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Mining Security Risks from Massive Datasets

Fang Liu

(ABSTRACT)

Cyber security risk has been a problem ever since the appearance of telecommunication and
electronic computers. In the recent 30 years, researchers have developed various tools to
protect the confidentiality, integrity, and availability of data and programs.

However, new challenges are emerging as the amount of data grows rapidly in the big data
era. On one hand, attacks are becoming stealthier by concealing their behaviors in massive
datasets. One the other hand, it is becoming more and more difficult for existing tools to
handle massive datasets with various data types.

This thesis presents the attempts to address the challenges and solve different security prob-
lems by mining security risks from massive datasets. The attempts are in three aspects:
detecting security risks in the enterprise environment, prioritizing security risks of mobile
apps and measuring the impact of security risks between websites and mobile apps. First, the
thesis presents a framework to detect data leakage in very large content. The framework can
be deployed on cloud for enterprise and preserve the privacy of sensitive data. Second, the
thesis prioritizes the inter-app communication risks in large-scale Android apps by designing
new distributed inter-app communication linking algorithm and performing nearest-neighbor
risk analysis. Third, the thesis measures the impact of deep link hijacking risk, which is one
type of inter-app communication risks, on 1 million websites and 160 thousand mobile apps.
The measurement reveals the failure of Google’s attempts to improve the security of deep
links.
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(GENERAL AUDIENCE ABSTRACT)

Cyber security risk has been a problem ever since the appearance of telecommunication and
electronic computers. In the recent 30 years, researchers have developed various tools to
prevent sensitive data from being accessed by unauthorized users, protect program and data
from being changed by attackers, and make sure program and data to be available whenever
needed.

However, new challenges are emerging as the amount of data grows rapidly in the big data
era. On one hand, attacks are becoming stealthier by concealing their attack behaviors in
massive datasets. On the other hand, it is becoming more and more difficult for existing
tools to handle massive datasets with various data types.

This thesis presents the attempts to address the challenges and solve different security prob-
lems by mining security risks from massive datasets. The attempts are in three aspects:
detecting security risks in the enterprise environment where massive datasets are involved,
prioritizing security risks of mobile apps to make sure the high-risk apps being analyzed
first and measuring the impact of security risks within the communication between websites
and mobile apps. First, the thesis presents a framework to detect sensitive data leakage in
enterprise environment from very large content. The framework can be deployed on cloud
for enterprise and avoid the sensitive data being accessed by the semi-honest cloud at the
same time. Second, the thesis prioritizes the inter-app communication risks in large-scale
Android apps by designing new distributed inter-app communication linking algorithm and
performing nearest-neighbor risk analysis. The algorithm runs on a cluster to speed up the
computation. The analysis leverages each app’s communication context with all the other
apps to prioritize the inter-app communication risks. Third, the thesis measures the impact
of mobile deep link hijacking risk on 1 million websites and 160 thousand mobile apps. Mo-
bile deep link hijacking happens when a user clicks a link, which is supposed to be opened
by one app but being hijacked by another malicious app. Mobile deep link hijacking is one
type of inter-app communication risks between mobile browser and apps. The measurement
reveals the failure of Google’s attempts to improve the security of mobile deep links.
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Chapter 1

Introduction

Cyber security has been a study topic ever since the appearance of telecommunication and
electronic computer. A vulnerability could lead to the compromise of confidentiality (e.g.,
data leak), integrity (e.g., authentication bypass) and availability (e.g., denial of service) of
data or program. Due to the prevalence of vulnerabilities, security risks are everywhere.
For example, ComDroid [53] reported that over 97% of the studied apps are vulnerable to
communication hijacking attacks. One of the direct consequence of the security risks is data
leakage. In the year of 2014 only, over 1 billion data records have been leaked as reported by
SafeNet[32], a data protection company. The leaked records include email addresses, credit
card numbers, etc. A survey conducted by Kaspersky Lab on 4438 companies indicates that
about 83% of the companies experienced data leak incidents [84].

Although various tools have been developed in the recent 30 years to detect and fix the
security risks, new challenges are emerging in the big data era. First, new attacks are
becoming stealthier. They conceal their behaviors in large datasets. It is almost impossible to
detect their malicious behaviors without correlating the data from multiple sources. Second,
the size of datasets for mining security risks are growing rapidly. Existing approaches running
on one single host are not able to process huge datasets. New detection algorithms running
on distributed systems are needed for mining security risks. Third, the exposure of large
datasets poses threats to the confidentiality of private information. The attackers are more
powerful and are able to correlate multiple data sources and compromise the confidentiality
of sensitive data. What is even worse is that enterprises are moving their computation to
cloud, which requires extra privacy-preserving techniques.

This thesis presents the attempts to address the challenges by detecting, prioritizing and
measuring security risks from massive datasets. Specifically, it focuses on the detection of
data leakage in enterprise environments, the prioritization of inter-app communication risks
and the measurement of deep link hijacking impact on mobile apps and the web.

Data Leakage The exposure of sensitive data is a serious threat to the confidentiality of
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2 Chapter 1. Introduction

organizational and personal data. Reports showed that over 800 million sensitive records were
exposed in 2013 through over 2,000 incidents [32]. Reasons include compromised systems,
the loss of devices, or unencrypted data storage or network transmission. While many data
leak incidents are due to malicious attacks, a significant portion of the incidents is caused by
unintentional mistakes of employees or data owners. In this thesis, I focus on the detection
of accidental/unintentional data leaks from very large datasets.

Inter-app Communication Risks Inter-Component Communication (ICC) is a key mechanism
for app-to-app communication in Android, where components of different apps are linked
via messaging objects (or Intents). While ICC contributes significantly to the development
of collaborative applications, it also becomes a predominant security attack surface. In the
context of inter-app communication scenarios, individual apps often suffer from risky vulner-
abilities such as Intent hijacking and spoofing, resulting in leaking sensitive user data [53]. In
addition, ICC allows two or more malicious apps to collude on stealthy attacks that none of
them could accomplish alone [36, 100]. According to a recent report from McAfee Labs [11],
app collusions are increasingly prevalent on mobile platforms. In this thesis, I focus on the
prioritization of the large number of ICC risks and detect the high risk apps.

Deep Link Hijacking Risks With the wide adoption of smartphones, mobile websites and
native apps have become the two primary interfaces to access online content [12, 115]. Users
can easily launch apps from websites with preloaded context, which becomes instrumental to
many key user experiences. The key enabler of web-to-mobile communication is mobile deep
links. Like web URLs, mobile deep links are universal resource identifiers (URI) for content
and functions within apps [131]. The most widely used deep link is scheme URL supported by
both Android [7] and iOS [8] since 2008. Despite the convenience, researchers have identified
serious security vulnerabilities in scheme URLs [42, 53, 138]. The most significant one is
link hijacking, where one app can register another app’s scheme and induce the mobile OS
to open the wrong app. This allows the malicious apps to perform phishing attacks (e.g.,
displaying a fake Facebook login box) or to steal sensitive data carried by the link (e.g.,
PII) [53]. To address the problem, Google has designed App Link and Intent URLs . The
thesis measures whether the new mechanisms are helpful in addressing the problems and
what is the current impact of hijacking on mobile phones and on web.

In the rest of the chapter, I briefly introduce the problems and my contributions in detect
data leakage, prioritize inter-app communication risks and measure security impact of deep
link hijacking.

1.1 Detect Data Leakage in Large Datasets

Several approaches have been proposed to detect data exfiltration [24, 29, 30, 122] either on
a host or the network. The technique proposed by Shu and Yao [122] performs deep packet
inspection to search for exposed outbound traffic that bears high similarity to sensitive data.
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Set intersection is used for the similarity measure. This similarity-based detection is versatile,
capable of analyzing both text and some binary-encoded context (e.g., Word or .pdf files).

However, a naive implementation of the similarity-base approach requires O(nm) complexity,
where n and m are sizes of the two sets A and B, respectively. If A and B are both very large
(as in my data-leak detection scenario), It would not be practical due to memory limitation
and thrashing. Distributing the computation to multiple hosts is nontrivial to implement
from scratch and has not been reported in the literature.

In this thesis, I present a new MapReduce-based system to detect the occurrences of plaintext
sensitive data in storage and transmission. The detection is distributed and parallel, capable
of screening massive amount of content for exposed information.

In addition, I preserve the confidentiality of sensitive data for outsourced detection. In my
privacy-preserving data-leak detection, MapReduce nodes scan content in data storage or
network transmission for leaks without learning what the sensitive data is.

I implement the algorithms using the open source Hadoop framework. The implementation
has very efficient intermediate data representations, which significantly minimizes the disk
and network I/O overhead. I achieved 225 Mbps throughput for the privacy-preserving data
leak detection when processing 74 GB of content.

1.2 Prioritize Inter-communication Risks in Large-scale

Android Apps

To assess the ICC vulnerabilities, various approaches have been proposed to analyze each
individual app [19, 36, 53, 103, 136]. The advantage of analyzing each app separately is that it
can achieve high scalability. However, it may produce overly conservative risk estimations [53,
60, 103]. Manually investigating all the alerts would be a daunting task for security analysts.

Recently, researchers start to co-analyze ICCs of two or more apps simultaneously. This
allows researchers to gain empirical contexts on the actual communications between apps
and produce more relevant alerts [22, 90, 118]. However, existing solutions are largely limited
in scale due to the high complexity of pair-wise components analyses (O(N2)). They were
either applied to a much smaller set of apps or small sets of inter-app links.

In this thesis, I present MR-Droid, a MapReduce-based parallel analytics system for accurate
and scalable ICC risk detection. I empirically evaluate ICC risks based on an app’s inter-
connections with other real-world apps, and detect high-risk pairs.

To construct the communication context of each app, I construct a large-scale ICC graph,
where each node is an app component and the edge represents the corresponding inter-app
ICCs. To gauge the risk level of the ICC pairs (edge weight), I extract various features based
on app flow analyses that indicate vulnerabilities. With the ICC graph, I then rank the risk
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level of a given app by aggregating all its ICC edges connected to other apps.

The system is implemented with a set of new MapReduce [57] algorithms atop the Hadoop
framework. The high-level parallelization from MapReduce allows us to analyze millions of
app pairs within hours using commodity servers. My evaluation of 11,996 apps demonstrates
the scalability of MR-Droid. The entire process took less than 25 hours for an average of
only 0.0012 seconds per app pair. My prioritization result achieves over 90% of true positive
in detecting high risk apps.

1.3 Measure Hijacking Risks of Mobile Deep Links

Scheme URLs are known to be vulnerable to various attacks [42, 53, 138]. The most signifi-
cant one is link hijacking Recently, two new deep link mechanisms were proposed to address
the security risks in scheme URLs: App link and Intent URL. 1) App Link [5, 10] was in-
troduced to Android and iOS in 2015. It no longer allows developers to customize schemes,
but exclusively uses HTTP/HTTPS scheme. To prevent hijacking, App links introduce a
way to verify the app-to-link association. 2) Intent URL [6] is another solution introduced
in 2013, which only works on Android. Intent URL defines how deep links should be called
by websites. Web developer can specify the app’s package name to avoid being hijacked.
While the new mechanisms are secure in theory, little is known about how effective they are
in practice.

