such as parsing, machine
translation, speech recognition, information retrieval, etc., one way to evaluate the
system is by measuring the performance of the larger system that has the morpho-
logical learning method as its sub-system [VTS+11]. Measuring how much the use
of the to-be-measured morphological unit helps in performing the task of course
gives an indication of how good the system is, it should be noted that this method
of evaluation complicates the tasks since the measured performance depends on the
overall approach used for the larger task.

Methods that measure the performance of the tools only based on their output
without involving any other task are called the direct evaluation methods. The
evaluation algorithm proposed in this chapter also falls in this category.

5.3 Existing Evaluation Methods

A review of evaluation methods for different morphological learning tasks can be
found in [VTS+11], which also introduces several new variations of the existing
algorithms. Beyond morphological segmentation, these tasks include clustering of
word forms and full morphological analysis.

Direct evaluation methods are, in general, believed to better reflect the characteris-
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tics of the algorithm, while indirect methods complicate the evaluation task, since
one needs to minimize the effect of other factors in the larger task [VTS+11].

Other evaluation methods, which evaluate more than segmentations, or require
more output from the model than only morphological segmentations, are described
in [SM10, VTS+11].

A widely used approach [KCL06, SB08, PCT09] for evaluating segmentation of words
is the boundary precision, recall, and accuracy (BPRA10), based on the number of
reference boundaries found and missed by the learning algorithm. Suppose that a set
of correct segmentation points for the given words could be provided. We call these
the reference or gold standard segmentations. The segmentation task could then be
viewed as an information retrieval (IR) task, where the items to be retrieved are the
segmentation boundaries. Then the standard IR evaluation measures precision(P ),
recall (R), and F-score (F ) can be defined as:

P =
|{gold standard boundaries} ∩ {retrieved boundaries}|

|{retrieved boundaries}|

R =
|{gold standard boundaries} ∩ {retrieved boundaries}|

|{gold standard boundaries}|

F = 2 · P ·R
P +R

(20)

Alternatively, using notation from binary classification, precision, recall, F-score and
accuracy (A) can be computed as:

P =
tp

tp+ fp

R =
tp

tp+ fn

A =
tp+ tn

tp+ tn+ fp+ fn

(21)

where tp, tn, fp, fn denote number of true positives, true negatives, false positives
and false negatives, respectively. Positive (negative) means that the model found
(did not find) a morph boundary annotated in the gold standard.

One evaluation scheme, based on the BPRA method and related to our work, can be
found in [CL04b, CLLV05]. To allow the model to choose one of several alternative
reference segmentations, they define fuzzy boundaries; instead of a strict segmen-
tation points in words, the model will receive credit if the segmentation boundary

10Most earlier works do not include accuracy as one of the measures, however we will include it
in this paper along with precision, recall, and F-score since it is a related and relevant measure.
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is placed anywhere in the area permitted by the reference set. For instance for the
word invites, the permitted region can be defined as invitˆe+s which means that
the morph boundary + could alternatively be moved to before e —marked with —̂
resulting in acceptance of either forms of invite+s and invit+es.The latter is a valid
segmentation since it complies with other words based on the stem invite where the
final “e” is removed from the stem before adding suffixes, e.g., invit+ing.

5.4 Motivation for a New Method

The BPRA approach has been used in several studies [VTS+11]; however, it has
several important shortcomings. In most languages that have concatenative (or ag-
glutinative) morphological processes, it is not always clear where the correct bound-
aries should be placed, because of the complexities in the morpho-phonology of the
language.

For example, in Turkish, consider the morphology of ekmeği, composed of ekmek
(’bread’) + i (accusative marker); k changes to ğ due to regular consonant muta-
tion. Onemodel—i.e., one learning algorithm—might segment this word as ekmeğ+i,
considering ekmeğ an allomorph of ekmek and i as the accusative marker, while an-
other model might segment it as ekme+ği, considering ekme as an allomorph of
ekmek, and ği an allomorph of i. Similarly, the plural in English: analyzing flies,
one model could posit that the plural marker is -s (as in dog+s) and the stem fly
has an allomorph flie-. Another model might posit an allomorph for the stem fli-
and an allomorph -es for the plural marker. Clearly, there is no way to insist that
one of the models is “better” or more correct than the other. This makes specifying
the gold-standard segmentation problematic.

One option is to enumerate all acceptable segmentations for a word and give credit to
the model if the predicted segmentation matches any of the reference segmentations.
Alternatively, fuzzy boundaries can be defined for words by marking an acceptable
region where the boundary can be placed. If the model predicts a boundary any-
where within the region, it receives credit. Such an evaluation method is suggested
in [CL04b, CLLV05] as part of the Hutmegs package, as an attempt to provide gold-
standard segmentations for Finnish. The main problem with this approach is that
it is too permissive: it ignores the question of consistency and allows the model to
violate its own decisions. A good evaluation scheme should penalize the model for
inconsistent behavior.
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In our Turkish example, ekmeği: both of the models discussed are equally good, as
long as they remain faithful to the decision they make throughout the entire corpus,
i.e., the model that prefers ekmeğ+i should do so for all words where consonants
mutate before vowels, such as ekmeğ+e, eteğ+i, artığ+ı, etc.; if the model violates
this (its own) decision on some words, it should be penalized.

5.5 Gold Standard Annotation

We now introduce our method: a dilemma is a (language-specific) situation where
more than one segmentation may be acceptable according to the gold-standard an-
notation. A particular decision that a model makes in case of a dilemma, is called a
theory that the model supports. For example, in English, the words dogs and flies
may have gold-standard segmentations:

X X

d o g + s f l i . e . s

Segmentation of dogs is unproblematic, the placement of the morph boundary is
clear, marked with +. For flies, we wish to mark two alternative segmentations as
acceptable. We do this by naming the dilemma, X, and specifying in the (language-
specific) configuration that it has two acceptable theories, with boundary before or
after e (not both). We indicate this by:

a. placing dots before and after e, each dot labeled by X,

b. specifying (in the configuration) in the definition of X that acceptable theories
for X are 10 or 01.

