
IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019

147

Manuscript received September 5, 2019
Manuscript revised September 20, 2019

Mininet Network Emulator: A Review

Omran M. A. Alssaheli1*, Z. Zainal Abidin2, N. A. Zakaria3

†Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal,
Melaka, Malaysia

††Carbon Research Technology, Advanced Manufacturing Centre, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya,
76100 Durian Tunggal, Melaka, Malaysia

Summary
Mininet is a network emulation software that allows launching a
virtual network with switches, hosts, and a software-defined
networking (SDN) controller on the limited resources of a single
computer or virtual machine. This software was created to enable
research and learning about SDN and OpenFlow, and to test SDN
controllers and applications. Mininet provides convenience and
practicality at a low cost because it is a free open-source software
that emulates OpenFlow devices and SDN controllers. This paper
presents a comprehensive and critical review of Mininet by
introducing its basic concepts and implementation. Challenges in
using the Mininet emulator tool are also discussed to provide
insights into future research directions.
Key words:
Mininet; Network Emulator; SDN testing tool.

1. Introduction

Computer networks today are constantly evolving. Next-
generation networks must be scalable, programmable,
flexible and adaptable to innovative ideas. Researchers
continue to work on providing innovative solutions or
modifications to the current network infrastructure.
However, such experiments cannot be conducted on
existing operational networks as these experiments may
interrupt operational traffic on those networks. Thus,
customised test-beds for experimentation and testing of
new innovations and new protocols, which can be solved
by virtual network infrastructure, are necessary [1].
Virtualisation is the task of creating an electronic version
of a physical structure and can be conducted on hardware,
platforms, servers or networks [2]. Researchers’ new ideas
and protocols cannot be tested on real networks because
doing so may affect the functions of these operational
networks [1]. Only a few network devices are available for
implementing software-defined networking (SDN)
standards. Furthermore, implementing a network with a
large number of devices is difficult because inaccurate
configurations are costly and may cause unwanted
problems [3]. A virtual network infrastructure is the
solution to these problems. Virtual mode strategy has been
conducted for prototyping and emulating network
technologies; the most important of these is Mininet
Emulator. The proposed study aims to enhance such a

virtual network test-bed to assist researchers in their
experimentation and enable students to understand the
functioning of computer networks [1].
Numerous hosts, switches, SDN/OpenFlow controllers and
wires have to be connected in a network. The Mininet
Emulator is a simple tool that facilitates the creation of
small topologies as well as large ones with hundreds or
thousands of nodes and switches. Mininet is a free and
open-source Python-based emulator tool that allows the
creation of realistic virtual SDN networks [4]. This tool
provides application programming interface (API) for
automation and command line interface for interactive
commanding.
Mininet is a system that allows rapidly prototyping large
networks on a single computer [5]. This emulator can
create a network of virtual hosts, switches, controllers, and
links. Mininet hosts run on standard Linux software and
the switches support the OpenFlow protocol, which is
highly attractive and handy for SDN research. OpenFlow
is the most prominent SDN component supported by
several vendors. The OpenFlow controller is used to
design a mobile cloud management system. Such an
OpenFlow SDN network can be easily created by Mininet.
The Python-based code developed on Mininet can be
applied to real-world networks with minimal changes. In
the existing Mininet, creating a custom topology other than
the pre-defined ones requires Python programming skills,
which could be a challenging task particularly in creating a
large custom network topology. The proposed work
ensures user-friendly functionality of the custom topology
without the need for any programming code. All the
required details of the network connectivity and
characteristics are specified in a simple configuration file
[1].

2. Mininet

A group of professors at Stanford University created
Mininet for use as a tool in research and teaching network
technologies [6]. At present, Mininet is designed to easily
create virtual-software-defined networks consisting of an
OpenFlow controller, a flat Ethernet network of multiple
OpenFlow-enabled Ethernet switches and multiple hosts

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 148

connected to those switches. Mininet has built-in functions
that support using various types of controllers and
switches. Complex custom scenarios can also be created
using the Mininet Python API [7].
Several characteristics that guided the creation of Mininet
are the following [8] [9]:

• Flexibility: new topologies and features can be set
in software using programming languages and
common operating systems.