In this thesis, I conduct the first empirical measurement on various mobile deep links across
apps and websites. My analysis is based on the deep links extracted from two snapshots
of 160,000+ top Android apps from Google Play (2014 and 2016), and 1 million webpages
from Alexa top domains. I find that the new linking methods (particularly App links)
not only failed to deliver the security benefits as designed, but significantly worsen the
situation. First, App links apply link verification to prevent hijacking. However, only 194
apps (2.2% out of 8,878 apps with App links) can pass the verification due to incorrect (or
no) implementations. Second, I identify a new vulnerability in App link’s preference setting,
which allows a malicious app to intercept arbitrary HTTPS URLs in the browser without
raising any alerts. Third, I identify more hijacking cases on App links than existing scheme
URLs among both apps and websites. Many of them are targeting popular sites such as
online social networks. Finally, Intent URLs have little impact in mitigating hijacking risks
due to a low adoption rate on the web.

1.4 Document Organization

In the rest of the thesis, in Chapter 2, I will discuss the literature and related works. Chapter
3 presents my approach to detect data leakage in enterprise environment. The prioritization
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of inter-app communication risks are presented in Chapter 4. I further extend the thesis
with the measurement of mobile deep links in Chapter 5. Chapter 6 concludes the thesis
and discusses the future directions.



Chapter 2

Review of Literature

This chapter review the literature related to the thesis. In Section 2.1, I discuss the related
works to MapReduce, detecting data leakages and the related techniques. Section 2.2 reviews
previous work on inter-app communication risks and detection& prevention techniques.

2.1 Data Leakage Detection

Existing data leakage detection/prevention techniques Existing commercial prod-
ucts on data leak detection/prevention include GoCloudDLP [68], Symantec DLP [130],
IdentityFinder [78] and GlobalVelocity [66]. However, most of them cannot be outsourced
because they do not have the privacy-preserving feature. GoCloudDLP [68] allows outsourced
detection only on fully honest DLD provider.

Borders et al. [29] presented a network-analysis approach for estimating information leak in
the outbound traffic. The method identifies anomalous and drastic increase in the amount of
information carried by the traffic. The method was not designed to detect small-scale data
leak. In comparison, my technique is based on intersection-based pattern matching analysis.
Thus, my method is more sensitive to small and stealthy leaks. In addition, my analysis can
also be applied to content in data storage (e.g., data center), besides network traffic. Croft
et al. [54] compared two logical copies of network traffic to control the movement of sensitive
data. The work by Papadimitriou et al. [106] aims at finding the agents that leaked the
sensitive data. Shu et al. [123] presented privacy-preserving methods for protecting sensitive
data in a non-MapReduce based detection environment. They further proposed to accelerate
screening transformed data leaks using GPU [124]. Blanton et al.[26] proposed a solution
for fast outsourcing of sequence edit distance and secure path computation, while preserving
the confidentiality of the sequence.

6
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MapReduce for similarity computation MapReduce framework was used to solve
problems in various areas such as data mining [71], data management [87] and security [41,
109, 150]. The security solution proposed by Caruana et al. [41] is designing parallel SVM
algorithms for filtering spam. Zhang et al. [150] proposed to use MapReduce to perform
data anonymization. Provos et al. [109] leveraged MapReduce to parse URLs for web-based
malware. My data leak detection problem is new, which none of the existing MapReduce
solutions addresses. In addition, my detection goal differs from the aforementioned solutions.

MapReduce algorithms for computing document similarity (e.g., [23, 61]) and similarity joins
(e.g., [14, 55, 58, 134]) involve pairwise similarity comparison. Similarity measurements may
be edit distance, cosine distance, etc. Their approaches are not efficient for processing very
large content when performing data leak detection. Most importantly, they don’t preserve
the confidentiality of sensitive data. There exist MapReduce algorithms for computing the
set intersection [25, 134]. They differ from my collection intersection algorithms, which are
explained in Section 4.1.4. My collection intersection algorithm requires new intermediate
data fields and processing for counting and recording duplicates in the intersection.

Privacy-preserving techniques Private string search over encrypted data (e.g., [88, 97,
126]) and privacy preserving record linkage [107, 121] are also different from my problem.
For searching over encrypted data, the scale of the search queries is relatively small when
compared with the content in data leak detection. Most of the privacy preserving record
linkage approaches assume the party who computes the similarity is trustworthy, which is
different from my threat model. Bloom filters used in record linkage approaches [107, 121]
are also not scalable for very large scale content screening, demonstrated in Section 3.5.1.
Most importantly, traditional string matching or key word search only applies when the
size of sensitive data is small or the patterns of all sensitive data are enumerable. It is not
practical for the query string to cover all sensitive data segments for data leak detection.

The problem of DNA mapping [43, 139] techniques for data leak detection is similar to that
of string search. For example, Chen et al. [43] proposed to perform DNA mapping with
the MapReduce cluster. To preserve the privacy of DNA sequences, they used SHA-1 to
hash both the query sequences and the reference genome. MapReduce is used to sort hashed
reference genomes and match the hashed results. The alignment (edit distance) is calculated
locally afterwards. However, the edit distance and hash function in their approach incur high
computation overhead especially on the local cluster, which makes it not suitable for large-
scale content screening that comes with large volume of queries. My approach is specialized
for data leak detection, making it different in several aspects:

• I use collection intersection instead of edit distance to measure the similarity. Collection
intersection is more efficient and suitable for large-scale data leak detection.

• I perform similarity calculation on the MapReduce cluster instead of the local nodes,
which is preferred because data owner’s computation capacity is limited.
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• I use rolling hash (Rabin fingerprint) instead of the traditional hash function (SHA-1).
Rabin fingerprint helps reduce data owner’s overhead especially when hashing large-
scale n-grams.

Shingle and Rabin fingerprint [110] was previously used for collaborative spam filtering [89],
worm containment [38], etc. There are also general purpose privacy-preserving techniques
such as secure multi-party computation (SMC) [142]. SMC is a cryptographic mechanism
that supports various functions such as private join operations [40], private information
retrieval [143] and genomic computation [81]. However, the provable privacy guarantees
provided by SMC also comes with high computational complexity in terms of large content
screening.

Improvements over MapReduce Several techniques have been proposed to improve the
integrity or privacy protection of MapReduce framework. Such solutions typically assume
that the cloud provider is trustworthy. Roy et al. [116] integrated mandatory access control
with differential privacy in order to manage the use of sensitive data in MapReduce com-
putations. Yoon and Squicciarini [144] detected malicious or cheating MapReduce nodes by
correlating different nodes’ system and Hadoop logs. Squicciarini et al. [127] presented tech-
niques that prevent information leakage from the indexes of data in the cloud. In comparison,
my work has a different security model. I assume that MapReduce algorithms are developed
by trustworthy entities, yet the MapReduce provider may attempt to gain knowledge of the
sensitive information.

Blass et al. [27] proposed a protocol for counting the frequency of Boolean formula expressed
patterns with MapReduce. The protocol helps preserve the privacy of outsourced data
records on the cloud. The privacy-preserving user matching protocol presented by Almishari
et al. [17] provides a method for two parties to compare their review datasets. Asghar et
al. [20] proposed to enforce role-based access control policies to preserve the privacy of data
in outsourced environments. Hybrid cloud (e.g., [145]) is another general approach that
secures computation with mixed sensitive data. Different from SMC, the MapReduce sys-
tem in hybrid cloud is installed across public cloud and private cloud. It may require much
more computation capacity for data owner when compared with my specific architecture. As
enterprises are moving their services to the cloud, advanced techniques were also proposed
to enhance the quality of service experience of data-intensive applications [45, 46, 47, 49]
and reduce the cost for both cloud service providers and tenants [48, 50]. Some other ap-
proaches were also proposed to exploit the parallelism within computing nodes by using
compiler-assisted methods [72], utilizing underlying resources efficiently [73, 75] and lever-
aging GPUs [74, 76, 77].
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2.2 Mobile Inter-app Communication

Inter-app Attacks Researchers have discovered various vulnerabilities in the inter-app
communication mechanism in Android [53] and iOS [135], which leads to potential hijacking
and spoofing attacks. Chin et al. [53] analyzed the inter-app vulnerabilities in Android.
They pointed out that the message passing system involves various inter-app attacks in-
cluding broadcast theft, activity hijacking, etc. Davi et al. [56] conducted a permission
escalation attack by invoking higher-privileged apps, which do not sufficiently protect their
interfaces, from a non-privileged app. Ren et al. [113] demonstrated intent hijacking can
lead to UI spoofing, denial-of-service and user monitoring attacks. Soundcomber [120] is a
malicious app that transmits sensitive data to the Internet through an overt/covert channel
to a second app. Android browsers also become the target of inter-app attacks via intent
scheme URLs [132] and Cross-Application Scripting [69]. Inter-app attacks have become a
serious security problem on smartphones. The fundamental issue is a lack of source and des-
tination authentication [135]. Mobile deep links (e.g., scheme URL) inherent some of these
vulnerabilities when facilitating communications between websites and apps. My work on
measuring deep links is complementary to existing work since I focus on large-scale empirical
measurements, providing new understandings to how existing risks are mitigated in practice.

Mobile Browser Security. In web-to-app communications, mobile browsers play an im-
portant role in bridging websites and apps, which can also be the target of attacks. For exam-
ple, malicious websites may attack the browser using XSS [69, 132] and origin-crossing [135].
The threat also applies to customized in-app browsers (called WebView) [51, 98, 102, 133].
In my work, I focus hijacking threats to apps, a different threat model where browser is the
not target.

Defense and Detecting Techniques A significant amount of solutions have been pro-
posed to perform single-app analysis and detect ICC vulnerabilities. DroidSafe [67] and
AppIntent [141] analyzes sensitive data flow within an app and detects whether the sensi-
tive information that flows out of the phone is user intended or not. ComDroid [52] and
Epicc [103] identify Intents specifications on Android apps and detect ICC vulnerabilities.
CHEX [96] discovers entry points and detects hijacking-enabling data flows in the app for
component hijacking (Intent spoofing). Mutchler et al. [102] studied the security of mo-
bile web apps. In particular, they detected inter-app URLs leakage in the mobile web
apps. Zhang and Yin [149] proposed to automatically patch component hijacking vulner-
abilities. Mulliner et al. [101] presented a scalable approach to apply third-party security
patches against privilege escalation, capability leaks etc. PermissionFlow [118] detects inter-
application permission leaks using taint analysis. On-device policies [37, 83, 111] were also
designed to detect inter-app vulnerabilities and collusion attacks.

