Mining Large Graphs and Tensors - Patterns, Tools and Discoveries.

Christos Faloutsos CMU

Thank you!

- Nikos Sidiropoulos
- Kuo-Chu Chang

- Zhi (Gerry) Tian

Roadmap

\Rightarrow - Introduction - Motivation

- Why 'big data'
- Why (big) graphs?
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- Conclusions

Why 'big data'

- Why?
- What is the problem definition?

Main message: Big data: often $>$ experts

- 'Super Crunchers’ Why Thinking-By-Numbers is the New Way To Be Smart by Ian Ayres, 2008
- Google won the machine translation competition 2005
- http://www.itl.nist.gov/iad/mig//tests/mt/2005/doc/ mt05eval official results release 20050801 v3.html

Problem definition - big picture

Tera/Peta-byte data

Analytics
Insights, outliers

Problem definition - big picture

Tera/Peta-byte data

Analytics

Main emphasis in this talk

Roadmap

- Introduction - Motivation
- Why 'big data’
- Why (big) graphs?

- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- Problem\#3: Scalability
- Conclusions

Graphs - why should we care?

Food Web
[Martinez '91]

>\$10B revenue

$>0.5 \mathrm{~B}$ users

> Internet Map
[lumeta.com]

Graphs - why should we care?

- IR: bi-partite graphs (doc-terms)

- web: hyper-text graph
- ... and more:

Graphs - why should we care?

- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection
- 'viral' marketing
- Supplier-supply business chains (-> instabilities)
- Subject-verb-object -> graph
- Many-to-many db relationship -> graph

Outline

- Introduction - Motivation Problem\#1: Patterns in graphs

- Static graphs
- Time evolving graphs
- Problem\#2: Tools
- Conclusions

Problem \#1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/‘abnormal'?
- which patterns/laws hold?

Problem \#1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/‘abnormal'?
- which patterns/laws hold?
- To spot anomalies (rarities), we have to discover patterns

Problem \#1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/‘abnormal'?
- which patterns/laws hold?

NSF, 3/2013

- To spot anomalies (rarities), we have to discover patterns
- Large datasets reveal patterns/anomalies that may be invisible otherwise...
C. Faloutsos (CMU)

Graph mining

- Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
- Diameter
- in- and out- degree distributions
- other (surprising) patterns
- So, let's look at the data

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99] internet domains

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99] internet domains

Solution\# S. 1

- Q: So what?

internet domains

NSF, 3/2013
C. Faloutsos (CMU)

Solution\# S. 1

- Q: So what?
- A1: \# of two-step-away pairs: $\mathrm{O}\left(\mathrm{d}_{-} \max \wedge^{\wedge}\right) \sim 10 \mathrm{M}^{\wedge} 2$ internet domains

Solution\# S. 1

- Q: So what?
- A1: \# of two-step-aw ${ }^{\text {an }}$?) $\sim 10 \mathrm{M}^{\wedge} 2$ SUCM

Solution\# S.2: Eigen Exponent E

Eigenvalue

Exponent $=$ slope
$E=-0.48$

May 2001

Rank of decreasing eigenvalue

- A2: power law in the eigenvalues of the adjacency matrix

Many more power laws

- \# of sexual contacts
- Income [Pareto] -'80-20 distribution'
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs ('mice and elephants')
- Size of files of a user
- 'Black swans’

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Static graphs
- degree, diameter, eigen,
- triangles
- cliques
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

Solution\# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles

Solution\# S.3: Triangle 'Laws’

- Real social networks have a lot of triangles
- Friends of friends are friends
- Any patterns?