This means that the word must be segmented as either fli+es or flie+s, respectively;
1 indicates the presence of a boundary, and 0 indicates absence of it.

The key point then is that if the evaluation corpus contains many similar words—
flies, tries, cries, supplies, etc.—and they are all annotated similarly, then the model
must segment all of these words according to theory 10 or according to theory 01—
consistently. If the model is not consistent, it will be penalized. However, the penalty
must be applied in such a way as to give the model under evaluation maximal benefit
of the doubt. For instance, if the model’s output resembles either of the columns
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flie+ s

trie+ s

crie+ s

supplie+ s

or
fli+ es

tri+ es

cri+ es

suppli+ es

it will get full credit for all four words (according to theory 01 for the column on the
left or theory 10 in case of the column on the right). However if the model outputs
the following as its answer to the segmentation problem:

fli+ es

trie+ s

crie+ s

supplie+ s

although these segmentations are correct individually, the model, as a whole is
behaving inconsistently and should not be given full credit. There are two possible
scenarios here. One is to assume that for this dilemma (X) the correct theory is 01,
meaning that the accepted segmentation pattern is “· · ·ie+s”, in which case 3

4
of the

words will yield full credit. The other case is to consider the theory 10 as correct,
“· · ·i+es”, which will result in full credit for 1

4
of the words. Since these two theories

are both valid according to the configuration, at evaluation time, the evaluation
algorithm must find which theory results in the highest score for the model. In this
example the theory supported by the majority of the words should be chosen as the
reference.11. This is what we mean by assuring maximal benefit of the doubt. By
following this approach, the evaluation algorithm does not discriminate against any
model, since it assures maximal possible score for every model. The theory that
yields the maximal score for a dilemma is referred to as the “decision” that model
makes, or the theory that it supports.

Many other kinds of dilemmas and theories can be defined. Each dilemma is marked
with its own unique label in the gold standard annotation, along with the theories
it admits.

In our approach to evaluation of segmentations, given a dilemma, the model receives
credit for selecting one of the theories that the gold standard accepts, in a consistent
way.

11Although this is true for this dilemma, we show in Section 5.6 that majority does not always
give maximal benefit of the doubt.
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It is crucial to note that these dilemmas are independent from each other, i.e.,
supporting a theory in one dilemma does not restrict or encourage a theory of
another dilemma.

Given a gold-standard annotation, if we fix some theory for each dilemma, we can
generate the set of unambiguous correct segmentations for these fixed theories. The
evaluation algorithm then computes the boundary precision, recall, and accuracy
(BPRA) to score the model’s segmentation in the standard way.

The crucial feature of our method is that it identifies which theories are preferred by
the system, given the segmentations that are being evaluated. A theory is preferred,
if choosing it would yield the highest score for the system. Since all theories are
equally valid, the evaluation algorithm must find the one that maximizes the overall
score.

Computing this exhaustively would require listing all possible segmentation sets
based on all possible theories for each dilemma. This would make the problem
intractable when the number of dilemmas is large, since it will require going through
O(nk) potential reference segmentations, where n is the number of dilemmas and k
is the maximum number of theories for a dilemma.

The overall score that we aim to maximize for the system is accuracy, since max-
imizing precision or recall separately results in preferring under-segmentation or
over-segmentation, respectively. One could maximize the F-score to balance recall
and precision, but because of the complicated and non-linear relation between F-
score and the number of segmentation points, it is not obvious how to perform the
computations with reasonable time complexity. We show how maximizing accu-
racy, under the assumption of independence of the theories, allows us to produce a
consistent evaluation score.

5.5.1 Dilemmas and Labels

As mentioned above, our focus in this evaluation method is on dilemmas that a hu-
man expert/annotator encounters while annotating the segmentations—alternative
ways to segment a word into morphs that are legitimate, and only depend on the
annotator’s decisions about allomorphy. These dilemmas can depend on what mor-
phemes are present in the word. Each dilemma is identified by a unique label. There
are labels of different arities, which will be explained briefly using examples.
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5.5.2 Two-Way Dilemmas

This is the simplest type of possible dilemma. It is used when a human expert
believes that placing a morph boundary between two symbols is optional, meaning
that it is not absolutely necessary to segment it at that point. One example would
be in cases where for historical reasons one might place a morph boundary between
two potential morphs. In other words, the morph pair is old enough (“ossified”) to
be legitimately considered as a single morph. One example in Turkish is çıkmaz
(meaning ’stalemate’, ’dead end’) which is considered by many as a single morph,
but could be segmented as çık (from çıkmak; ’to exit’) and suffix -maz (a form of
negation in Turkish).

Another example is the Finnish word “tulo” (meaning ’coming, arrival’)12

Y

tul.o

This means that the system under evaluation can decide either to segment at the
points labeled Y or not to segment. Segmenting (placing a morph boundary) at
this point corresponds to theory 1 and no boundary corresponds to theory 0; the
valid theories for dilemma Y are 0 and 1. The practicality of this notation will
become clear later, with labels of higher arity. This is declared in the gold-standard
annotation, in the configuration file:

(Y 2 0 1)

The first element of the list is the symbol (label) that identifies the dilemma; the
next element in the list is the arity (2); the remainder of the list enumerates the
valid theories. Y is a dilemma with two possible theories/choices, of which (either!)
0 or 1 is an acceptable theory.