Inter-app analysis has also been proposed in the literature. One may combine multiple apps
into one and perform single-app analysis on the combined one [90, 91]. These approaches
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include flow-analysis and gain more detailed flow information from it. However, they do
not scale and would be extremely expensive if applied to a large set of apps. In addition,
in straightforward implementations, expensive program analysis is performed repetitively,
which is redundant. In comparison, I perform data-flow analysis of an app only once, inde-
pendent of how many its neighbors are.

COVERT [22] performs static analysis on multiple apps for detecting permission leakage. It
extracts a model from each app. A formal analyzer is used to verify the safety of a given
combination of apps. FUSE [112] statistically analyzes the binary of each individual app
and merges the results to generate a multi-app information flow graph. The graph can be
used for security analysis. Klieber et al. [85] performed static taint analysis on a set of apps
with FlowDroid [19] and Epicc [103]. Jing et al. [82] proposed intent space analysis and
a policy checking framework to identify the links among a small scale apps. The existing
approaches mostly focus on the precision and analysis of in-depth flow information between
apps. However, they are not designed to analyze large-scale apps. It is unclear how well
they scale with real world apps. In addition, some solutions (such as Epicc and IC3) are for
identifying ICCs, but do not have in-depth security classification as my work.

PRIMO [105] reported ICC analysis of a large pool of apps. Its analysis is on the likelihood
of communications between two apps, not specifically on security. It does not provide any
security classification. Nevertheless, PRIMO could potentially be used by us as a pre-
processing step.

For related dynamic analysis, IntentFuzzer [140] detects capability leaks by dynamically
sending Intents to the exposed interfaces. INTENTDROID [70] performs dynamic testing
on Android apps and detects the vulnerabilities caused by unsafe handling of incoming ICC
message. SCanDroid [65] checks whether the data flows through the apps are consistent
with the security specifications from manifests. TaintDroid [62] tracks information flows
with dynamic analysis and performs real-time privacy monitoring on Android. Similarly,
FindDroid [151] associates each permission request with its application context thus pro-
tecting sensitive resources from unauthorized use. XManDroid [35] was proposed to prevent
privilege escalation attacks and collusion attacks by analyzing the communications among
apps and ensuring that the communications comply to a desired system policy. Network-
based approach was also proposed for Android malware [146, 147, 148]. These dynamic
analyses complement my static-analysis solution. However, their feasibility under a large
number of app pairs is limited.

Generic Flow Analysis FlowDroid [19] is a popular static taint analysis tool for Android
apps. The user can define the sources and sinks within one app and discover whether there
are connections from the sources to the sinks. Amandroid [136] tracks the inter-component
data and control flow of an app. The analysis can be leveraged to perform various types
of security analysis. IC3 [104] focuses on inter-component communications and inferring
ICC specifications. My work leverages IC3 [104] to extract the specifications of Intents.
Although it is the most time-consuming step in my prototype, it is much more memory and
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computation efficient than other static analysis tools. In addition, my approach scales well
and has the potentials for market-scale security analysis.



Chapter 3

Detect Data Leakage

In this chapter, I propose to leverage MapReduce to perform data-leak detection [44, 93,
125]. MapReduce [57] is a programming model for distributed data-intensive applications. I
present a new MapReduce-based system to detect the occurrences of plaintext sensitive data
in storage and transmission. The detection is distributed and parallel, capable of screening
the massive amount of content for exposed information.

Several existing approaches have been proposed to detect data exfiltration. The work by
Papadimitriou and Garcia-Molina [106] aims to find the agents that leaked the sensitive data
from unauthorized storage. The analysis proposed by Boarders et al. [29] detects changes
in network traffic patterns by searching for the unjustifiable increase in HTTP traffic flow
volume, that indicates data exfiltration. The technique proposed by Shu et al. [123] performs
deep packet inspection to search for exposed outbound traffic that bears high similarity
to sensitive data. Set intersection is used for the similarity measure. The intersection is
computed between the set of n-grams from the content and the set of n-grams from the
sensitive data. Other detection methods include enforcing strict data-access policies on a
host (e.g., storage capsule [30]), watermarking sensitive data sets and tracking data flow
anomalies (e.g., DBMS-layer [24]).

This similarity-based detection is versatile, capable of analyzing both text and some binary-
encoded context (e.g., Word or .pdf files). A naive implementation requires O(nm) complex-
ity, where n and m are sizes of the two sets A and B, respectively. If the sets are relatively
small, then a faster implementation is to use a hashtable or Bloom filter [28] to store set A
and then testing whether items in B exist in the hashtable or not, giving O(n+m) complex-
ity. However, if A and B are both very large (as in my data-leak detection scenario), a naive
hashtable may have hash collisions and slow down the computation. Although Bloom filter is
more efficient in hash area and access time when compared with the naive hashtable, it is still
not capable of processing very large data sets. Increasing the size of the hashtable may not

12
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be practical due to memory limitation and thrashing.1 One may attempt to distribute the
dataset into multiple hashtables across several machines and coordinate the nodes to com-
pute set intersections for leak scanning. However, such a system is nontrivial to implement
from scratch and has not been reported in the literature.

I design and implement new MapReduce algoirithm computing the similarity between sensi-
tive data and large public content. The advantage of my data leak solution is its scalability.
Because of the intrinsic 〈key, value〉 organization of items in MapReduce, the worst-case
complexity of my algorithms is correlated with the size of the leak (specifically a γ ∈ [0, 1]
factor denoting the size of the intersection between the content set and the sensitive data
set). This complexity reduction brought by the γ factor is significant because the value is
extremely low for normal content without leak. In my algorithm, items not in the intersec-
tion (non-sensitive content) are quickly dropped without further processing. Therefore, the
MapReduce-based algorithms have a lower computational complexity when compared to the
traditional set-intersection implementation. I experimentally verified the runtime deduction
brought by γ in Section 3.5.4.

MapReduce can be deployed on nodes in the cloud (e.g., Amazon EC2) or in local computer
clusters. It has been used to solve security problems such as spam filtering [41, 150], and
malware detection [109]. However, the privacy of sensitive data is becoming an important
issue that applications need to address when using MapReduce, especially when the sensi-
tive data is outsourced to a third party or an untrusted cluster for analysis. The reason
is that the MapReduce nodes may be compromised or owned by semi-honest adversaries,
who may attempt to gain knowledge of the sensitive data. For example, Ristenpart et
al. [114] demonstrated the possibility of exploring information leakage across VMs through
side-channel attacks in third-party compute clouds (e.g., Amazon EC2).

Although private multi-party data matching and data retrieval methods [39, 43, 64] or more
general purpose secure multi-party computation (SMC) framework exists [142], the high
computational overhead is a concern for time-sensitive security applications such as data
leak detection. For example, Chen et al. [43] proposed to perform DNA mapping using
MapReduce while preserving the privacy of query sequences. However, the edit distance and
hash function in their approach incur high computational overhead especially on the local
cluster. My collection intersection based detection requires new MapReduce algorithms and
privacy design, which their edit distance based approach does not apply.

I address the important data privacy requirement. In my privacy-preserving data-leak de-
tection, MapReduce nodes scan content in data storage or transmission for leaks without
learning what the sensitive data is.

Specifically, the data privacy protection is realized with a fast one-way transformation. This
transformation requires the pre- and post-processing by the data owner for hiding and pre-
cisely identifying the matched items, respectively. Both the sensitive data and the content

1I experimentally validated this on a single host. The results are shown in Table 3.3 in Section 3.5.1.
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need to be transformed and protected by the data owner, before it is given to the MapReduce
nodes for the detection. In the meantime, such a transformation has to support the equality
comparison required by the set intersection.

To summarize, my contributions in detecting data leakage are as follows.

• I present new MapReduce parallel algorithms for distributedly computing the sensi-
tivity of content based on its similarity with sensitive data patterns. The similarity
is based on collection intersection (a variant of set intersection that also counts dupli-
cates). The MapReduce-based collection intersection algorithms are useful beyond the
specific data leak detection problem.

• My detection provides the privacy enhancement to preserve the confidentiality of sen-
sitive data during the outsourced detection. Because of this privacy enhancement,
my MapReduce algorithms can be deployed in distributed environments where the
operating nodes are owned by semi-honest service providers or untrusted clusters. Ap-
plications of my work include data leak detection in the cloud and outsourced data
leak detection.

• I implement my algorithms using the open-source Hadoop framework. My prototype
outputs the degree of sensitivity of the content, and pinpoints the occurrences of po-
tential leaks in the content. I validate that my method achieves high detection rate
and very low false positive rate for both plain text leaks and binary leaks.

• The pre-processing process can be handled without significant overhead. My imple-
mentation also has very efficient intermediate data representations, which significantly
minimizes the disk and network I/O overhead. I performed two sets of experimental
evaluations, one on Amazon EC2, and one on a local computer cluster, using large-
scale email data. I achieved 225 Mbps throughput for the privacy-preserving data leak
detection when processing 74 GB of content2.

The significance of the work is the demonstration of the possibility of outsourced data leak
detection. My architecture provides a complete solution of large-scale content screening
for sensitive data leaks. The privacy guarantees, detection performance and the detection
accuracy of my solution ensure its robustness for data leak detection in the enterprise envi-
ronment.

3.1 Threat Model, Security and Computation goals

There are two types of input sequences in my data-leak detection model: content sequences
and sensitive data sequences.

274 GB content will be transformed into 74*8 GB intermediate data as input for my MapReduce system.
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• Content is the data to be inspected for any occurrences of sensitive data patterns. The
content can be extracted from file system or network traffic. The detection needs to
partition the original content stream into content segments.

• Sensitive data contains the sensitive information that cannot be exposed to unautho-
rized parties, e.g., customers’ records, proprietary documents. Sensitive data can also
be partitioned to smaller sensitive data sequences.

3.1.1 Threat Model and Security Goal

In my model, two parties participate in the large-scale data leak detection system: data
owner and data-leak detection (DLD) provider.

• Data owner owns the sensitive data and wants to know whether the sensitive data is
leaked. It has the full access to both the content and the sensitive data. However, it
only has limited computation and storage capability and needs to authorize the DLD
provider to help inspect the content for the inadvertent data leak.

• DLD provider provides detection service and has much larger computation and storage
power when compared with the data owner. However, the DLD provider is honest-but-
curious (aka semi-honest). That is, it follows the prescribed protocol but may attempt
to gain knowledge of sensitive data. The DLD provider is not given the access to the
plaintext content. It can perform the dictionary attack on the digests of sensitive data
records. Typical DLD providers include the untrusted local cluster, the public cloud
(e.g., Amazon EC2) and the organizations that provide detection services.

My goal is to offer DLD provider solutions to scan massive content for sensitive data exposure
and minimize the possibility that the DLD provider learns about the sensitive information.

• Scalability: the ability to process content at a variety of scales, e.g., megabytes to
terabytes, enabling the DLD provider to offer on-demand content inspection.

• Privacy: the ability to keep the sensitive data confidential, not disclosed to the DLD
provider or any attacker breaking into the detection system.