• Applicability: correct implementations conducted
on prototypes should also be usable in real
networks based on hardware without any changes
in source codes.

• Interactivity: management and running the
simulated network must occur in real time as if it
happens in real networks.

• Scalability: the prototyping environment must be
scaled to large networks with hundreds or
thousands of switches on a single computer.

• Realistic design: the prototype behaviour should
represent real-time behaviour with a high degree
of confidence, so applications and protocol stacks
should be usable without any code modification.

• Shareability: the created prototypes can be easily
shared with other collaborators, who can then
conduct and modify the experiments.

3. Advantages of Mininet

The advantages of using Mininet are the following [3]:
1) Custom topologies: a single switch, large Internet-like
topologies such as that of a data centre or anything else
can be created.
2) Operation of real programs: Mininet hosts are able to
run any software that can be operated on a Linux system.
These tools could be tcpdump, curl, elinks, wireshark and
others.
3) Customised packet forwarding: Mininet switches are
programmable using the OpenFlow protocol.
4) Code sharing and result replication: anyone with a
computer can run any other code once it has been
packaged.
5) Ease of use: Mininet experiments can be conducted by
writing simple Python scripts.

4. System Requirement for Working with
Mininet

Mininet can be used on various platforms such as
Windows, Linux and MAC. We ran the Mininet virtual
machine (VM) on VirtualBox on a Windows 7 host
computer and used XMing as X-server and Putty as SSH

client. Table 1 shows the requirements for working with
Mininet on a different operating system (OS) type [10].

• Laptop/Computer with at least 2 GB RAM and at
least 6-8 GB of free hard disk space

• Mininet Controller (POX, NOX, Beacon,
FloodLight, Maestro etc.).

• Java/Python language support.
• Mininet.

5. Mininet VM Installation

VM installation is the easiest and most frequently
recommended method to install Mininet. The installation
is conducted as follows [10]:

1. Download the Mininet VM image.
2. download the files corresponding to your OS,
3. Download and install a virtualisation system such

as VirtualBox or VMware Workstation, which
works on OS X, Windows and Linux.

4. Import Mininet VM image on virtualization
system .then, it is Important to Select “settings,”
and add an additional host-only network adapter
that you can use log in to the VM image. Start the
VM. For Mininet VM image, the user name is
'mininet' with password 'mininet'.

We can obtain native installation Mininet from Ubuntu
14.04 using the following command [11] [12]:
$ git clone git://github.com/mininet/Mininet.
The basic Mininet install can then be completed using the
command
$ mininet/util/install.sh.

Table 1: Requirement for Working with Mininet
OS

Type
OS

Version
Virtualizatio
n Software X Server Terminal

Win 7+ VirtualBox Xming PuTTY
Win XP VirtualBox Xming PuTTY

Mac

OS X 10.7-
10.9 Lion/
Mountain

Lion/
Mavericks

VirtualBox
download

and
install XQu

artz

Terminal.
app (built

in)

Mac

OS X 10.5-
10.6

Leopard/S
now

Leopard

VirtualBox

X11 (install
from OS X

main
system
DVD,

preferred),
or

download
XQuartz

Terminal.
app (built

in)

Linux Ubuntu
10.04+ VirtualBox

X server
already
installed

gnome
terminal
+SSH
built in

http://www.virtualbox.org/wiki/Downloads
http://sourceforge.net/project/downloading.php?group_id=156984&filename=Xming-6-9-0-31-setup.exe
http://the.earth.li/%7Esgtatham/putty/latest/x86/putty.exe
http://www.virtualbox.org/wiki/Downloads
http://sourceforge.net/project/downloading.php?group_id=156984&filename=Xming-6-9-0-31-setup.exe
http://the.earth.li/%7Esgtatham/putty/latest/x86/putty.exe
http://www.virtualbox.org/wiki/Downloads
http://xquartz.macosforge.org/trac/wiki
http://xquartz.macosforge.org/trac/wiki
http://www.virtualbox.org/wiki/Downloads
http://xquartz.macosforge.org/trac/wiki
http://www.virtualbox.org/wiki/Downloads

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 149

6. Mininet Topologies

Mininet topologies are basically classified into two types
[7] [13].