5.5.3 Four-Way and Higher-Arity Dilemmas

Sometimes in gold standard annotation we face dilemmas in which more than one
potential boundary is involved; for example, flies, as above, will be annotated:

12In this example, it is not quite clear how to deal with the “o”. Although in Finnish there exists
a derivational suffix “-o/-ö” which is used to form nouns out of verbs—e.g. tulla (to come) → tulo
(coming, arrival), here we could either have a fixed form “tulo”, or a form that is derived from the
verb “tulla”.
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X X

fli.e.s

It is important to note that since label X will be used in this type of dilemmas,
it will always appear in pairs. Only one theory (ideally) should be selected as a
segmentation decision by the system under evaluation, and for example if it chooses
to segment at both points or neither, it should be penalized. To impose this kind of
restriction, we use the following line in the label definition file:

(X 4 1 2)

the number 4 states that the dilemma X is a “4-way” dilemma, meaning that in total
there are four possible theories—ways to perform the segmentation—that the system
could follow; thus, there are log2 4 = 2 consecutive occurrences of X expected in the
gold-standard words that contain this dilemma. The following numbers indicate
which of the 4 possible segmentation theories are theoretically valid and can be
chosen by the system without penalty. The numbers are decimal values of binary
representations of the possible segmentation configurations, designating the presence
of a morph boundary by 1 and lack of boundaries by 0. This is depicted in Table 2.

possible comparison numeric
segmentation to gold standard representation

fli.e.s

flie+s fli e+s (01)2 = 1

fli.e.s

fli+es fli+e s (10)2 = 2

Table 2: Valid segmentation configurations for label X and word fli.e.s, with deci-
mal representation. Segmenting (placing a morph boundary) at a point corresponds
to 1 and not segmenting corresponds to 0.

Of course there can be such dilemmas where the annotator decides it is also accept-
able to segment at both locations, or neither. In such a case, corresponding numbers
0 = (00)2 and 3 = (11)2 can be added to the list of allowable theories.

Finally, this notation can be extended to dilemmas of higher order. For example the
following configuration line would define a label for an 8-way dilemma (corresponding
to 3 possible segmentation locations, hence, 3 consecutive labels in gold-standard
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annotation):
(C 8 3 5 6)

The list (3 5 6) indicates that the valid theories are those which have exactly two
(out of the three) segmentation points selected—corresponding to binary values
(011, 101, 110).

The mark-up notation described here requires native-speaker skill as well as under-
standing of computational morphology, which makes it a complicated task that may
take many man-hours to create. Nevertheless, it makes the evaluation task more
objective and enables us to consider the ambiguities in evaluating morphological
segmentations and favoring consistent models.

5.6 Performance Measure of Segmentations

Given a set of our gold standard segmentations, computing the BPRA measures is
straightforward. Using the annotation method described above, we can choose an
arbitrary theory for each dilemma, and generate the fixed gold-standard segmenta-
tions based on this set of theories. We want to give the model under evaluation the
freedom to choose any of the valid theories, but force it to be consistent throughout
the corpus and make the same decisions in similar situations. The model will be
penalized for breaking its own decision.

As discussed above, we need a way to determine, for each dilemma, which theory
is preferred by the model. In the “ideal” situation, where the model chooses one
theory for each dilemma and segments all examples according to the chosen theory,
it is clear that the preferred theory is the one that the model is complying with, and
there is no penalization.

We next consider the case where for a given dilemma, D, the model decides to
segment some instances according to one of the theories, d1, but other instances
according to another theory, d2. Either of these theories could be chosen as the
correct decision and the BPRA measures could be computed for them, but our goal
is to give the model maximum benefit of the doubt. The theory that has been
chosen most often throughout the data-set might seem to be the theory that should
be preferred. Although this is true for one-way dilemmas, it is not always the case.
The next example clarifies this:

The annotated gold standard for label (Z 4 0 1 2 3) along with an example of
a model’s response is shown in Figure 9. As easily seen, the first three cases are
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Gold standardModel response

Z Z

1. abc.d.e abc d e

Z Z

2. fgh.i.j fgh i j

Z Z

3. klm.n.o klm n o

Z Z

4. pqr.s.t pqr s+t

Z Z

5. uvw.x.y uvw x+y

Z Z

6. zab.c.d zab+c+d

Z Z

7. efg.h.i efg+h+i

Figure 9: Left column: minimal example gold-standard annotation, with 7 instances
of the 4-way dilemma Z. Right column: actual segmentations produced by a model
to be evaluated using the gold standard; segmentation points are shown with +;
blanks mark potential relevant segmentation points that were not segmented by the
model (shown as blanks to help visualization).

segmented according to theory 00, the next two according to theory 01, and the last
two according to theory 11; no word is segmented according to theory 10. It might
seem that theory 00 is preferred by this particular model, but a closer look will
falsify this. Let us compute the scores for each theory, assuming it is the preferred
one. These score are shown in Table 3.

There are 7 words of length 5, so each has 4 potential segmentation boundaries. In
total, there are 28 possible boundaries; 14 of these boundaries, which are not related
to dilemma Z, are correctly left unsegmented by the model, regardless of the chosen
theory. Depending on the preferred theory, some of the other boundaries are correct
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or incorrect. For instance if theory 00 is chosen, for each of the first three words, both
boundaries relevant to Z will be counted as correct, so there will be 3× 2 additional
correct boundaries. For the next two words, only one of the relevant boundaries (the
first one) will be counted as correct, which will account for 2 (compare this to the
number of bits in common between the preferred theory and the one supported by
words 4,5). The last two words have been segmented incorrectly according to theory
00 of Z, so they will not contribute anything to the final accuracy score. Thus, the
accuracy in case of preferring 00 will be 14+3×2+2×1+2×0

28
= 22

28
= 0.786. The same

process is followed for the second theory resulting in an accuracy score of 0.821.
Although 00 has more supporters than 01, it results in a lower accuracy.

The reason is that for 2-way and higher-order dilemmas, when one theory is pre-
ferred, words that have been segmented according to other theories—i.e., which
support other theories—may still contribute to the accuracy score. This is because
the theories are not disjoint, but have segmentation points in common and choosing
one theory, might partially help other theories as well. Due to these indirect con-
tributions to the total score, sometimes a theory with fewer supporters can surpass
another theory with more supporters.

Theory # Supporters P R F A

00 3 0 1 0 0.786

01 2 0.67 0.57 0.62 0.821

10 0 0.33 0.29 0.31 0.679

11 2 1.00 0.43 0.60 0.714

Table 3: Evaluation measures for the minimal example.