• Accuracy: the ability to identify all leaks and only real leaks in the content, which
implies low false negative/positive rates for the detection.

My framework is not designed to detect intentional data exfiltration, during which the at-
tacker may encrypt or transform the sensitive data.



16 Chapter 3. Detect Data Leakage

3.1.2 Computation Goal

My detection is based on computing the similarity between content segments and sensitive
data sequences, specifically the intersection of two collections of n-grams. One collection
consists of n-grams obtained from the content segment and the other collection consists of
n-grams from the sensitive sequence. n-grams captures local features of a sequence and
have also been used in other sequence similarity methods (e.g., web search duplication [34]).
Following the terminology proposed by Broader [34], n-gram is also referred to as shingle.

Collection intersection differs from set intersection, in that it also records duplicated items
in the intersection, which is illustrated in Fig. 3.1. Recording the frequencies of intersected
items achieves more fine-grained detection. Thus, collection intersection is preferred for data
leak analysis than set intersection.

I: abcdabcdabcda

II: bcdadcdabcda
I: {abc, bcd, cda, dab, abc bcd, cda, dab, abc, bcd, cda}
II: {bcd, cda, dad, adc, dcd, cda, dab, abc, bcd, cda}

Collection intersection: {abc, dab, bcd, bcd, cda, cda, cda}Set intersection: {abc, dab, bcd, cda}

Strings: N-gram collections:

Set intersection rate: 4/10=0.4

Collection size:

11
10

Collection intersection rate: 7/10=0.7

Figure 3.1: An example illustrating the difference between set intersection and collection
intersection in handling duplicates for 3-grams.

Notation used in my algorithms is shown in Table 3.1, including collection identifier CID,
size CSize (in terms of the number of items), occurrence frequency Snum of an item in
one collection, occurrence frequency Inum of an item in an intersection, and intersection
rate Irate of a content collection with respect to some sensitive data. Formally, given a
content collection Cc and a sensitive data collection Cs, my algorithms aim to compute the
intersection rate Irate ∈ [0, 1] defined in Equation 3.1, where Inum is the occurrence frequency
of an item i in the intersection Cs ∩ Cc (defined in Table 3.1). The sum of frequencies of
all items appeared in the collection intersection is normalized by the size of the sensitive
data collection or the size of content data collection, whichever is smaller. That yields the
intersection rate Irate. The rate represents the percentage of sensitive data that appears in
the content. Irate is also referred to as the sensitivity score of a content collection.

Irate =

∑
i∈{Cs∩ Cc}

Inum
i

min(|Cs|, |Cc|)
(3.1)
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Table 3.1: Notations used in my MapReduce algorithms.

Syntax Definition

CID An identifier of a collection (content or sensitive data)

CSize Size of a collection

Snum Occurrence frequency of an item

Inum Occurrence frequency of an item in an intersection

CSid A pair of CIDs 〈CID1, CID2〉, where CID1 is for a content
collection and CID2 is for a sensitive data collection

Irate Intersection rate between a content collection and a
sensitive data collection as defined in Equation 3.1. Also

referred to as the sensitivity score of the content

ISN A 3-item tuple of a collection 〈identifier CID, size CSize,
and the number of items in the collection〉

CSS An identifier for a collection intersection, consisting of an
ID pair CSid of two collections and the size of the sensitive

data collection CSize

3.1.3 Confidentiality of Sensitive Data

Naive collection-intersection solutions performing on shingles provide no protection for the
sensitive data. The reason is that MapReduce nodes can easily reconstruct sensitive data
from the shingles. My detection utilizes several methods for the data owner to transform
shingles before they are released to the MapReduce nodes. These transformations, including
specialized hash function, provide strong-yet-efficient confidentiality protection for the sensi-
tive information. In exchange for these privacy guarantees, the data owner needs to perform
additional data pre- and post-processing operations.

In addition to protecting the confidentiality of sensitive data, the pre-processing operations
also need to satisfy the following requirements:

• Equality-preserving: the transformation operation should be deterministic so that two
identical shingles within one session are always mapped to the same item for compar-
ison.

• One-wayness: the function should be easy to compute given any shingle and hard to
invert given the output of a sensitive shingle.

• Efficiency: the operation should be efficient and reliable so that the data owner is able
to process very large content.

My collection intersection (in Section 3.3) is computed on one-way hash values of n-grams,
specifically Rabin fingerprints. Rabin fingerprint is a fast one-way hash function, which is
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computationally expensive to invert. In addition, Rabin fingerprint is a rolling hash function.
It can be computed in linear time [33] when hashing n-grams, much faster than traditional
hash functions.

Specifically, Rabin fingerprint of a n-bit shingle is based on the coefficients of the remainder
of the polynomial modular operation with an irreducible polynomial p(x) as the modulo as
shown in Equation 3.2, where cn−i+1 is the i-th bit in the shingle C.

(3.2)f(C) = c1x
n−1 + c2x

n−2 + ...+ cn−1x+ cn mod p(x)

Rabin fingerprint is efficient in hashing n-grams because the fingerprint of a shingle can
be derived from the fingerprint of its preceding shingle. Suppose the current shingle I am
hashing is Cj = [c1, c2, . . . , cn]. Its preceding shingle is Cj−1 = [c0, c1, . . . , cn−1]. How the
fingerprint of Cj is computed is shown in Equation 3.3.

(3.3)f(Cj) = f(Cj−1)x− c0x
n + cn mod p(x)

The computation can also be implemented with fast XOR, shift and table lookup operations.
This makes Rabin fingerprints the perfect choice for hashing very large n-gram data set.

Section 3.4 presents the security analysis of my approach especially on the confidentiality of
sensitive data.

3.2 Technical Requirements and Design Overview

In this section, I introduce MapReduce and the specific challenges when performing data
leak detection with MapReduce. I further present the workflow of my detection framework
and the overview of my collection intersection algorithm.

3.2.1 MapReduce

MapReduce is a programming model for processing large-scale data sets on clusters. With
an associated implementation (e.g., Hadoop), MapReduce frees programmers from handling
program’s execution across a set of machines. It takes care of tasks scheduling, machine
failures and inter-machine communications. A MapReduce algorithm has two phases: map
that supports the distribution and partition of inputs to nodes, and reduce that groups and
integrates the nodes’ outputs. MapReduce data needs to be in the format of 〈key, value〉
pair, where key serves as an index and the value represents the properties corresponding to
the key/data item. A programmer usually only needs to specify the map and reduce function
to process the 〈key, value〉 pairs. Fig. 3.2 illustrates the process of a MapReduce program
execution.
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Figure 3.2: Overview of MapReduce execution process. Map takes each 〈key, value〉 pair as
input and generates new 〈key, value〉 pairs. The output 〈key, value〉 pairs are redistributed
according to the keys. Each reduce processes the list of values with the same key and writes
results back to DFS.

The input data in distributed file system is split and pre-processed by RecordReader.
The output of RecordReader is a set of 〈key, value〉 pairs, which are sent to map. Each
programmer specified map processes a 〈key, value〉 pair and generates a list of new 〈key,
value〉 pairs. In Fig. 3.2, the first map generated three 〈key, value〉 pairs. The output 〈key,
value〉 pairs are redistributed with the keys as indexes. All the pairs with key K1 in Fig. 3.2
is processed by the first reduce. Reduce analyzes the group of values with the same key and
writes the result back to distributed file system.

A significant of real world problems are able to be expressed by this model. A complex
problem may require several rounds of map and reduce operations, requiring redefining and
redistributing 〈key, value〉 pairs between rounds. New large-scale processing models are
also proposed. For example, Google’s Percolator [108] focuses on incrementally processing
updates to a large data set. Muppet [86] provides a MapReduce-style model for streaming
data. My collection intersection problem cannot be represented by the Percolator model.
Although Muppet is able to perform collection intersection with streaming content, I do not
use it due to its memory-heavy feature.

3.2.2 MapReduce-Based Design and Challenges

There exist several MapReduce-specific challenges when realizing collection-intersection based
data leak detection.
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1. Complex data fields Collection intersection with duplicates is more complex than
set intersection. This requires the design of complex data fields for 〈key, value〉 pairs
and a series of map and reduce operations.

2. Memory and I/O efficiency The use of multiple data fields (e.g., collection size and
ID, shingle frequency) in 〈key, value〉 pairs may cause frequent garbage collection and
heavy network and disk I/O.

3. Optimal segmentation of data streams While larger segment size allows the full
utilization of CPU, it may cause insufficient memory problem and reduced detection
sensitivity.

My data-leak detection algorithms in MapReduce addresses these technical challenges in
MapReduce framework and achieves the security and privacy goals. I design structured-yet-
compact representations for data fields of intermediate values, which significantly improves
the efficiency of my algorithms. My prototype also realizes an additional post-processing
partitioning and analysis, which allows one to pinpoint the leak occurrences in large content
segments. I experimentally evaluate the impact of segment sizes on the detection throughput
and identify the optimal segment size for performance.

3.2.3 Workload Distribution

The details of how the workload is distributed between data owner and DLD provider is as
follows and shown in Fig. 3.3:

1. Data owner has m sensitive sequences {S1, S2, · · · , Sm} with a average size of S ′ and
n content segments {C1, C2, · · · , Cn} with a average size of C ′. It obtains shingles
from the content and sensitive data respectively. Then it chooses the parameters
(n, p(x), K, L), where n is the length of a shingle, p(x) is the irreducible polynomial
and L is the fingerprint length. The data owner computes Rabin fingerprints using
Equation 3.2 and releases the sensitive collections {CS1, CS2, · · · , CSm} and content
fingerprint collections {CC1, CC2, · · · , CCn} to the DLD provider.

2. DLD provider receives both the sensitive fingerprint collections and content fingerprint
collections. It deploys MapRecuce framework and compares the n content collections
with the m sensitive collections using my two-phase MapReduce algorithms. By com-
puting the intersection rate of each content and sensitive collections pair, it outputs
whether the sensitive data was leaked and reports all the data leak alerts to the data
owner.

3. Data owner receives the data leak alerts with a set of tuples {(CCi, CSj), (CCk, CSl), · · ·}.
The data owner maps them to suspicious content segments and the plain sensitive
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sequences tuples {(Ci, Sj), (Ck, Sl), · · ·}. The data owner consults plaintext content
to confirm that true leaks (as opposed to accidental matches) occur in these content
segments and further pinpoints the leak occurrences.

Pre-processing: 
Rabin fingerprints generation

Detection: 
MapReduce-based set intersection and 
suspicous content segements selection

Post-processing:
identify true data leaks with plaintext 

Data Owner DLD Provider

1

3

2

Figure 3.3: Workload distribution of DLD provider and data owner.