A. Default Topologies

Mininet consists of a number of default topologies such as
minimal, single, reversed, linear and tree [10]. This section
explains each of these topologies. Understanding the
naming method for interfaces, hosts and switches is
essential for the successful use of Mininet. Switches are
named s1–sN and hosts are named h1–hN. Host interfaces
are prefixed with the host name followed by the Ethernet
name starting with 0. First interface of host ‘h1’ is called
‘h1-eth0’ and third interface of host ‘h2’ is called ‘h2-
eth2’. First port of switch ‘s1’ is called ‘s1-eth1’. On
switches, numbering begins with 1.

1) Minimal Topology

 Minimal is a simple topology that consists of a controller,
an Open-Flow switch and two hosts by creating a link
between switches and hosts, as shown in Fig. 1. Topology
creation through command line is
mn--topo minimal as shown in Fig 2.

Fig. 1 Minimal Topology

Fig. 2 Creating A Minimal Topology Using Mininet

2) Single Topology

The single topology consists of a switch and n
number of hosts. This simple structure creates a
link between the switch and hosts, as shown in Fig. 3.
Topology creation through command line is
mn--topo single, 4 as shown in Fig 4.

Fig. 3 Single Topology

Fig. 4 Creating A Single Topology Using Mininet

3) Reversed

Reversed topology is similar to the single topology but has
a connection in reverse order. Topology creation through
command line is
mn--topo Reversed, 4 as shown in Fig 5.

Fig. 5 Creating A Reversed Topology Using Mininet

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 150

4) Linear

A linear topology contains n number of switches and n
number of hosts. It creates a link between each

switch and each host and among the switches in

linear order, as shown in Fig. 6. Topology creation through
command line is
mn--topo Linear, 4 as shown in Fig 7.

Fig. 6 Linear Topology

Fig. 7 Creating A Linear Topology Using Mininet

5) Tree

This topology consists of n-level of switches. Hosts are
attached to lower-level switches as shown in Fig. 8.
Topology creation through command line is
mn--topo Tree, 3 as shown in Fig 9.

Fig. 8 Tree Topology

Fig. 9 Creating A Tree Topology Using Mininet

B. Custom topologies

Mininet can be created by using Python code [14]. These
topologies are run in Mininet through specific commands.
Python API [5] uses its own classes, methods, functions
and variables to create these topologies. For example,
creating a custom topology with 2 switches and 5 hosts, as
shown in Fig. 11, only requires writing a few lines of
Python code as shown in Fig. 12. A highly complex,
flexible and robust topology can also be created. This
topology can be configured based on relevant parameters
and reused for multiple experiments.

Fig. 10 Creating A Custom Topology Using Mininet

Fig. 11 Custom Topology

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 151

Fig. 12 Custom Topology using Python code

7. Mininet Controller

SDN controllers direct traffic according to forwarding
policies set by a network operator, thereby minimising
manual configurations for individual network devices. By
taking the control plane off the network hardware and
running it instead as software, the centralised controller
facilitates automated network management and enables
easy integration and implementation of business
applications. In effect, the SDN controller serves as an OS
for the network [15]. The five most important open-source
controllers that can be used by Mininet remotely are POX,
Ryu, Trema, FloodLight and OpenDaylight [16]. Table 2
presents the specifications of various SDN controllers [17,
18].

A. POX

NOX is the first OpenFlow controller but is no longer
being developed. POX is a new version of NOX [19] and
is a software platform developed in Python. POX began
early as a controller for an OpenFlow protocol. However,

it can act as an OpenFlow switch and can be used to
develop networking software. POX works with Python 2.7
(and even with Python 2.6), and can run under Linux OS,
Mac OS and Windows. The core and main modules are
developed in Python [8].