Thus, to give the model maximum benefit of the doubt, we need to choose the theory
that maximizes one of the evaluation measures, not the number of supporters. Preci-
sion and recall are not good choices for maximization, since maximizing one of them
will trade off with the other, resulting in under-segmentation or over-segmentation.
F-score and accuracy are the remaining options. In our method, we give the models
maximal benefit of the doubt in terms of accuracy since it is computationally easier,
as shown below.

For this purpose, we need a score for dilemmas which maximizes accuracy. Let us
denote the set of dilemmas as D and a valuation—i.e., an assignment of theories t
to dilemmas in D—as [D]t and the accuracy score under valuation t with At. When
computing accuracy, the denominator tp + tn + fp + fn is the number of possible
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boundaries in the gold-standard data, which is constant and independent of the
chosen theories. It is exactly equal to

∑
w∈Wgs

(|w| − 1) where Wgs is the set of gold

standard words. Thus, we maximize the numerator and find:

arg max
[[D]]t

At = arg max
[[D]]t

tp+ tn

tp+ tn+ fp+ fn

= arg max
[[D]]t

(tp+ tn)

Since the ambiguities in words do not overlap, and each boundary in the gold-
standard words can be marked with a maximum of one label, Dilemmas are inde-
pendent of each other, and selecting one does not influence the others. Thus, we can
maximize the sum of true positives and true negatives separately for each dilemma,
and solve the problem by finding the preferred theory for one dilemma at a time.

Contribution to tp+ tn

Candidate

00 01 10 11

theory

00 2 1 1 0

01 1 2 0 1

10 1 0 2 1

11 0 1 1 2

Table 4: Contribution of each theory to tp + tn score for all candidate theories,
for every instance of the dilemma in the data. Each cell shows how many correct
segmentation boundaries will be contributed to the accuracy score if the theory
corresponding to the row is preferred, and the theory corresponding to the column
is supported by the word.

To do this, for each dilemma, we create a “contribution” table similar to Table 4.
Each row corresponds to one candidate theory; given that the theory corresponding
to the row is the preferred one, the table shows how many correct boundaries would
be contributed by supporters of theories in the columns. Since the dilemma in the
Table is a 4-way dilemma, for each instance two boundaries should be examined.
For any instance, if the preferred theory is the same as the supported theory, there
are two correct boundaries. If a different theory than the preferred one is selected,
depending on how many segmentation decisions they have in common, it will con-
tribute 1 point or none to the numerator. The number of common segmentation
decisions is given by the number of bits the binary representations of the two theories
have in common which can be computed using the XNOR boolean operation.



50

If the number of supporters of each theory is counted (denoted by nt for theory t),
the result can be tabulated similarly to Table 5. The sum in each row shows what
the contribution to the numerator will be if the corresponding candidate theory the
preferred one. The task is now straightforward: select the theory for which the sum
is maximized.

Contribution to tp+ tn

Candidate

00 01 10 11

theory

00 2n0 + n1 + n2 + 0

01 n0 + 2n1 + 0 + n3

10 n0 + 0 + 2n2 + n3

11 0 + n1 + n2 + 2n3

Table 5: Contribution of theories to tp+tn for each candidate for the all occurrences
of the dilemma. Each cell shows how many correct boundaries will be contributed to
the accuracy score if the theory corresponding to the row is preferred by the whole
data set and the theory corresponding to the column is supported by the word. nt
is the number of supporters of theory t in the data set. Binary values representing
theories are displayed for simplicity.

Another potential measure to maximize benefit of the doubt is the F-score. However,
it is more complex than the accuracy, since the denominator is not constant with
respect to the chosen theories for dilemmas, thus it is not clear how one should
find the preferred theory sets for each dilemma at a time without enumerating all
possible valuations for dilemmas. In other words, accuracy can be written down as a
sum of independent non-negative numbers, each relevant to one dilemma, therefore
optimizing each and every number will result in optimization of accuracy. However,
F-score cannot be decomposed into independent components in the same way.

One potential problem with maximizing accuracy is the so-called accuracy paradox,
which arises when the distribution of the true classes is very unbalanced. For ex-
ample when the set of true positives is smaller than the set of false positives, and
the model decides to unconditionally predict negative (i.e., leave all words unseg-
mented). The same also can happen when the true negative set is smaller than the
true positive set and the model decides to segment at every potential segmentation
point. In these two examples, the model can achieve a higher accuracy, while the
F-score will be lower. The same principle of maximal benefit of the doubt can be
applied to cases where it is important to avoid this paradox, however the optimiza-
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tion technique presented here for accuracy will not be suitable to apply directly
to F-score. We choose accuracy for optimization in this thesis, and will explore
optimization of F-score as part of our future work.

5.7 Evaluation Algorithm

Given a set of segmented words (output of a model) and a gold standard annotation,
as explained earlier, we first determine what decisions the model has made for each
dilemma. This is done via an alignment algorithm which aligns symbols of the
gold standard segmentation and the system response to find if there are any morph
boundaries corresponding to the “.” symbols in the gold standard. An example of
such an alignment is shown in Figure 10.

Gold standard entry:

P P I J

tek.e.m.i.s+i+s+sä

Response:

teke+misi+ssä

Alignment:

tek.e.m.i.s+i+s+sä

tek e+m i s i+s sä

Figure 10: An example of a gold standard to response alignment. Alignment of
“.e.” to “ e+” shows that this particular word prefers theory 01 for dilemma P.
Similarly, alignment of “.” to “ ” shows a preference of theory 0 for dilemmas I and
J.

The overall schema of the evaluation algorithm can be summarized as follows:

1. For each dilemma D:

(a) List all the words from the segmentation set that are relevant to D.
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(b) For each such word, find the supported theory by aligning the word to
the gold standard entry.

(c) Count the number of supporters of each theory.

(d) Determine which choice of the valid theories yields the maximum accu-
racy, similarly to Table 5.