3.2.4 Detection Workflow

To compute the intersection rate of two fingerprint collections Irate, I design two MapReduce
algorithms, Divider and Reassembler, each of which has a map and a reduce operation.
Map and reduce operations are connected through a redistribution process. During the
redistribution, outputs from map (in the form of 〈key, value〉 pairs) are sent to reducer
nodes, as the inputs to the reduce algorithm. The key value of a record decides to which
reducer node the record is forwarded. Records with the same key are sent to the same
reducer.

1. Divider takes the following as inputs: fingerprints of both content and sensitive data,
and the information about the collections containing these fingerprints. Its purpose
is to count the number of a fingerprint’s occurrences in a collection intersection (i.e.,
Inum in Equation 3.1) for all fingerprints in all intersections.

In map operation, it re-organizes the fingerprints to identify all the occurrences of a
fingerprint across multiple content or sensitive data collections. Each map instance
processes one collection. This reorganization traverses the list of fingerprints. Using
the fingerprint as the key, it then emits (i.e., redistributes) the records with the same
key to the same node.

In reduce, for each fingerprint in an intersection the algorithm computes the Inum
value, which is its number of occurrences in the intersection. Each reduce instance
processes one fingerprint. The algorithm outputs the tuple 〈CSS, Inum〉, where CSS
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is the identifier of the intersection (consisting of IDs of the two collections and the size
of the sensitive data collection3). Outputs are written to MapReduce file system.

2. Reassembler takes as inputs 〈CSS, Inum〉 (outputs from Algorithm Divider). The
purpose of this algorithm is to compute the intersection rates (i.e., Irate in Equa-
tion 3.1) of all collection intersections {Cci ∩Csj} between a content collection Cci and
a sensitive data collection Csj .

In map, the inputs are read from the file system and redistributed to reducer nodes ac-
cording to the identifier of an intersection CSS (key). A reducer has as inputs the Inum
values for all the fingerprints appearing in a collection intersection whose identifier is
CSS. At reduce, it computes the intersection rate of CSS based on Equation 3.1.

In the next section, I present my algorithms for realizing the collection intersection work-
flow with one-way Rabin fingerprints. In Section 3.4, I explain why my privacy-preserving
technique is able to protect the sensitive data against semi-honest MapReduce nodes and
discuss the causes of false alarms and the limitations.

3.3 Collection Intersection in MapReduce

I present my collection-intersection algorithm in the MapReduce framework. The algorithm
computes the intersection rate of two collections as defined in Equation 3.1. Each collec-
tion consists of Rabin fingerprints of n-grams generated from a sequence (sensitive data or
content).

RecordReader is a (standard) MapReduce class. I customize it to read initial inputs
into my detection system and transform them into the 〈key, value〉 format required by the
map function. The initial inputs of RecordReader are content fingerprints segments and
sensitive fingerprints sequences. For the Divider algorithm, the RecordReader has two
tasks: i) to read in each map split (e.g., content segment) as a whole and ii) to generate
〈CSize, fingerprint〉 pairs required by the map operation of Divider algorithm.

3.3.1 Divider Algorithm

Divider is the most important and computational intensive algorithm in the system. Pseu-
docode of Divider is given in Algorithm 1. In order to count the number of a fingerprint’s
occurrences in a collection intersection, the map operation in Divider goes through the
input 〈CSize, fingerprint〉 pairs, and reorganizes them to be indexed by fingerprint values.
For each fingerprint in a collection, map records its origin information (e.g., CID, CSize of

3The sensitive data collection is typically much smaller than the content collection.
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Algorithm 1 Divider: To count the number of a fingerprint’s occurrences in a collection
intersection for all fingerprints in all intersections.
Input: Output of RecordReader in a format of 〈CSize, Fingerprint〉 as 〈key, value〉 pair.
Output: 〈CSS, Inum〉 as 〈key, value〉 pair, where CSS contains content collection ID, sensitive
data collection ID and the size of the sensitive data collection. Inum is occurrence frequency of a
fingerprint in the collection intersection.

1: function Divider::Mapper(CSize, Fingerprint)
2: . Record necessary information for the collection.
3: ISN←CID, CSize and Snum
4: Emit〈Fingerprint, ISN〉
5: end function

1: function Divider::Reducer(Fingerprint, ISNlist[c1, . . . , cn])
2: j = 0, k = 0
3: . Divide the list into a sensitive list and a content list
4: for all ci in ISNlist do
5: if ci belongs to sensitive collections then
6: SensList[++j]← ci
7: else
8: ContentList[+ + k]← ci
9: end if

10: end for
11: . Record the fingerprint occurrence in the intersection
12: for all sens in SensList do
13: for all content in ContentList do
14: Size ←sens.CSize
15: Inum ←Min(sens.Snum, content.Snum)
16: CSS← 〈content.CID, sens.CID, Size〉
17: Emit 〈CSS, Inum〉
18: end for
19: end for
20: end function

the collection) and Snum (fingerprint’s frequency of occurrence in the collection). These
values are useful for later intersection-rate computation. The advantage of using the finger-
print as index (key) in the map’s outputs is that it allows the reducer to quickly identify
non-intersected items.

After redistribution, entries having the same fingerprint are sent to the same reducer node
as inputs to the reduce algorithm.

Reduce algorithm is more complex than map. It partitions the occurrences of a fingerprint
into two lists, one list (ContentList) for the occurrences in content collections and the other
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for sensitive data (SensList). It then uses a double for-loop to identify the fingerprints that
appear in intersections. Non-intersected fingerprints are not analyzed, significantly reducing
the computational overhead. This reduction is reflected in the computational complexity
analysis in Table 3.2, specifically the γ ∈ [0, 1] reduction factor representing the size of the
intersection.

The for-loops also compute the occurrence frequency Inum of the fingerprint in an intersec-
tion. The output of the algorithm is the 〈CSS, Inum〉 pairs, indicating that a fingerprint
occurs Inum number of times in a collection intersection whose identifier is CSS.

3.3.2 Reassembler Algorithm

Algorithm 2 Reassembler: To compute the intersection rates Irate of all collection in-
tersections {Cci ∩ Csj} between a content collection Cci and a sensitive data collection Csj .

Input: Output of Divider in a format of 〈CSS, Inum〉 as 〈key, value〉 pairs.
Output: 〈CSid, Irate〉 pairs where CSid represents a pair of a content collection ID and a sensitive
collection ID, while Irate represents the intersection rate between them

1: function Reassembler::Mapper(CSS, Inum)
2: Emit〈CSS,Inum〉
3: end function

1: function Reassembler::Reducer(CSS, Inum[n1, . . . , nn])
2: intersection ← 0
3: . Add up all the elements in Inum[]
4: for all ni in Inum[] do
5: intersection ← intersection + ni
6: end for
7: CSid ← CSS.CSid
8: . Compute intersection rate

9: Irate ← |intersection|
CSS.CSize

10: Emit 〈CSid, Irate〉
11: end function

The purpose of Reassembler is to compute the intersection rates Irate of all collection-
and-sensitive-data intersections. Pseudocode of Reassembler is in Algorithm 2. The map
operation in Reassembler emits (i.e., redistributes) inputs 〈CSS, Inum〉 pairs according to
their key CSS values to different reducers. The reducer can then compute the intersection
rate Irate for the content and sensitive data collection pair. I.e., this redistribution sends all
the intersected items between a content collection Cci and a sensitive data collection Csj to
the same reducer.
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3.3.3 Example of the Algorithms

<CSize, Fingerprint> <Fingerprint, ISN> <Fingerprint, ISN> <CSS, Inum> <CSS,  Inum>

<CSid,  I_rate>

Divider Reassembler
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Figure 3.4: An example illustrating Divider and Reassembler algorithms, with four
MapReduce nodes, two content collections C1 and C2, and two sensitive data collections S1

and S2. M, R, Redi stand for map, reduce, and redistribution, respectively. 〈key, value〉 of
each operation is shown at the top.

Steps of my MapReduce algorithms are illustrated with an example (with four MapReduce
nodes) in Fig. 3.4. The example has two content collections C1 and C2, and two sensitive data
collections S1 and S2. The four data collections are generated by the data owner and sent
to DLD provider. The sizes of the corresponding collections are 3, 4, 3 and 3, respectively.
Each element (e.g., a) in the collections represents a fingerprint. The items below the steps
indicate how the operations compute.

Step 1 Before the algorithms, the customized RecordReader reads the collections and
sends 〈key, value〉 pairs to maps. In node 1, RecordReader parses collection C1 by
generating a 〈key, value〉 whenever it encounters an element. The key is the collection size
3 for C1 and the value is the element it encounters.

• Node1: {a, b, c} ⇒ {〈3, a〉, 〈3, b〉, 〈3, c〉}

• Node2: {a, h, c, h} ⇒ {〈4, a〉, 〈4, h〉, 〈4, c〉, 〈4, h〉}

• Node3: {a, b, d} ⇒ {〈3, a〉, 〈3, b〉, 〈3, d〉}

• Node4: {d, h, h} ⇒ {〈3, d〉, 〈3, h〉, 〈3, h〉}

Step 2 For the element a in node 1, map in Divider outputs the pair 〈a, (C1, 3, 1)〉, indicating
that fingerprint (key) a is from content collection C1 of size 3 and occurs once in C1. The
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outputs are redistributed according the key values. All occurrences of fingerprint a are sent
to node 1, including two occurrences from content collections C1 and C2, one occurrence
from sensitive data collection S1. Similar process applies to all the other fingerprints. Below
shows how a is manipulated in different nodes.

• a in node1: 〈3, a〉 ⇒ 〈a, (C1, 3, 1)〉

• a in node2: 〈4, a〉 ⇒ 〈b, (C2, 4, 1)〉

• a in node3: 〈3, a〉 ⇒ 〈c, (S1, 3, 1)〉

Step 3 Reduce in Divider computes the intersection of content and sensitive collections
for each fingerprint. In node 1, given the list of collections that fingerprint a exists, re-
duce algorithm uses a double for-loop and identifies that a appears in intersection C1 ∩ S1

and intersection C2 ∩ S1. The intersections are set as keys. The occurrence frequencies of
fingerprint a are set as values. In node 1, a appears once in C1 ∩ S1 and once in C2 ∩ S1.

• Node1: 〈a, {(C1, 3, 1), (C2, 4, 1), (S1, 3, 1)}〉 ⇒
{〈(C1, S1, 3), 1〉, 〈(C2, S1, 3), 1〉}

• Node2: 〈b, {(C1, 3, 1), (S1, 3, 1)}〉 ⇒ {〈(C1, S1, 3), 1〉}

• Node3: 〈d, {(C1, 3, 1), (S1, 4, 1), (S2, 3, 1)}} ⇒
{〈(C1, S1, 3), 1〉, 〈(C1, S2, 3), 1〉}

• Node4: 〈c, {(C2, 4, 1)}〉 ⇒ NULL;
〈h, {(C2, 4, 2), (S2, 3, 2)}〉 ⇒ {〈(C2, S2, 3), 2〉}

Step 4 In Reassembler, the outputs of Divider are redistributed. All the pairs with the
same intersection are sent to the same node. In node 1, all the occurrence frequencies of
fingerprints in intersection C1 ∩S1 are collected. The total number of fingerprints shared by
C1 and S1 is 3. The intersection rate is 1.