B. Ryu

Ryu is an open-source Python implementation of an SDN
controller with a component-based architecture [19]. It has
a set of well-defined APIs for network application
development and has been widely used by the research
community. Ryu also supports multiple protocols in a
single bilateral integration for hardware integration and
configuration. The event handler of a Ryu controller
dispatches the events to all of the subscribed applications
[20].

C. Trema

Trema [15] is an OpenFlow controller framework
developed on Ruby and C. It is basically a framework that
includes libraries and functional modules, which work as
an interface to OpenFlow switches. Several sample
applications are provided to enable the execution of
various controllers, thereby facilitating the extension to
new features.

D. Open DayLight

Open Daylight is an open-source project with a modular,
pluggable and flexible controller platform at its core. It is
implemented in Java, and therefore can be deployed on
any hardware and operating system platform that supports
Java [22].

E. Floodlight

The Floodlight open SDN controller is an Apache-licensed
Java-based OpenFlow controller that provides an
extension to ensure the security of the OpenFlow protocol.
This OpenFlow-based application provides an interface on
northbound and southbound sides [23]. It is supported by a
group of developers, including engineers from Big Switch
Networks. OpenFlow protocols are an open standard
managed by the Open Networking Foundation. This
standard specifies a protocol by switching a remote
controller that can modify the behaviour of networking
devices through a well-defined ‘forwarding instruction set’.
Floodlight is designed to work with an increasing number
of switches, routers, virtual switches and access points that
support the OpenFlow standard. The features of Floodlight
are the following [24].

• a module-loading system that facilitates
extensions and improvements;

• a simple set-up with minimum accreditation;

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 152

• support for a wide range of virtual and physical
OpenFlow switches and non-OpenFlow networks
that can manage multiple OpenFlow switches;

• high-performance design; and
• Support for OpenStack (link) cloud

synchronisation platform.

Table 2: SDN controllers
 POX Ryu Trema FL ODL

Language
Support Python Python C

Ruby Java Java
OpenFlow

Support v1.0 v1.0 v1.0 v1.0 v1.0
Open

Source Yes Yes Yes Yes Yes

GUI Yes Yes no Web
GUI Yes

REST API no Yes no Yes Yes
Platform
Support

Linux
Mac

Windows
Linux Linux Linux

Linux
Mac

Windows

Created by Niciria
Networks NTT NEC

Big
Switch
Netwo-

rks

Cisco
and ODL

8. Results and Findings

A study and evaluation of SDN emulation tool termed
Mininet, was recommended by Scheweitzer, Prete, De
Oliveira & Shinoda in [25]. Preliminary investigations
propose that the ability of quick and simple prototyping,
the ensuring applicability, the chances of sharing tools and
results at zero cost are encouraging factors that enable
scientists to carry their investigations forward despite the
tool’s disadvantages in terms of performance fidelity
between the real and simulated environment. Following
presentation of some of this paradigm’s concepts, its
appearance’s purpose, its parts and mechanism, several net
prototypes were generated to provide better understanding
of the Mininet tool. An evaluation was also carried out to
show its pros and cons. Extensible Service ChAin
Prototyping Environment (ESCAPE) was proposed by
Csikor, Sahhaf, Sonkoly and Csoma in [26] via Mininet,
Click, NETCONF and POX. They ran a similar
prototyping system termed ESCAPE, which is able to
generate and test different parts of the service chaining
architecture. Click was incorporated by this framework for
running Virtual Network Functions (VNF), NETCONF for
running Click-based VNFs and POX for managing the
traffic steering. They also incorporated their extendable
Orchestrator module, which is able to hold mapping
algorithms from abstract service descriptions that were to
be ran service chains.
This framework incorporates Click for implementing
Virtual Network Functions (VNF), NETCONF for
managing Click-based VNFs and POX for taking care of
traffic steering. They also add their extensible Orchestrator
module, which can accommodate mapping algorithms