2. Once decisions for all dilemmas are made, generate the final reference segmen-
tations (one segmentation per word) based on the decisions.

3. Use the standard method to calculate precision, recall, F-score and accuracy.

5.8 Empirical Test of the Evaluation Algorithm

Experiments with evaluating consistent and inconsistent models using our evaluation
method demonstrate the two key features:

1. If we have an inconsistent model, standard BPRA will give it a higher score
than our method.

2. If we have two competing models, our method will give a higher score to the
model that is more consistent.

For the experiments that we designed to check the validity and effectiveness of our
evaluation methodology, we generated two segmentation sets from a gold standard
annotated for a Finnish corpus, consisting of about 1000 words. Both sets contain
valid segmentations for each word viewed separately, however one of the sets is
inconsistent in choosing the alternative segmentation points. The consistent set
is generated by fixing one of the valid theories for each dilemma, and segmenting
the words according to the chosen theory. For generating the inconsistent set, for
each word and for each dilemma relevant to that word, one of the valid theories is
chosen at random, and the word is segmented according to the decisions. Other
segmentation boundaries are left untouched.

By definition, both segmentation sets will get the full score using the standard
BPRA method, since all plausible segmentations are listed as alternatives in the
gold standard, and any segmentation that is in that list will be accepted.

The evaluation results for the two segmentation sets with our new method are shown
in Table 6. In addition to precision, recall, F-score and accuracy, several other
statistics which are used to calculate the scores are also included. As can be seen,
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the consistent model gets full credit in all measures, whereas the inconsistent model
is penalized.

Consistent Inconsistent
|G| 2617 2635

|S| 2617 2600

|G ∩ S| 2617 2471

tp+ tn 8212 7919

tp+ tn+ fp+ fn 8212 8212

Precision 100% 95.04%

Recall 100% 93.78%

F-Score 100% 94.40%

Accuracy 100% 96.43%

Table 6: Evaluation results: consistent and inconsistent segmentation sets. |G| is
the number of segmentation points in the final reference set (based on gold standard
and model’s decisions), |S| is the number of segmentation points in the model’s
response, tp+ tn denotes the number of matching boundaries, and tp+ tn+fp+fn

is the number of potential segmentation boundaries.

6 Experiments and Results

In this chapter several variations of the algorithm are introduced, followed by results
of the algorithm on Finnish, Turkish, and Russian data-sets. The introduced varia-
tions are motivated by linguistic universal principles which are believed to apply to
all or most languages. Our results are also compared to one of the state-of-the-art
methods, Morfessor CatMAP [CL05]. The evaluations are performed as explained
in the previous chapter.

A visualization of the model output trained with Finnish data with 5 states along
with sample segmentations and an extract of the output lexicon can be found in
Appendix 1.

6.1 Directional Model

The states in our algorithm are ultimately meant to reflect morpheme classes, such
that in the ideal case each state will emit morphs that are categorically the same;
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for instance noun stems may be emitted from state X, verb stems from state Y ,
nominal case endings for a given type of nominal stems from state Z, etc. The
morphotactics of any language specify exactly the order in which morphological
classes may follow one another. For example in English, the plural morpheme for
nouns— “s” or “es”—appears always at the end of the word. In Russian, e.g., a word
w can have one or more prefix, then a stem, then one or more suffixes—always in a
fixed order. Further, different kinds of suffixes have strict ordering among them—
e.g., derivation precedes inflection. Thus, the order of classes in the lexicon is fixed.
This is without taking into account compounding.

This property of languages can be reflected in our model by restricting the FSM
to be directional, i.e., from each state the model is allowed to transit only to later
states. The order is encoded in the labels of the states, meaning that from state
Sk the model can jump to state Sj only if j > k. To enforce directionality in the
model, in Equation (14) the range of l changes to 0 ≤ l < j and we have instead

C(σi, Sj) = min
0<k<i
0≤l<j

{
C(σk, Sl) + CTrans(Sl, Sj) + CEmit(σ

i
k+1|Sj)

}
. (22)

To reflect this in the dynamic programming, we constrain the dynamic programming
matrix so that the preceding state l in line 18 of the algorithm on page 30 ranges
from 0 only up to j − 1, rather than up to K. Since the states are ordered, we
cannot transit from a later state to an earlier one. The idea is that since this reflects
the nature of the languages, this way we are somehow guiding the search procedure
towards areas in the search space that are more likely to have the optimum we look
for or at least to avoid the subspace that is less likely to contain good solutions.

As a result of these changes, the event space for prequential coding of transitions is
also limited to transitions to later states only.

6.2 Natural Classes of Morphs

Another general principle is that morph can be classified into two principal kinds:
stems vs. affixes. We fix some range of states in the beginning to be prefix states,
followed by a range of stem states, followed by suffix states. The heuristic is then
that for no word the model can directly transit from a state associated with prefixes
to a suffix state, and the dynamic programming path has to pass through at least
one stem state reflecting the fact each word must have at least one stem. This,
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of course, is added on top of directionality of the model discussed above. In our
experiments, e.g., we divide the 15 available states into 2 classes for prefixes, 6 for
stems, and 7 for suffixes. Similar to the directional model, the event space of the
transitions changes accordingly.

6.3 Bulk Resegmentation

Another universal linguistic principle we use is that stems and affixes have very
different properties. Stems classes are open—i.e., potentially very large, while affix
classes are necessarily closed—very limited. This is reflected, e.g., in borrowing: a
language may borrow any number of stems from other languages freely, whereas it
is extremely unlikely to borrow a suffix.

Conversely, in general a randomly chosen affix is typically expected to occur much
more frequently in the corpus than a random stem. This is true in general, although
a language may have some exceptionally rarely used affix, which might happen to
be less frequent than a very frequent stem.