• Node1: 〈(C1, S1, 3), {1, 1, 1}〉 ⇒ 〈(C1, S1), 3/3〉

• Node2: 〈(C2, S1, 3), {1}〉 ⇒ 〈(C2, S1), 1/3〉

• Node3: 〈(C1, S2, 3), {1}〉 ⇒ 〈(C1, S2), 1/3〉

• Node4: 〈(C2, S2, 3), {2}〉 ⇒ 〈(C2, S2), 2/3〉

With the outputs of all the nodes, I get the intersection rates of all the intersections. The
intersection rates are used to determine which content collections are suspicious.
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3.3.4 Complexity Analysis

The worst-case computational and communicational complexities of various operations of my
algorithm are shown in Table 3.2. I denote the average size of a sensitive data collection by S,
the average size of a content collection by C, the number of sensitive data collections by m, the
number of content collections by n, and the average intersection rate by γ ∈ [0, 1]. Without
loss of generality, I assume that |S|< |C| and |Sm|< |Cn|. I do not include post-processing
in complexity analysis. The total communication complexity O(Cn + Smnγ) covers the
number of records (〈key, value〉 pairs) that all operations output. For a hashtable-based
(non-MapReduce) approach, where each content collection is stored in a hashtable (total n
hashtables of size C each) and each sensitive data item (total Sm items) is compared against
all n hashtables, the computational complexity is O(Cn+ Smn).

Compared with the hashtable-based approach, the γ in my approach brings significant per-
formance improvement, because it is extremely low for normal content without leak. In my
algorithm, items not in the intersection (non-sensitive content) are quickly dropped without
further processing. I experimentally verified the runtime deduction brought by γ in Sec-
tion 3.5.4. In addition, the hashtable-based approach is not scalable of processing very large
sensitive and content data sets.

Table 3.2: Worst-case computation and communication complexity of each phase in my
MapReduce algorithm and that of the conventional hashtable-based approach. I denote the
average size of a sensitive data collection by S, the average size of a content collection by C,
the number of sensitive data collections by m, the number of content collections by n, and
the average intersection rate by γ ∈ [0, 1].

Algorithm Computation Communication

My Pre-processing O(Cn+ Sm) O(Cn+ Sm)

My Divider:Map O(Cn+ Sm) O(Cn+ Sm)

My Divider:Reduce O(Cn+ Smnγ) O(Smnγ)

My Reassembler:Map O(Smnγ) O(Smnγ)

My Reassembler:Reduce O(Smnγ) O(mn)

My Total O(Cn+ Smnγ) O(Cn+ Smnγ)

Hashtable O(Cn+ Smn) N/A

3.4 Security Analysis and Discussion

MapReduce nodes that perform the data-leak detection may be controlled by honest-but-
curious providers (aka semi-honest), who follow the protocol, but may attempt to gain
knowledge of the sensitive information (e.g., by logging the intermediate results and making
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inferences). I analyze the security and privacy guarantees provided by my MapReduce-based
data leak detection system.

3.4.1 Privacy Guarantee

The privacy goal of my system is to prevent the sensitive data from being exposed to DLD
provider or untrusted nodes. Let fs be the Rabin fingerprint of sensitive data shingle s.
Using the algorithms in Section 3.3, a MapReduce node knows fingerprint fs but not shingle
s of the sensitive data. I assume that attackers are not able to infer s in polynomial time
from fs. This assumption is guaranteed by the one-way Rabin fingerprinting function [110].
This indicates that dictionary attack is not able to succeed in polynomial time.

In addition, the data owner chooses a different irreducible polynomial p(x) for each session.
Under this configuration, the same shingle is mapped to different fingerprints in multiple
sessions. The advantage of this design is the increased randomization in the fingerprint
computation, making it more challenging for the DLD provider to correlate values and in-
fer preimage. This randomization also increases the difficulty of dictionary attacks. Other
cryptographic mechanisms, e.g., XORing a secret session key with content and sensitive
data before fingerprinting, achieve similar security improvement. Because the transforma-
tion needs to preserve equality comparison (in Section 3.1.3), the configuration needs to be
consistent within a session.

3.4.2 Collisions

Two types of collisions are involved in my detection framework: fingerprint collisions and
coincidental matches. Fingerprint collisions rarely happen as long as the length of finger-
print is sufficiently long. In my case, 64 bits fingerprints are sufficient long with the collision
probability being less than 10−6, according to the study by Broder [34]. Coincidental match
occurs when some shingles in content happen to match some in sensitive data. These shingle
matches may be due to shorter shingles, large content segment or sensitive data containing
widely used patterns. With proper shingle length and threshold setting, the detection ac-
curacy would not be affected by the coincidental matches. I perform accuracy experiment
in Section 3.5.5, which shows that the intersection rate for normal leak is much higher than
that caused by coincidental matches.

My data leak detection framework is designed to detect accidental data leaks in content,
instead of intentional data exfiltration. In intentional data exfiltration, which cannot be
detected by deep packet inspection, an attacker may encrypt or transform the sensitive
data.
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3.4.3 Discussion

I consider two data leak detection scenarios in my model: leakage in storage and leakage in
transmission.

• Leakage in storage is the case when private data has already been leaked. The or-
ganizations may want to know whether their private data exists in unauthorized file
systems.

• Leakage in transmission is the case when private data is being leaked through the
outbound data transmission. The organizations may want to know whether their
employees are sending sensitive documents to unauthorized parties through the network
(e.g., emails).

One may think of using string matching in network intrusion detection system [92] to detect
data leakage in transmission or keyword search [15] to detect leakage in storage. However,
they only apply when the size of sensitive data is small or the patterns of all sensitive data
are enumerable. It is not practical for the query string to cover all sensitive data segments
for data leak detection.

My architecture also provides privacy guarantee for the organizations who need to perform
data leak detection in untrusted clusters. For example, a government agency may need a
contractor to perform detection. The contractor has a large amount of computing resources
but a lower clearance level. The computation and storage resources that the DLD provider
has are not limited to third party clusters (e.g., Amazon EC2). They could also be local,
belonging to the same organization as the data owner. However, it is highly possible that
the people who have access to the computation resources do not have the privilege to access
sensitive data. My privacy-preserving data leak detection design also applies to this scenario.

Another concern is that the leaked data in content may span across two or more blocks
after content segmentation thus affecting the detection accuracy. Actually, when the leaked
sensitive data is much larger than the size of segment block, at least one block is filled with
sensitive data. My detection algorithm as shown in Equation 3.1 is still able to get high
intersection rate for that block thus being able to detect data leak. For the cases when
small sensitive data spans across two large blocks, I propose to use a sliding window for
segmentation. Suppose the threshold is set to be γ. The window slides 1− γ/2 of the block
size to generate a new one. The two conjunctive blocks overlap γ/2 of the block size. This
guarantees at least one of the block gets detectable intersection rate (the intersection rate
being higher than the threshold γ). According to my experiment in Section 3.5.5, setting γ
to be 0.2 is enough for high detection rate and low false positive rate, thus only incurring
10% of overhead. The data owner can also adjust the size of segment according to the size
of sensitive data.

Stream Processing Hadoop is the most popular implementation of the MapReduce model. I
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discuss my prototype of the architecture in Hadoop for processing offline content in Sec-
tion 3.5. However, the MapReduce-based architecture I provide is not limited to pro-
cessing offline content in storage. The design and algorithms can also be implemented in
Spark [9], which is another large scale data processing tool especially for machine learn-
ing and stream processing. Spark supports transformations of continuous stream data with
functions flatMap() and reduceByKey(), which could be implemented with my algorithms
in Section 3.3. In addition, the DLD provider needs to specify the batch interval for the
best performance. The data owner and the DLD provider also need to coordinate about
the length of subsession so that one batch data would not cross two subsessions. I plan to
discuss more details of stream processing in my future work.

Limitations My data leak detection approach is based on the similarity of two sets with each
element in the sets has its frequency information. Therefore, the system is vulnerable to
frequency analysis if the DLD provider has enough background frequency information of the
n-grams. However, one of the most important requirements for a success frequency analysis
is that the DLD provider has to know the specific type of sensitive data sets. For example,
the n-gram frequencies in emails are very different from that in natural language. According
to my experiments with Enron emails, one of the most frequently used 8-gram is “.com/xt ”,
which is not possible to exist in natural language. Frequency analysis also cannot succeed
if the sensitive data does not have obvious frequency patterns. For example, if the sensitive
data is an Excel file with SSN records in it, the attacker is not able to guess them.

There exist approaches that increase the difficulty of frequency analysis for sensitive data
sets that have obvious frequency patterns. One may try to leverage the existing search
over encrypted data techniques (e.g., [88, 97]), which are independent of my set-intersection
based approach. However, these approaches incur significant communication overhead or
computational overhead. As the consequence, they are suitable for very large scale data leak
detection. A more practical way is to the divide both the sensitive data and content data into
smaller blocks, with same shingles in different block transformed into different fingerprints
with different irreducible polynomial. The frequency patterns are not able to be easily made
use of if the block size is small enough. Existing techniques that can be applied to data leak
detection is not completely secure against frequency analysis [80]. For now, complete secure
privacy-preserving solution for data leak detection is still an open problem.

Another limitation of my approach is the bandwidth requirement of outsourced detection.
Outsourcing large-scale pre-processed content data may require more time than the detection
if the transmission speed is slow. The data owner may need to setup a local cluster or use
other data transfer solutions such as Amazon Snowball [18] to share the workload or speedup
the transmission.
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3.5 Implementation and Evaluation

I implement the algorithms with Java in Hadoop, which is an open-source software imple-
menting MapReduce. I set the length of fingerprint and shingle to 8 bytes (64 bits). This
length was previously reported as optimal for robust similarity test [34], as it is long enough
to preserve some local context and short enough to resist certain transformations. My pro-
totype implements an additional IP-based post-processing analysis and partition focusing
on the suspicious content. It allows the data owner to pinpoint the IPs of hosts where leaks
occur. I output the suspicious content segments and corresponding hosts.

I make several technical measures to reduce disk and network I/O. I use (structured) Se-
quenceFile format as the intermediate data format. I minimize the size of 〈key, value〉 pairs.
E.g., the size of value after map in Divider is 6 bytes on average. I implement Combination
classes that significantly reduce the amount of intermediate results written to the distributed
file systems (DFS). This reduction in size is achieved by aggregating same 〈key, value〉 pairs.
This method reduces the data volume by half. I also enable Hadoop compression, which
gives as high as 20-fold size reduction.

I deploy the algorithms in two different 24-node Hadoop systems, a local cluster and Amazon
Elastic Compute Cloud (EC2). For both environments, I set one node as the master node
and the rest as slave nodes.