Triangle Law: \#S. 3 [Tsourakakis ICDM 2008]

X-axis: degree Y-axis: mean \# triangles n friends -> $\sim n^{1.6}$ triangles

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos) - $\mathrm{O}\left(\mathrm{d}_{\text {max }}{ }^{2}\right)$
$\mathrm{Q}:$ Can we do that quickly?
A:

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos) $-\mathrm{O}\left(\mathrm{d}_{\text {max }}{ }^{2}\right)$
Q : Can we do that quickly?
A: Yes!
\#triangles $=\mathbf{1 / 6 ~ S u m ~}\left(\lambda_{i}{ }^{3}\right)$
(and, because of skewness (S2),
we only need the top few eigenvalues! - $\mathrm{O}(\mathrm{E})$
C. Faloutsos (CMU)

Triangle Law: Computations [Tsourakakis ICDM 2008]

Wikipedia graph 2006-Nov-04
$\approx 3, \mathrm{IM}$ nodes $\approx 37 \mathrm{M}$ edges

$1000 x+$ speed-up, $>90 \%$ accuracy

Triangle counting for large graphs?

Anomalous nodes in Twitter(3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]
C. Faloutsos (CMU)

32

Triangle counting for large graphs?

Anomalous nodes in Twitter(3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Triangle counting for large graphs?

Anomalous nodes in Twitter(3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]
C. Faloutsos (CMU)

Triangle counting for large graphs?

Anomalous nodes in Twitter(3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Static graphs
- Time evolving graphs
- Problem\#2: Tools

T. 1 : popularity over time

\# in links

Post popularity drops-off - exponentially?

T. 1 : popularity over time

\# in links
(log)

days after post (log)

Post popularity drops-off - expon e^{\dagger} ally? POWER LAW!
Exponent?

T. 1 : popularity over time

\# in links
(log)

days after post (log)

Post popularity drops-off - expon ent ally? POWER LAW!
Exponent? -1.6

- close to -1.5: Barabasi's stack model
- and like the zero-crossings of a random walk

- 1.5 slope

J. G. Oliveira \& A.-L. Barabási Human Dynamics: The Correspondence Patterns of Darwin and Einstein. Nature 437, 1251 (2005) . [PDF]

Response time (log)

- 1.5 slope

J. G. Oliveira \& A.-L. Barabási Human Dynamics: The Correspondence Patterns of Darwin and Einstein. Nature 437, 1251 (2005) . [PDF]

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- (Belief Propagation)
- Tensors
- Spike analysis
- Conclusions

GigaTensor: Scaling Tensor Analysis Up By 100 Times Algorithms and Discoveries

\(\begin{array}{cccc}U \& Evangelos \& Abhay \& Christos
Kang \& Papalexakis \& Harpale \& Faloutsos\end{array}\)

KDD'12

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
- Hyperlinks \&anchor text [Kolda+,05]

Time evolving graphs: Tensors

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
- Sensor stream (time, location, type)
- Predicates (subject, verb, object) in knowledge base

NSF, 3/2013
(48M) verbs subjects (26M)

NELL (Never Ending Language Learner) data Nonzeros $=144 \mathrm{M}$

Background: Tensor

- Tensors (=multi-dimensional arrays) are everywhere
- Sensor stream (time, location, type)
- Predicates (subject, verb, object) in knowledge base

Anomaly
Detection in
Computer
networks

IP-destination

Nikos Sidiropoulos
UMN

NSF, 3/2013

Tamara Kolda, Sandia Labs (tensor toolbox)

Problem Definition

- How to decompose a billion-scale tensor?
- Corresponds to SVD in 2D case

Problem Definition

- How to decompose a billion-scale tensor?
- Corresponds to SVD in 2D case $=$ soft clustering

Problem Definition

- Q1: Dominant concepts/topics?
\square Q2: Find synonyms to a given noun phrase?
- (and how to scale up: |data|>RAM)
(48M) verbs

NELL (Never Ending Language Learner) data Nonzeros $=144 \mathrm{M}$

Experiments

- GigaTensor solves $100 x$ larger problem

Number of nonzero
= I / 50

A1: Concept Discovery

- Concept Discovery in Knowledge Base

NSF, 3/2013
C. Faloutsos (CMU)