Based on this principle, we introduce another heuristic to guide the search: af-
ter normal resegmentation, all states are checked for “bad” morphs that violate this
principle—very frequent morphs in stem classes and very rare morphs in affix classes.
This introduces two hyper-parameters into the model: smax for maximum tolerated
count of a stem, and amin for minimum frequency of an affix (we set both to 100).
With a certain probability π(T ) for each potential bad morph, all words that con-
tain that morph are removed from the model in bulk (from the lexicon, and their
transition and emission counts), and resegmented afresh. Probability π(T ) depends
only on the simulated annealing temperature T , so that when T is high, π(T ) is
small; as T cools, π(T )→ 1, hence always removing bad morphs and resegmenting
their corresponding words when the algorithm is completely greedy. Several different
schedules have been tried for π(T ) such as exponentially increasing, logarithmically
increasing, and linearly increasing functions. The motivation behind this heuristic
is to reduce influence of bad morphs on the words in the resegmentation process and
give the search procedure the ability to escape such traps with the hope of avoiding
local optima.
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6.4 Results

We have tried the algorithm on 3 languages: Finnish, Turkish, and Russian, each
from a different language family—respectively Finno-Ugric, Turkic, and Indo-European.
For each language several sources that are publicly available have been processed
to extract list of words. These sources are mostly books such as novels. We have
avoided using publicly available news or media text since that kind of text tends
to be homogeneous which might not reflect all properties of the language. We have
extracted several data-sets which are summarized in Table 7.

Name Language Number of words
fi-80k Finnish 82 808
tr-90k Turkish 90 719
ru-100k Russian 104 731

Table 7: Extracted data-sets for Finnish, Turkish, and Russian

The results of the experiments are presented in Figures 11, 12, and 13, for Finnish,
Russian, and Turkish. Each point in the plots represents a single run of the algo-
rithm. The coordinates of each point are its recall and precision, and the accuracy
for each point is in its label. The Morfessor CatMAP algorithm [CL05] was run
on the same data-sets for comparison. We use this version of Morfessor, since it
obtained the best performance over all Morfessor variants, as stated in [GVSK14].

Morfessor’s CatMAP algorithm has a parameter, b, called the “perplexity thresh-
old, which indicates the point where a morph is as likely to be a prefix as a non-
prefix” [CL05]. This parameter trades off recall and precision; the more data there
is, the higher b should be; the higher b is, the less words are split, leading to higher
precision but lower recall. We ran Morfessor with b varying from 5 to 800, which
yields the red (solid) line in the plots.

Currently, our model has several hyper-parameters: The probability ρ of placing
a morph boundary between any two adjacent symbols during the initial random
segmentation (currently 0.20–0.25); the number of classes K (currently 15); the as-
signment of classes to prefix, stem and suffix kinds: smax and amin. For simulated
annealing, the cooling schedule α (currently 0.995), initial and final temperature, T0

and TF , were roughly tuned so that the cost curve across iterations has a charac-
teristic sigmoid shape, as it was shown in Figure 6 (as commonly done in simulated
annealing). The blue points (stars) in the plots correspond to runs of our method,
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Figure 11: Precision vs. recall for Finnish data

with different settings of the hyper-parameters. Since our method does not have any
parameter to directly balance precision and recall, there is no order between them
and they are just represented as single points. These parameters have not been
tuned jointly; rather we started with certain “sensible” settings for the parameters
(above) and checked the effect of varying the parameters independently. They can
be further optimized (e.g., on a development corpus), which can be investigated in
detail in future work. However, even as they stand now, all runs of StateMorph

show a substantial improvement in terms of recall and precision over the best Mor-
fessor model: the blue points always lie above the red curve in the plots. That
means that, e.g., at a given level of recall, StateMorph always has higher precision.
For Finnish, the gain in precision is 2–8%; for Russian, it is 15% on average; for
Turkish, 2–7%.

Conversely, at a given level of precision, StateMorph always has higher recall, hence
higher F-score; for very large b, Morfessor reaches higher recall, but at a substantial
loss in precision. The accuracy of StateMorph is also mostly better than Morfes-
sor’s, though not always. At a given level of recall, StateMorph always achieves
higher accuracy. The fine-grained interaction between the the hyper-parameters and
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Figure 12: Precision vs. recall for Russian data

performance remains to be explored.

Qualitative evaluation of classification: A crucial point about StateMorph is
that it learns classes of very high quality. A sample of an example run of State-

Morph can be found in Appendix 1. Manual inspection of the output shows that
each state groups together morphs of highly similar natures. As can be seen in
Appendix 1, several large states emit morphs that are generally verb or noun stems.
Some other states emit suffixes that are of similar kinds. These states have smaller
number of distinct morphs with higher frequencies compared to the stem states.

As is natural for MDL, when several affixes appear frequently together, they may
be learned as a single affix; this explains lower recall. However, this problem may
be addressable as a post-processing step, after the learning is complete (in future
work). Of course, evaluating classes quantitatively is difficult, hence we evaluate
quantitatively the segmentations only.

Running time comparison: The running time of StateMorph depends on the
data size and the chosen simulated annealing cooling schedule. The runs reported
here take 8 to 10 hours to finish using the parallelized version with 40 machines.
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Figure 13: Precision vs. recall for Turkish data

Parallelization does not divide total running time by the number of machines, since
there is considerable overhead due to synchronization at each iteration and insta-
bility of the network on the cluster. However, parallelization was a necessary step
since the non-parallelized versions of StateMorph had a very long running time
even with faster simulated annealing cooling schedules. In our experiments, each
Morfessor run on our data sets took less than an hour to finish.

7 Conclusions and Future Work

We have presented an algorithm for automatic segmentation of a corpus of words.
The proposed model tries to approach the problem in a systematic way, by grouping
the discovered morphs into classes that respect several general linguistic principles.
Using no prior knowledge about the language, starting from a randomly initialized
model, the algorithm learns the segmentation from the data by optimizing a cost
function following the MDL principle. The results obtained with the linguistically
motivated heuristics consistently outperform the current state of the art.
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In future work, we envision several improvements. For the cost function, a natural
improvement is coding the lexicon more efficiently, by taking into account symbol
frequencies. We plan to explore learning the number of classes automatically, which
should be reflected in the code-length and the algorithm should ultimately find the
most suitable number of classes that could be associated with linguistically defined
morphological classes for each language.