from abstract service descriptions to deployed and running
service chains. Kuzmin, Fomichev, Petrov & Zabrovskiy
suggested an investigation of the delivery of media content
through the Internet via MPEG-DASH technology within
the network emulation environment [27]. A real hardware
client and a server from an actual IP-network was linked to
Mininet. A Mininet setting that permitted embedding of
this virtual environment into the current network
infrastructure was presented by them. The investigation
demonstrated that the communication channel’s bandwidth
variation emulated in Mininet produces the same outcome
on streaming video in comparison to experimental results
that are collected from a specialized hardware-software
network emulator that has similar channel property
configurations. They made a conclusion that the Mininet
may be regarded as a practical instrument for the
emulation of video stream transmissions that are using
Dynamic Adaptive Streaming over HTTP, and also to be
utilized for the generation of novel adaptive control
algorithms.
Prete, Gerola, Salvadori, Salsano, Siracusano and Ventre
recommended the architecture and services of a hybrid
IP/SDN networking scenario in [28]. They also provided
an elaboration of the architecture and mechanism of an
Open Source Hybrid IP/SDN (OSHI) node. It was a
combination of Quagga for OSPF routing and Open
vSwitch for OpenFlow based switching on Linux. The
SDN’s evolution is heavily reliant on the availability of
tools for experimental validation and performance
assessment of SDN solutions. A set of open source
instruments was provided by them to enable the
facilitation of the design of hybrid IP/SDN experimental
networks, their function on Mininet or on distributed SDN
research testbeds and their test. Lastly, based on provided
tools, they assess key performance parameters of the
proposed solutions. The test environment and the OSHI
development is available in a VirtualBox VM image that is
downloadable.
A characterization of the scalability and performance of
Mininet through an experimental analysis was presented
by Novillo, Ortiz and Londoño in [29]. They utilized a
typical topology for large data centers for this purpose.
The results show that under certain restrictions, Mininet
provided results that are in accordance with the theoretical
expectation. In other results, the emulation platform was
shown to be heavily reliant on the underlying
software/hardware system’s performance, as well as on the
mode of operation of the SDN controller utilized in the
network.
Mininet-WiFi was suggested by Afzal, Santos, Rothenberg,
Fontes and Brito in [30], as an instrument to provide an
emulation of wireless OpenFlow/SDN scenarios that
permit high-fidelity experiments that mirrors authentic
networking environments. Mininet-WiFi is able to
augment the Mininet emulator with virtual wireless

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 153

stations and access points while retaining the original SDN
abilities and lightweight virtualization software
architecture. They also provide elaborations on the
potential uses of Mininet-WiFi, as well as the pros and
current cons.
Seçinti, Özçevik, Canberk, Teoman, & Erel provided a
Mininet-based Software-Defined Network (SDN)
simulation environment in [31], that enhanced the overall
network’s total flow throughput and scalability. Seçinti,
Özçevik, Canberk, Teoman, & Erel provided a Mininet-
based Software-Defined Network (SDN) simulation
environment in [31], that enhanced the overall network’s
total flow throughput and scalability. Mininet serves as an
appropriate and manageable tool to run the suggested SDN
based flow admission control module, which would then
allow the configuration of the whole topology since it
already contains in-built Open-Flow switches and virtual
controllers. This open-source platform can also be
configured easily through its drag and drop abilities. In
this Demo for the Control Plane, an OpenDaylight
controller is utilized to provide a simulation of the flow
admission control module that fairly allows flow into the
OpenFlow switches. OpenFlow version 1.3 for relaying
information between Control plane and separated Data,
and operating systems based on Linux to generate Mininet
2.1.0, are carried out in the simulator environment.
Veena, Murthy, Rustagi and Pal gave a custom topology
framework in [2], which allowed the generation of any
custom network topology of user’s choice, which includes
several IP networks. This way, users are able to run
research on distinct networks that possess distinct
broadcast domains. The framework has been made in such
a way that it does not severely impede the current
Mininet’s performance.