53

A1: Concept Discovery

Noun Phrase 1	Noun Phrase 2	Context
Concept 1: "Web Protocol" internet protocol 'np1' 'stream' ' n 2, file software ' n 1' 'marketing' data suite 'np1' 'dating' 'np2'		
Concept 2: credit Credit library	Credit Cards information debt number	$\begin{aligned} & \text { 'np1' 'card' 'np2' } \\ & \text { 'np1' 'report' 'np2' } \\ & \text { 'np1' 'cards' 'np2' } \end{aligned}$
Concept 3: health child home	Health Systen provider providers system	$\begin{aligned} & \text { 'np1' 'care' 'np2' } \\ & \text { 'np' 'insurance' 'np2' } \\ & \text { 'np1' 'service' 'np2' } \end{aligned}$

A2: Synonym Discovery

(Given)
 Noun Phrase

pollutants	dioxin, sulfur dioxide, greenhouse gases, particulates, nitrogen oxide, air pollutants, cholesterol
disabilities	infections, dizziness, injuries, diseases, drowsiness, stiffness, injuries
vodafone	verizon, comcast

Christian history European history, American history, Islamic history, history
disbelief dismay, disgust, astonishment

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Belief propagation
- Tensors
- Spike analysis
- Graph summarization
- Conclusions

Rise and fall patterns in social media

- Meme (\# of mentions in blogs)
- short phrases Sourced from U.S. politics in 2008
"you can put lipstick on a pig"

"yes we can"

C. Faloutsomeeneyrs)

Rise and fall patterns in social media

- Can we find a unifying model, which includes these patterns?
- four classes on YouTube [Crane et al. '08]
- six classes on Meme [Yang et al. '11]

Rise and fall patterns in social media

- Answer: YES!

- We can represent all patterns by single model

In Matsubara+ SIGKDD 2012

Main idea - SpikeM

- 1. Un-informed bloggers (uninformed about rumor)
- 2. External shock at time nb (e.g, breaking news)
- 3. Infection (word-of-mouth)

Time $\mathrm{n}=0$

Time $\mathrm{n}=\mathrm{n}_{\mathrm{b}}$

Time $\mathrm{n}=\mathrm{n}_{\mathrm{b}}+1$

Infectiveness of a blog-post at age n :
$\beta \quad$ - Strength of infection (quality of news)
$f(n)$ - Decay function

Main idea - SpikeM

- 1. Un-informed bloggers (uninformed about rumor)
- 2. External shock at time nb (e.g, breaking news)
- 3. Infection (word-of-mouth)

Time $\mathrm{n}=0$

Time $\mathrm{n}=\mathrm{n}_{\mathrm{b}}$

Time $\mathrm{n}=\mathrm{n}_{\mathrm{b}}+1$

Infectiveness of a blog-post at age n :
$\beta \quad$ - Strength of infection (quality of news)
$f(n)$ - Decay function $\quad f(n)=\beta^{*} n^{-1.5}$

SpikeM - with periodicity

- Full equation of SpikeM

$$
\begin{array}{|c}
\hline \Delta B(n+1)=\frac{p(n+1)}{\text { Periodicity }} \cdot\left[U(n) \cdot \sum_{t=n_{b}}^{n}(\Delta B(t)+S(t)) \cdot f(n+1-t)+\varepsilon\right] \\
\begin{array}{c}
\text { Bloggers change their } \\
\text { activity over time } \\
(\text { e.g., daily, weekly, } \\
\text { yearly) }
\end{array} \\
\text { C. Faloutsos (CMU) }
\end{array}
$$

Details

- Analysis - exponential rise and power-raw fall

Details

- Analysis - exponential rise and power-raw fall

Tail-part forecasts

- SpikeM can capture tail part

"What-if" forecasting

"What-if" forecasting

SpikeM can forecast upcoming spikes
C. Faloutsos (CMU)

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Belief Propagation
- Tensors
- Spike analysis
- Graph understanding (through MDL)
- Conclusions

Summarizing Graphs

Goal:

Main Idea: MDL + 'syllables' :
star, clique, chain, bi-partite core

Koutra, Kang, Vreeken, et al, (subm.)