• Amazon EC2: 24 nodes, each having a c3.2xlarge instance with 8 CPUs and 15 GB
RAM.

• Local cluster: 24 nodes, each having two quad-core 2.8 GHz Xeon processors and 8 GB
RAM.



32 Chapter 3. Detect Data Leakage

I use the Enron Email Corpus, including both email header and body to perform the per-
formance experiments. The entire dataset is used as content and a small subset of it as the
sensitive data. For the accuracy experiments, I use two kinds of datasets. For plain text
data leak, I use 10 academic research papers as the sensitive data and transformed/non-
transformed Enron emails as content (insert </br> at each new line). For binary (e.g., pdf)
data leak, I use four kinds of binaries (i.e., images, pdfs, zips and Windows Office documents)
as sensitive data and emails that have part of the binaries as attachments as content.

My experiments aim to answer the flowing research questions (RQ).

1. RQ1: Whether one host can perform large-scale data leak detection? (Section 3.5.1)

2. RQ2: How does the size of content segment affect the analysis throughput? (Sec-
tion 3.5.2)

3. RQ3 What are the throughputs of the analysis on Amazon EC2 and the local clusters?
(Section 3.5.3)

4. RQ4: How does the size of sensitive data and intersection rate γ affect the detection
performance? (Section 3.5.4)

5. RQ: What is the detection accuracy of my data leak detection system? (Section 3.5.5
and Section 3.5.6)

Suppose I have n content segments with s of them containing sensitive sequences (s < n).
During the detection, the content segments with intersection rates above the predefined
sensitivity threshold t raise alerts in my detection algorithms. Suppose m content segments
raise the alerts and s′ of them are true leak instances. Then, I define the following metrics:

• detection rate as s′

s
.

• false positive rate as m−s′
n−s .

3.5.1 Performance of A Single Host

To verify that one host alone cannot perform large-scale data leak detection, a single host ver-
sion of the similarity-based detection algorithm was implemented and tested on one machine
containing two quad-core 2.8 GHz Xeon processors and 8 gigabytes of RAM.

I tested the performance with different sizes of content and sensitive data and monitored the
system. The performance is shown in Table 3.3. It has the same detection accuracy with
my MapReduce approach in terms of collision rate.

This single machine-based detection system crashes with large content or sensitive data
because of lacking sufficient memory. Thus, when the content or sensitive data is large,
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Table 3.3: Detection throughputs (Mbps) on a single host with different content sizes and
sensitive data sizes. * indicates that the system crashes before the detection is finished. Note
that, for shingle size to be 8, the size of input for the hashtable is 8 times the size of content.

XXXXXXXXXXXContent
Sensitive

0.9 MB 1.4 MB 1.9 MB

588 MB 22.08 20.81 *

1229 MB 24.21 * *

2355 MB 25.7 * *

4710 MB * * *

a single host is not capable of completing the detection due to memory limitation and
thrashing. Restricting the size of hashtable may cause collisions and incur false positives.
This experiment confirms the importance of my parallel data leak detection framework with
MapReduce.

3.5.2 Optimal Size of Content Segment

Content volume is usually overwhelmingly larger than sensitive data, as new content is
generated continuously in storage and in transmission. Thus, I evaluate the throughput of
different sizes and numbers of content segments in order to find the optimal segment size for
scalability on DLD provider’s side. A content segment with size Ĉ is the original sequence
that is used to generate the n-gram content collection. A sensitive sequence with size Ŝ is
the original sequence that is used to generate the n-gram sensitive collection.

The total size of content analyzed is 37 GB4, which consists of multiple copies of Enron
data. Detection performance under different content segment sizes (from 2 MB to 80 MB)
is measured. I vary the size of sensitive data from 0.5 MB to 2 MB. The results are shown
in Fig. 3.5.

I observe that when Ĉ < 37 MB, the throughput of my analysis increases with the size
Ĉ of content segment. When Ĉ becomes larger than 37 MB, the throughput begins to
decrease. The reason for this decrease is that more computation resources are spent on
garbage collection with larger Ĉ. There are over 16 processes running at one node at the
same time. I assign 400 MB memory for each process to analyze 37x8 MB shingles. One
can adjust the optimal segment size by configuring the size of memory allocated for each
process.

I also evaluate data owner’s overhead of generating fingerprints with the same datasets. I
performed the experiment on a quad-core 3.00 GHz Xeon processor and 8 GB RAM machine

4The content generates 37*8 GB shingles for shingle size to be 8. The 37*8 GB shingles are the input of
the MapReduce system.



34 Chapter 3. Detect Data Leakage

running Ubuntu 14.04.1 . The results are shown in Fig. 3.6. I observe that the CPU time
of generating fingerprints falls off quickly with the content segment size increasing. When
Ĉ > 20 MB, the CPU time is less than 100 seconds, meaning that the throughput is more
than 3000 Mbps. The total time of pre-processing is over 40 minutes due to the speed limit of
I/O. However, pre-processing can be easily parallelized. The time of generating fingerprints is
linearly decreased with multiple machines processing the content at the same time. This fact
indicates that the data owner can handle fingerprint generation process without significant
overhead incurred.

Thus, I set the size of content segments to 37 MB for the rest of the experiments. This
size also allows the full utilization of the Hadoop file system (HDFS) I/O capacity without
causing out-of-memory problems.

3.5.3 Scalability
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For scalability evaluation, I processed 37 GB content with different numbers of nodes, 4,
8, 12, 16, 20, and 24. The experiments were deployed on both on the local cluster and on
Amazon EC2. My results are shown in Fig. 3.7. The system scales well, as the throughput
linearly increases with the number of nodes. The peak throughput observed is 215 Mbps on
the local cluster and 225 Mbps on Amazon EC2. EC2 cluster gives 3% to 11% performance
improvement. This improvement is partly due to the larger memory. The standard error
bars of EC2 nodes are shown in Fig. 3.7 (from three runs). Variances of throughputs on the
local cluster are negligible.

I also evaluate the throughput under a varying number of content segments n, i.e., workload.
The results are shown in Fig. 3.8, where the total size of content analyzed is shown at the
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top X-axis (up to 74 GB). Throughput increases as workload increases as expected.

In the experiments above, the size of sensitive data is small enough to fit in one collection.
Larger size of sensitive data increases the computation overhead, which explains the slight
decrease in throughputs in both Figures 3.5 and 3.8.

I break down the total overhead based on the Divider and Reassembler operations. The
results are shown in Fig. 3.9 with the runtime (Y-axis) in a log scale. Divider algorithm is
much more expensive than Reassembler, accounting for 85% to 98% of the total runtime.
With increasing content workload, Divider’s runtime increases, more significantly than that
of Reassembler.

These observations are expected, as Divider algorithm is more complex. Specifically, both
map and reduce in Divider need to touch all content items. Because of the large content vol-
ume, these operations are expensive. In comparison, Reassembler algorithm only touches
the intersected items, which is substantially smaller for normal content without leaks. These
experimental results are consistent with the complexity analysis in Table 3.2.

3.5.4 Performance Impact of Sensitive Data

I reorganize the performance results in Fig. 3.5 so that the sizes of sensitive data are shown at
the X-axis. The new figure is Fig. 3.10, where each setup (line) processes 37 GB content data
and differs in their sizes for content segments. There are a few observations. First, smaller
content segment size incurs higher computational overhead, e.g., for keeping tracking the
collection information (discussed in Section 3.5.2).

The second observation is that the runtime increases as the size of sensitive data increases,
which is expected. Experiments with the largest content segment (bottom line in Fig. 3.10)
have the smallest increase, i.e., the least affected by the increasing volume of sensitive data.

This difference in intercept is explained next. The total computation complexity is O(Cn+
Smnγ) (Table 3.2). In O(Cn + Smnγ), nγ serves as the coefficient (i.e., intercept), as the
total size Sm of sensitive data increases, where n is the number of content segments. When
37 GB content is broken into small segments, n is large. A larger coefficient magnifies the
increase in sensitive data, resulting in more substantial overhead increase. Therefore, the
line at the bottom of Fig. 3.10 represents the recommended configuration with a large 37
MB content segment size.

I further verify the impact of γ on performance in Fig. 3.11. In this experiment, I manually
change the value of γ by manipulating the percent of sensitive data leaked in content. I
measure the runtime of Divider phase and Reassembler phase on 9 GB content and 9 GB
sensitive data with segment size as 37 MB. Fig. 3.11 shows that the runtimes of both the
two jobs drop linearly when the average intersection rate γ goes small. When γ is almost
0, which means there isn’t any sensitive data leaked in content, the runtime of Reassembler
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is almost 0 second and the runtime of Divider is about 1500 seconds. This observation is
consistent with the fact that Reassembler’s computation complexity is O(Cn+Sm+Smnγ)
and Divider’s computation complexity is O(Smnγ).

3.5.5 Plain Text Leak Detection Accuracy

I simulated two kinds of data leak cases that may possibly happen in the real world: plain
text data leak and binary data leak. In the case of plain text data leak, a careless person
may paste sensitive data on blogs or in emails. I used Enron emails as content and 10
academic papers as sensitive data. I pre-processed the content into four types: content
without containing sensitive data (Cc), content containing sensitive data (Cs), transformed
content without containing sensitive data (Tc) and transformed content containing sensitive
data (Ts). I transformed the content data by inserting </br> at each new line. Detection
rates are computed from Cs and Ts. If alerts are raised by the segments from these two
types of data, the alerts are true positives. The false positive rates are computed from Cc

and Tc. If alerts are are raised by segments from these two types of data, the alerts are false
positives. The results on false positive rates and detection rates are shown in Fig. 3.12.

With sensitivity threshold t ranging from 0.18 to 0.82, the detection rate is 1, with 0 false
positive rates for both the transformed leak and the non-transformed leak. The false positive
rates of transformed data leak and non-transformed data leak are very close (the two lines
mostly overlap). The false positive rate of the transformed data leak is on average 2.55%
lower than that of the non-transformed leak, when the sensitivity threshold is smaller than
0.18. The reason is that transformation reduces the number of coincidental matches. When
the sensitivity threshold ranges from 0.3 to 0.7, the detection rate is 1 and false positive rate
is 0.

3.5.6 Binary Leak Detection Accuracy

In binary data leak, sensitive data is in binary format (e.g., .pdf). The difference between
binary leak and plain text leak is that binary data is usually represented in ASCII string
format when transferred. For example, the binary attachments of an email are encoded with
Base64 scheme. I used four categories of binaries as sensitive data: Images, PDFs, Zips,
Microsoft Office documents. Each has 20 files leaked and other 20 files not leaked. The
emails with the leaked files as attachments are content. I transformed the sensitive datasets
with Base64 encoding scheme and performed the detection with the transformed datasets.
The details of how the experiment is set up are shown in Table 3.4 The results on false
positive rates and detection rates are shown in Fig. 3.13.