9. Discussion

Considering the increasing popularity of SDN within cloud
computing field and its associated applications, there has
been simultaneous increase in interests over the SDN
network configuration’s behaviour modelling. Since SDN
is an open source network emulation software, it can be
run easily and investigated with Mininet. There was a
presentation of SDN tools which were then utilized for
prototyping and simulation. This study also included
references of other investigators’ result. The Mininet tool
is imperative for SDN investigations. In reality, several
seconds of waiting for complete larger topologies to
commence is rather reasonable and quicker than the
hardware switches’ boot time. In addition, several positive
variables such as the applicability safety, ability of quick
and simplified prototyping, opportunities to share results
and tools at minimum cost may boost their investigations.
A critical disadvantage of Mininet is that it can emulate

networks by utilizing slower links and it is not particularly
adept for high speed links. This is due to the fact that
packets are carried forward by a collection of software
switches that co-share memory and CPU resources, and
are more accustomed to having lower performance than
dedicated switching hardware. It is admittedly challenging
when using Mininet to emulate networks that spread over a
hug scale.

10. Conclusion

A review had been conducted to identify the benefits of
using the Mininet emulator. This software was proven to
be a handy tool for networking researchers to emulate real
operational networks and test innovative ideas and new
protocols. Mininet is also suitable in investigating the
behavioural characteristics of SDN because it is
OpenFlow-enabled. Furthermore, experiments on
topologies were conducted and SDN controllers that can
be utilized by this emulator tool were enumerated. Finally,
challenges posed by using the Mininet emulator tool were
discussed, such as its inefficiency in high-speed links and
the difficulty encountered in its application to large-scale
networks.

References
[1] Veena, S., Pal, C., Rustagi, R. P., & Murthy, K. N. B.

(2014). A Framework for Implementing Realistic Custom
Network Topology in Mininet. International Journal of
Science and Research (IJSR), (7), 1316-1323.

[2] Pal, C., Veena, S., Rustagi, R. P., & Murthy, K. N. B. (2014,
February). Implementation of simplified custom topology
framework in Mininet. In 2014 Asia-Pacific Conference on
Computer Aided System Engineering (APCASE) (pp. 48-
53). IEEE.

[3] Gupta, V., Kaur, K., & Kaur, S. (2016, March). Network
programmability using software defined networking. In
2016 3rd International Conference on Computing for
Sustainable Global Development (INDIACom) (pp. 1170-
1173). IEEE.

[4] Sharma, K. K., & Sood, M. (2014). Mininet as a container
based emulator for software defined networks. International
Journal of Advanced Research in Computer Science and
Software Engineering, 4(12).

[5] Lantz, B., Heller, B., & McKeown, N. (2010, October). A
network in a laptop: rapid prototyping for software-defined
networks. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks (p. 19). ACM.

[6] Sood, M. (2015). SDN and Mininet: Some Basic Concepts.
International Journal of Advanced Networking and
Applications, 7(2), 2690.

[7] Kaur, K., Singh, J., & Ghumman, N. S. (2014, February).
Mininet as software defined networking testing platform. In
International Conference on Communication, Computing &
Systems (ICCCS) (pp. 139-42).

[8] Keti, F., & Askar, S. (2015, February). Emulation of
software defined networks using mininet in different

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 154

simulation environments. In 2015 6th International
Conference on Intelligent Systems, Modelling and
Simulation (pp. 205-210). IEEE.

[9] De Oliveira, R. L. S., Schweitzer, C. M., Shinoda, A. A., &
Prete, L. R. (2014, June). Using mininet for emulation and
prototyping software-defined networks. In 2014 IEEE
Colombian Conference on Communications and Computing
(COLCOM) (pp. 1-6). IEEE.

[10] Kumar, D., & Sood, M. (2016). Software defined networks
(SDN): experimentation with mininet topologies. Indian
Journal of Science and Technology, 9(32).

[11] DeCusatis, C., Carranza, A., & Delgado-Caceres, J. (2016).
Modeling Software Defined Networks using Mininet. In
Proc. 2nd Int. Conf. Comput. Inf. Sci. Technol. Ottawa,
Canada (No. 133, pp. 1-6).