Another contribution of this work is a novel method and corresponding resources for
evaluation of morphological segmentations. The features discussed in Chapter 5 dis-
tinguish our proposed evaluation method from methods used in prior work—where
a model could not be required to segment data in a consistent fashion. We note that
“ambiguity” is inherent in morphological segmentation: it is impossible to posit a
single segmentation that is “correct” in many cases in many languages. Thus the gold
standard must provide flexibility to accommodate different theories of morphology.
However, if two models—where one is consistent and one is inconsistent—receive
equal score, that means that the evaluation method being used is not informative.

Our evaluation method, while it resolves the matter of consistency, still leaves certain
problematic cases unresolved. We briefly discuss them here.

One case is what we consider a true morphological ambiguity: a word that can
be legitimately segmented in more than one way. For example, Turkish evini (ev:
’home/house’) can be analyzed as ev(noun stem)+(2nd person singular possessive
suffix)+ACC (accusative marker) or ev(noun)+(2nd person singular possessive suf-
fix)+ACC (accusative marker). Ambiguity arises because +in is the 2nd person
singular possessive marker and +i is 3rd person singular possessive marker, but the
morphology requires an epenthetic +n after a 3rd person singular possessive suffix
as a “buffer” consonant before certain suffixes are added—in this case, the accusative
marker, which begins with a vowel. This applies to all similar word endings, such
as +ını, +unu, and +ünü; which one appears in an instance is determined by the
rules of Turkish vowel harmony; this also occurs with other suffixes, such as dative,
ablative, and other nominal cases.

We distinguish regular ambiguity from sporadic ambiguity. An ambiguity is regular
if, as in the example above, there are many words that follow the same pattern, and
have the same ambiguity. We plan to extend the current algorithm to address true
ambiguities in future work.
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Appendix 1. Sample Output for Finnish

Figure 14: Visualization of a model with 5 states trained with Finnish data

A non-directional model trained with the Finnish data is visualized in Figure 14.
The model is trained only with 5 classes for better visualization. The 8 most frequent
morphs emitted from each state along with number of distinct morphs (|Lex|) and
emission frequency (freq) is shown in each node. Probability of transition between
the states is shown on the transition edges. Edges with very low transition proba-
bilities are not shown in the graph. As can be seen, the model has learned to often
emit stems from states S1 and S5, and suffixes from S3 and S4. As expected, the
states corresponding to the stems are larger than the ones corresponding to suffixes.
These two groups of states exhibit different properties: S1 and S5 have a more flat
distribution, whereas S3 and S4 have few morphs with very high frequencies and
many morphs with very low frequencies.

Output segmentations for 150 randomly selected words are listed below, followed by
an extract of the output lexicon. Each segmentation is a list of morphs followed by
the state the morph is emitted from. For example “ääntä 5 ä 4” is the segmen-
tation for the word “ääntää”, with the morph ääntä emitted from state S5 followed
by the morph ä emitted from state S4. Only 60 most frequent morphs of each state
are listed for the output lexicon. Each state of the lexicon is formatted as a list of
morphs and emission frequencies.
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Output segmentations:

ääntä 5 ä 4

abadd 1 on 3

ajatel 5 le 2 eksi 4 kaan 4

aleksandri 5 asta 3

apuna 5 nsa 4

ase 5 ka 3

atla 5 s 2 puku 2

avona 1 isesti 4

bosra 1 lle 4

et 1 lä 2

ev 1 il 2

fanny 5 lle 4

halu 1 ttomasti 3

harjoit 1 uksesta 3

hellä 5 sydäm 2 isten 4

herja 5 amaan 3

hieta 5 iselle 3

hoita 1 vat 3

huoka 1 isten 4

huolehti 5 kaa 3

huoli 1

huomaa 1 matta 3 ni 4

hyökkä 5 sin 3

irtautu 1 u 3

itse 5 stämme 3

jaakob 1 issa 3

jalust 5 ime 2 en 4

jis 5 mak 5 ja 3

jo 1 kin 4

joutila 1 iksi 3

käänty 1 isimme 3

kärkky 1 vät 4

käy 1 mäl 2 öitä 4

käyttä 1 äksesi 3

kaali 5 n 4

kaarr 5 uttaa 3

kallionkielu 2 n 4

kanna 1

kannu 1 stettu 3

kansa 1 ltani 3

karsi 1 ttiin 3

kauhu 1 si 4

kedo 5 illa 3

keitto 5 s 4

kekäle 1 istä 3

kerto 1 ikin 3

kertom 5 uksista 3

kesä 5 huoneen 4

ketun 5 häntä 2

kiiva 1 s 4

kirja 5 sta 3

kivääri 5 n 2 perä 2 llä 3

kohtu 5 nsa 4

kokoon 5 kutsu 1 miseen 3

kokoon 5 nut 3 tiin 4

konst 5 i 3

korva 5 isi 3

koura 1 n 4

kov 1 inkin 3

kuninkaa 1 llemme 3

kuninkaa 1 llista 3

kuoll 1 akseen 3

le 5 isku 5 na 4

leikkaa 5 mattom 2 issa 3

lepuu 5 ta 4

lii 5 ska 2 ksi 4

lika 1 kuoppaa 2 n 4

lopet 1 tamaan 4

maala 1 ri 4

mahtava 5 mmaksi 3
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meero 5 min 4