Summarizing Wiki-controversy

top-8 stars: admins, bots

$\checkmark \uparrow$
top-1 and top-2 bipartite cores: edit wars. Left: warring factions ('Kiev’ vs 'Kyev’) Right: between vandals

Roadmap

- Introduction - Motivation
- Problem\#1: Patterns in graphs

- Problem\#2: Tools
- Conclusions

OVERALL CONCLUSIONS low level:

- Several new patterns (power laws, trianglelaws, etc)
- New tools:
- belief propagation, gigaTensor, etc
- Scalability: PEGASUS / hadoop

OVERALL CONCLUSIONS high level

- BIG DATA: Large datasets reveal patterns/ outliers that are invisible otherwise

References

- Leman Akoglu, Christos Faloutsos: RTG: A Recursive Realistic Graph Generator Using Random Typing. ECML/PKDD (1) 2009: 13-28
- Deepayan Chakrabarti, Christos Faloutsos: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38(1): (2006)

References

- D. Chakrabarti, C. Faloutsos: Graph Mining - Laws, Tools and Case Studies, Morgan Claypool 2012
- http://www.morganclaypool.com/doi/abs/10.2200/ S00449ED1V01Y201209DMK006

\& Morcenscanvool ruulshes

Graph Mining

Laws, Tools, and Case Studies

References

- Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jure Leskovec, Christos Faloutsos: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10(4): (2008)
- Deepayan Chakrabarti, Jure Leskovec, Christos Faloutsos, Samuel Madden, Carlos Guestrin, Michalis Faloutsos: Information Survival Threshold in Sensor and P2P Networks. INFOCOM 2007: 1316-1324

References

- Christos Faloutsos, Tamara G. Kolda, Jimeng Sun: Mining large graphs and streams using matrix and tensor tools. Tutorial, SIGMOD Conference 2007: 1174

References

- T. G. Kolda and J. Sun. Scalable Tensor Decompositions for Multi-aspect Data Mining. In: ICDM 2008, pp. 363-372, December 2008.

References

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005 (Best Research paper award).
- Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos: Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication. PKDD 2005: 133-145

References

- Yasuko Matsubara, Yasushi Sakurai, B. Aditya Prakash, Lei Li, Christos Faloutsos, "Rise and Fall Patterns of Information Diffusion: Model and Implications", KDD'12, pp. 6-14, Beijing, China, August 2012

References

- Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM, Minneapolis, Minnesota, Apr 2007.
- Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos, GraphScope: Parameterfree Mining of Large Time-evolving Graphs ACM SIGKDD Conference, San Jose, CA, August 2007

References

- Jimeng Sun, Dacheng Tao, Christos Faloutsos: Beyond streams and graphs: dynamic tensor analysis. KDD 2006: 374-383

References

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan, Fast Random Walk with Restart and Its Applications, ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos, Center-Piece Subgraphs: Problem Definition and Fast Solutions, KDD 2006, Philadelphia, PA

References

- Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs. KDD 2007: 737-746
- (Best paper award, CIKM'12) Hanghang Tong, B. Aditya Prakash, Tina Eliassi-Rad, Michalis Faloutsos and Christos Faloutsos
Gelling, and Melting, Large Graphs by Edge Manipulation, Maui, Hawaii, USA,

References

- Hanghang Tong, Spiros Papadimitriou, Christos Faloutsos, Philip S. Yu, Tina Eliassi-Rad: Gateway finder in large graphs: problem definitions and fast solutions. Inf. Retr. 15(3-4): 391-411 (2012)

Project info \& 'thanks'

Www.cs.cmu.edu/~pegasus

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Cast

Akoglu, Leman

Beutel, Alex

Chau, Polo

Kang, U

Koutra, Danai

McGlohon, Mary

Papalexakis, Vagelis

Take-home message

Big data reveal insights that would be invisible otherwise (even to experts)

C. Faloutsos (CMU)