[12] Topoloi, S. G., & Borcoci, E. (2018, June). Software
Defined Networking and Network Function Virtualisation
Cooperation-Experiments. In 2018 International Conference
on Communications (COMM) (pp. 281-286). IEEE.

[13] Bholebawa, I. Z., & Dalal, U. D. (2016). Design and
performance analysis of OpenFlow-enabled network
topologies using Mininet. International Journal of Computer
and Communication Engineering, 5(6), 419.

[14] Jiang, J. R., Huang, H. W., Liao, J. H., & Chen, S. Y. (2014,
September). Extending Dijkstra's shortest path algorithm for
software defined networking. In The 16th Asia-Pacific
Network Operations and Management Symposium (pp. 1-4).
IEEE.

[15] Fernandez, M. P. (2013, March). Comparing openflow
controller paradigms scalability: Reactive and proactive. In
2013 IEEE 27th International Conference on Advanced
Information Networking and Applications (AINA) (pp.
1009-1016). IEEE.

[16] Izquierdo-Zaragoza, J. L., Fernandez-Gambin, A., Pedreno-
Manresa, J. J., & Pavon-Marino, P. (2014, June).
Leveraging Net2Plan planning tool for network
orchestration in OpenDaylight. In 2014 International
Conference on Smart Communications in Network
Technologies (SaCoNeT) (pp. 1-6). IEEE.

[17] Kaur, S., Singh, J., & Ghumman, N. S. (2014, February).
Network programmability using POX controller. In ICCCS
International Conference on Communication, Computing &
Systems, IEEE (Vol. 138).

[18] Khattak, Z. K., Awais, M., & Iqbal, A. (2014, December).
Performance evaluation of OpenDaylight SDN controller. In
2014 20th IEEE international conference on parallel and
distributed systems (ICPADS) (pp. 671-676). IEEE.

[19] Stancu, A. L., Halunga, S., Vulpe, A., Suciu, G., Fratu, O.,
& Popovici, E. C. (2015, October). A comparison between
several software defined networking controllers. In 2015
12th International Conference on Telecommunication in
Modern Satellite, Cable and Broadcasting Services
(TELSIKS) (pp. 223-226). IEEE.

[20] Shalimov, A., Zuikov, D., Zimarina, D., Pashkov, V., &
Smeliansky, R. (2013, October). Advanced study of
SDN/OpenFlow controllers. In Proceedings of the 9th
central & eastern european software engineering conference
in russia (p. 1). ACM.

[21] Arbettu, R. K., Khondoker, R., Bayarou, K., & Weber, F.
(2016, September). Security analysis of OpenDaylight,
ONOS, Rosemary and Ryu SDN controllers. In 2016 17th

International telecommunications network strategy and
planning symposium (Networks) (pp. 37-44). IEEE.

[22] Izquierdo-Zaragoza, J. L., Fernandez-Gambin, A., Pedreno-
Manresa, J. J., & Pavon-Marino, P. (2014, June).
Leveraging Net2Plan planning tool for network
orchestration in OpenDaylight. In 2014 International
Conference on Smart Communications in Network
Technologies (SaCoNeT) (pp. 1-6). IEEE.

[23] Morales, L. V., Murillo, A. F., & Rueda, S. J. (2015,
September). Extending the floodlight controller. In 2015
IEEE 14th International Symposium on Network Computing
and Applications (pp. 126-133). IEEE.

[24] Taher, A. (2014). Testing of floodlight controller with
mininet in sdn topology. ScienceRise, (5 (2)), 68-73.

[25] De Oliveira, R. L. S., Schweitzer, C. M., Shinoda, A. A., &
Prete, L. R. (2014, June). Using mininet for emulation and
prototyping software-defined networks. In 2014 IEEE
Colombian Conference on Communications and Computing
(COLCOM) (pp. 1-6). IEEE.

[26] Csoma, A., Sonkoly, B., Csikor, L., Németh, F., Gulyas, A.,
Tavernier, W., & Sahhaf, S. (2014, August). ESCAPE:
Extensible service chain prototyping environment using
mininet, click, netconf and pox. In ACM SIGCOMM
Computer Communication Review (Vol. 44, No. 4, pp. 125-
126). ACM.