menesty 1 s 4

muka 5 iseen 4

murtautu 1 isivat 3

neljä 5 stä 4 toista 4

neljä 5 ttä 4

neste 5 ttä 4

neuvo 1 tellut 4

neuvos 1 kunta 2 nsa 4

nime 1 en 4

nuorukais 1 ena 3

nystyr 5 ä 4

odotta 1 isinko 2

ohra 5 n 4

olem 1 us 4

orji 1 ensa 4

pääs 1 tyämme 2

paheks 1 umista 3

palo 1 kunnan 3

parta 5 an 4

pataljoon 1 ianne 3

piuk 5 alla 3

polje 5 tte 3

puhel 5 tiin 4

puku 1 namme 3

punertava 5 ssa 4

puoli 5 pyörry 1 ksi 2 ssä 3

pysty 5 isivät 3

ramp 5 oja 4

rauen 1 neet 3

rauke 1 n 2 ivat 3

riippuva 1 in 3

riita 5 a 4

riko 1 mme 4

ruhtinattar 1 enkin 3

ryöst 1 etty 3

ryöstettäv 1 i 2 ksensä 3

säär 5 e 2 stänsä 3

saav 1 athan 3

samalla 5 ista 4

sanel 5 i 3

sanoma 5 sta 3

sapatin 1 päivä 3

selom 1 in 3

seurust 1 el 2 ko 4

sidkia 1 lle 4

sinetöi 1 tiin 4

sive 1 ästi 3

sonni 5 mäellä 4

sukupolv 5 issa 3

sy 5 kin 4 tään 3

syöks 1 it 3

syntiuhri 2 ksi 4

tä 2 ltä 3

törmä 1 sana 2 inen 4

talo 1 onsa 3

tamaan 2 it 3

tanssiais 5 issa 3

tekijä 2

tiehe 5 ni 4

todistaja 5 mme 4

toist 5 enkin 3

tot 1 uuteen 4

tutu 5 t 4

tykki 5 mies 4

ulv 1 ahti 3

uupu 1 a 4

vaarn 5 a 4

vala 5 lla 3

valhe 5 kynä 2

valjast 1 utti 3

valkea 5 ta 4
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valt 5 oineen 3

vanh 1 us 4

vapaut 1 tamme 2

vapise 5 tpa 3

varsin 5 a 2 isia 4

velvoi 5 ttaisi 4

verta 1 uksensa 3

virka 5 s 4

Output lexicon:
State 1:

sano 149

saa 101

viha 92

puhu 91

usko 90

asu 81

jo 79

suu 78

isä 75

istu 74

neuvo 71

osa 71

surma 71

kiro 69

tuo 69

vaimo 69

seura 68

aja 66

jalo 66

toivo 65

vaiva 64

halu 63

lähte 63

ot 63

kutsu 62

astu 60

kysy 59

käy 59

velje 59

anta 58

jumala 58

kuul 58

kuva 58

elä 57

katso 57

kiusa 57

voima 57

kauhistu 54

suru 54

syö 54

kansa 53

laske 53

muut 53

hedelmä 52

herra 52

silmi 52

talo 52

kirjoit 51

kuulu 51

lausu 51

maja 51

miele 51

nime 51

oma 51

tahto 51

tapa 51

tuho 51

sydäme 50

etsi 49

lapse 49

State 2:

n 340

ma 264

e 249

is 241

i 207

a 188

s 177

ne 168

tu 151

o 139

ta 130

ti 120

tele 116

llis 106

el 103

u 90

ko 83

ty 80

la 77

te 77

kka 71

tä 68

ka 66

na 64

ksi 60

us 60

in 57

mi 57

hi 55

ku 54

uksi 54

aja 52

ha 51

mise 51

tta 51

mattom 49
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mä 48

se 48

mis 47

ttä 47

kko 45

ri 45

ra 42

taja 42

to 41

va 40

em 39

ile 39

lä 39

tte 39

puole 38

kon 37

li 37

utu 37

nne 36

pu 36

re 36

tel 36

de 35

imm 35

State 3:

in 1692

sta 1035

i 863

lla 729

ille 586

ja 469

at 431

ia 402

illa 390

isi 384

neet 379

vat 378

et 372

ansa 355

issa 338

llä 319

nut 319

iin 312

isen 312

maan 303

iksi 302

on 298

ssä 298

ivat 286

it 271

ten 259

istä 249

ita 248

tte 247

kaa 245

aa 232

ti 229

koon 222

e 218

asta 217

taan 206

va 196

isin 191

jen 191

nyt 184

ina 183

u 183

alla 182

iä 178

ttu 178

asi 172

uksen 171

tä 168

ani 165

lleen 160

staan 160

usta 158

alle 155

taa 153

aksi 148

ilta 145

amme 143

teli 143

ttiin 143

essa 142

State 4:

n 2697

a 2273

t 1482

an 1232

en 1182

si 893

lle 873

ä 798

ssa 761

ista 727

nsa 701

ksi 653

ni 621

kin 609

mme 596

inen 539

ta 412

s 408

stä 400

nne 398

na 361

lta 353

ko 320

aan 316

us 272

nsä 268

än 257

iset 250

vät 217

kaan 194

ihin 187

assa 186
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kö 171

ensa 167

han 164

van 163

nä 162

tti 156

sti 152

mään 149

isia 140

kseen 140

iden 139

kään 139

isten 137

eni 133

änsä 133

illä 125

issä 124

ensä 115

eksi 113

elle 113

ineen 110

hän 106

telee 104

ellä 103

iseen 103

vä 103

pa 102

esta 97

State 5:

pää 120

vasta 108

itse 106

kulta 104

sota 101

maa 97

ilo 95

ihmis 93

suur 87

kivi 84

turva 76

metsä 74

käsi 72

työ 70

juhla 67

silmä 67

hopea 66

matka 65

kunnia 64

määrä 64

tuli 64

armo 62

puu 62

arvo 60

si 60

sivu 60

liha 59

nuor 59

sala 59

väli 59

karja 58

vesi 58

puna 57

vaski 57

ala 56

jalka 55

suku 54

vara 54

men 53

se 53

tietä 53

valta 53

hel 52

kirja 52

mieli 52

otta 52

peri 52

päivä 52

uhri 52

temppeli 51

peit 50

ratsu 50

taistelu 50

taka 49

ase 48

ku 48

rinta 48

etu 47

korva 47

koti 47