[27] Zabrovskiy, A., Kuzmin, E., Petrov, E., & Fomichev, M.
(2016, April). Emulation of dynamic adaptive streaming
over HTTP with Mininet. In 2016 18th Conference of Open
Innovations Association and Seminar on Information
Security and Protection of Information Technology
(FRUCT-ISPIT) (pp. 391-396). IEEE.

[28] Salsano, S., Ventre, P. L., Prete, L., Siracusano, G., Gerola,
M., & Salvadori, E. (2014). OSHI-Open Source Hybrid
IP/SDN networking (and its emulation on Mininet and on
distributed SDN testbeds). arXiv preprint arXiv:1404.4806.

[29] Ortiz, J., Londoño, J., & Novillo, F. (2016, October).
Evaluation of performance and scalability of Mininet in
scenarios with large data centers. In 2016 IEEE Ecuador
Technical Chapters Meeting (ETCM) (pp. 1-6). IEEE.

[30] Fontes, R. R., Afzal, S., Brito, S. H., Santos, M. A., &
Rothenberg, C. E. (2015, November). Mininet-WiFi:
Emulating software-defined wireless networks. In 2015 11th
International Conference on Network and Service
Management (CNSM) (pp. 384-389). IEEE.

[31] Erel, M., Teoman, E., Özçevik, Y., Seçinti, G., & Canberk,
B. (2015, November). Scalability analysis and flow
admission control in mininet-based SDN environment. In
2015 IEEE Conference on Network Function Virtualization
and Software Defined Network (NFV-SDN) (pp. 18-19).
IEEE.

Omran Maki Abdelsalam Alssaheli
holds Bachelor of Computer Science at
Higher Institute for Comprehensive
Professions - Sebha, Libya in 2010. He
received Master of Computer Science
(Software Engineering) from Universiti
Tun Hussein Onn Malaysia (UTHM),
Malaysia in 2016. He is currently pursuing
his PhD in Information and

communications technology (Networking) from Universiti

IJCSNS International Journal of Computer Science and Network Security, VOL.19 No.9, September 2019 155

Teknikal Malaysia Melaka, Malaysia. Research interest in
computer science, computing and digital making, networking,
and Internet-of-Things (IoT). Contact:
imran20032006@yahoo.com

Zaheera Zainal Abidin received Bachelor
of Information Technology from
University of Canberra, Australia in 2002.
She joined ExxonMobil Kuala Lumpur
Regional Center as a Project Analyst in
2000-2001. She completed her MSc. in
Quantitative Sciences (2004), MSc. in
Computer Networking (2008) and PhD in
I.T. and Quantitative Sciences (2016) from

Faculty of Computer and Mathematical Sciences, Universiti
Teknologi MARA, Shah Alam, Selangor. She served as a lecturer
at Universiti Kuala Lumpur (2005-2009) and senior lecturer &
researcher in Universiti Teknikal Malaysia Melaka (2009 –
present). She is a member of Information Security, Forensics and
Networking (INSFORNET) research group. She is one of the
certified CISCO Academy (CCNA) in computer networking field
and certified Internet-of-Things specialists. Research interest in
Internet-of-Things (IoT), biometrics, network security and image
processing. Contact: zaheera@utem.edu.my

Nurul Azma Zakaria holds a B.Eng
degree in electronic computer system from
University of Salford, UK. She received
the MSc in Information System
Engineering and PhD in Information and
Mathematical Sciences from UMIST, UK
and Saitama University, Japan,
respectively. She is currently a senior
lecturer at Faculty of Information and

Communication Technology, Universiti Teknikal Malaysia
Melaka (UTeM) and also a member of Information Security,
Forensics and Networking (INSFORNET) research group. Her
area of research interests include computer system and
networking, embedded system design, IoT devices and
application, and IPv6 Migration. Contact: azma@utem.edu.my

mailto:imran20032006@yahoo.com
mailto:zaheera@utem.edu.my
mailto:azma@utem.edu.my