With sensitivity threshold ranging from 0.35 to 0.91, the detection rate is 1, with 0 false
positive rates for all the four binaries. The false positive rates of images and compressed
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binaries are both very low when compared with PDFs and Office documents. The reason
is that compression may reduce the repeated patterns that happen to exist in the content.
While images may contain fewer common patterns than documents. Another observation is
that Office documents leak has higher false positive rate than plain text leak. One of the
reasons is that the ratio of output bytes to input bytes of Base64 is 4:3. As the consequence,
the effective shingle length is reduced to 6 bytes from 8 bytes, which makes more coincidental
matches.

To summarize, binary sensitive data needs to be transformed in pre-processing step based
on what content data to detect. In email content, the binaries need to be encoded with
Base64 scheme. I am capable of detecting binary leaks with detection rate to be 1 and false
positive rate to be 0. Base64 encoding increases accidental matches thus increasing false
positive rate. Compression may reduce repeated patterns thus reducing false positive rate.
If a sensitive plain text file is encoded into .pdf or .zip file before being leaked, the sensitive
plain text file also needs to be encoded accordingly before detection.

Summary I summarize my experimental findings below.

1. My MapReduce-based data leak detection algorithms linearly scale with the number of
nodes. I achieved 225 Mbps throughput (2.3 TB/day) on Amazon EC2 cluster and a
similar throughput on the local cluster with only 24 nodes. Divider algorithm accounts
for 85% to 98% of the total runtime.

2. I observed that larger content segment size Ĉ (up to 37 MB) gives higher performance.
This observation is due to the decreased amount of bookkeeping information for keeping
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Table 3.4: Setup of binary leak detection.

Sensitive data type Images PDFs Zips Office

Sensitive file
number

40 jpgs with
20 leaked

40 pdfs with 20
leaked

40 compressed
pdfs with 20

leaked.

24 docs, 8 excels
and 8 ppts. Half of

them are leaked.

Average sensitive
file size

456 KB 845 KB 742 KB 479 KB

Content Gmails
attaching the
leaked images

Gmails attaching
the leaked pdfs

Gmails
attaching the
leaked zips

Gmails attaching
the leaked office files

False positive rates
The percentage of non-leak files whose intersection rates are above the
threshold.

Detection rates
The percentage of leaked files whose intersection rates are below the
threshold.

track of collections, which results in significantly reduced I/O overhead associated with
intermediate results. Data owner can also handle fingerprint generation process without
significant overhead incurred.

When the content segment size Ĉ is large (37 MB), I observed that the increase in
the amount of sensitive data has a relatively small impact on the runtime. Given the
content workload, larger Ĉ means fewer number of content segments, resulting in a
smaller coefficient.

3. I validated that my detection system has high detection accuracy for both transformed
and non-transformed plain text data leaks. By setting the threshold to be a proper
value, my algorithms can detect the leaks with low false alerts.

4. The detection of binary data leaks has different false positive rates from plain text data
leaks due to the binary encoding schemes. My detection system has high detection
accuracy for common binary data leaks with proper threshold setting.

5. Limitations My method is designed for detecting accidental data exposure in content,
but not for intentional data exfiltration, which typically uses strong encryption. De-
tecting malicious data leaks, in particular those by insiders, is still an active research
area. Coincidental matches may generate false positives in my detection, e.g., an in-
sensitive phone number in the content happens to match part of a sensitive credit card
number. A possible mitigation is for the data owner to further inspect the context
surrounding the matching shingles and interpret its semantics. For detecting data leak
in network, the throughput with 24 nodes is able to keep up with the average outbound
traffic of a medium organization (less than 2 TB outbound traffic per day). However,
it is not true for peak load. This problem could be addressed by introducing more
nodes into the cluster.
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Prioritize Inter-app Communication
Risks

In this chapter, I present MR-Droid, a MapReduce-based parallel analytics system for ac-
curate and scalable ICC risk detection [94]. The goal is to empirically evaluate ICC risks
based on an app’s inter-connections with other real-world apps, and detect high-risk pairs.
My intuition is that an ICC is of high-risk not only because it has a proof-of-concept vulner-
ability, but more importantly the app is actually communicating with other apps through
this ICC interface. This intuition is similar to a recent work that prioritizes proof-of-concept
vulnerabilities in CVE [117]. Ideally, all vulnerabilities should be addressed, but my priority
needs to be on those that are causing a real-world impact.

To achieve this goal, I construct a large-scale ICC graph, where each node is an app compo-
nent and the edge represents the corresponding inter-app ICCs. To gauge the risk level of the
ICC pairs (edge weight), I extract various features based on app flow analyses that indicate
vulnerabilities. For instance, I examine whether the ICC pair is used to pass sensitive data,
or escalate permissions for another app. With the ICC graph, I then rank the risk level of a
given app by aggregating all its ICC edges connected to other apps.

My system allows app market administrators to accurately pinpoint market-wise high-risk
apps and prioritize risk migration. Individual app developers can also leverage my results
to assess their own apps. In addition, the ICC graph provides rich contexts on how an app
vulnerability is exploited, and by (or with) which external apps. For the purpose of this work,
I customize my features to capture three major ICC risks: app collusion (malicious apps
working together on stealth attacks), intent hijacking and intent spoofing (vulnerabilities
that allow unauthorized apps to eavesdrop or manipulate inter-app communications).

Several existing work have been proposed to assess the ICC vulnerabilities, ranging from to
inter-app Intent analysis [31, 52, 103] to static data flow tracking [19, 36, 136]. Yet, most
of these approaches focus one individual app at a time, ignoring its feasible communication

39
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context, i.e., how the vulnerable interface can be exploited by other real-world apps. In
addition, single-app analyses produce overly conservative risk estimations, leading to a high
number of (false) alarms [52, 60, 103]. Manually investigating all the alerts would be a
daunting task for security analysts.

Recently, researchers start to co-analyze ICCs of two or more apps simultaneously. This
allows researchers to gain empirical contexts on the actual communications between apps and
produce more relevant alerts, e.g., identifying privacy leak [90] and permission escalations [22,
118]. However, existing solutions are largely limited in scale due to the high complexity of
pair-wise components analyses (O(N2)). They were either applied to a much smaller set of
apps (only a few hundreds, versus a few thousands in single-app analyses), or small sets of
inter-app links. The only system that successfully processed a large number of apps (e.g.,
11K apps) is PRIMO [105]. However, PRIMO is an ICC mapping tool for app pairs, which
does not provide security and risk analysis. Moreover, PRIMO is designed to run on a single
workstation. The large memory consumption makes it challenging for market scale analysis.

My approach is scalable for analyzing large-scale Android apps. To scale up the system,
I implement MR-Droid with a set of new MapReduce [57] algorithms atop the Hadoop
framework. I carefully design the 〈key, value〉 pairs for each MapReduce job and balance
the workload among MapReduce nodes. Instead of performing pair-wise ICC mapping, I
leverage the hash partition functionality of MapReduce and achieve near-linear complexity.
The high-level parallelization from MapReduce allows us to analyze millions of app pairs
within hours using commodity servers.

I evaluate my systems on a large set of 11,996 Android apps collected from 24 major Google
Play categories (13 million ICC pairs). My manual post-analysis confirms the effectiveness
of my approach in reducing false, excessive alerts. For apps labeled as high-risk, I obtain
a 100% true positive rate in detecting collusion, broadcast injection, activity- and service-
launch based intent spoofing, and a 90% true positive rate for activity hijacking and broadcast
theft detection. For app pairs labeled as medium- or low-risk, manual analysis show their
actual risks are substantially lower, indicating the effectiveness of risk prioritization. My
system is also highly scalable. With 15 commodity servers, the entire process took less than
25 hours for an average of only 0.0012 seconds per app pair. More importantly, my runtime
experiment shows the computation time grows near-linearly with respect to the number of
apps.

The empirical analysis also reveals new insights to app collusion and hijacking attacks. I
find previously unknown real-world colluding apps that leak user data (e.g., passwords) and
escalate each other’s permission (e.g., location or network access).

In addition, I find a more stealth way of collusion using implicit intents. Instead of “ex-
plicitly” communicating with each other (easy to detect), the colluding apps using high
customized (rare) actions to mark their implicit intent to achieve the same effect of explicit
intent. This type of collusion cannot be detected by analyzing each app independently.
Finally, I find third-party libraries and the automatically-generated apps have contributed
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greatly to today’s hijacking vulnerabilities.

I have four key contributions in this work.

• I propose an empirical analytics method to identify risks within inter-app commu-
nications (or ICC). By constructing a large ICC graph, I assess an app’s ICC risks
based on its empirical communications with other apps. Using a risk ranking scheme,
I accurately identify high-risk apps.

• I design and implement a highly scalable MapReduce framework for my inter-app
ICC analyses. With carefully designed MapReduce cycles, I avoid full pair-wise ICC
analyses and achieve near-linear complexity.

• I evaluate my system on 11,996 top Android apps under 24 Google Play categories
(13 million ICC pairs). My evaluation confirms the effectiveness of my approach in
reducing false alerts (90%-100% true positive rate) and its high scalability.

• My empirical analysis reveals new types of app collusion and hijacking risks (e.g.,
transferring user’s sensitive information including password1 and leveraging rarely used
implicit intents2). Based on my results, I provide practical recommendations for app
developers to reduce ICC vulnerabilities.

4.1 Models & Methodology

In this section, I describe the threat model and the security insights of large-scale inter-app
ICC risk analysis. Then I introduce the high-level methodology of my approach.

4.1.1 Threat Model

My work focuses on security risks caused by inter-app communications realized through ICCs
, covering three most important classes of inter-app ICC security risks.

• Malware collusion. Through inter-app ICCs, two or more apps may collude to
perform malicious actions [99, 100, 119] that none of the participating apps alone
would be able to. The collusion can be realized either by passing Intents to exported
components or by using the same sharedUserId among the malicious apps. Malware
collusion can result in disguised data leak and system abuse.

1 uda.onsiteplanroom and uda.projectlogging
2org.geometerplus.fbreader.plugin.local opds sanner and

com.vng.android.zingbrowser.labanbo-okreader
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• Intent hijacking. An Intent sent by an app via an implicit ICC may not reach the
intended recipient. Instead, it may be intercepted (hijacked) by an unauthorized app.
This threat scenario, referred to as Intent hijacking, can be categorized into three
subclasses according to the type of the sending component: broadcast theft, activity
hijacking, and service hijacking, as introduced in [52]. Intent hijacking may lead to
data/permission leakage and phishing attack.

• Intent spoofing. By sending Intents to exported components of a vulnerable app,
an attacker can spoof the vulnerable (receiving) app to perform malicious actions,
including those that are to be triggered only by the Android system. Intent spoofing
can be classified into three subclasses by the type of the receiving component: malicious
broadcast injection, malicious activity launch, and malicious service launch [52].

4.1.2 Security Insights of Large-Scale
Inter-app Analysis

In this section, I use an example to illustrate the security differences between single-app
analysis and pairwise app analysis. I explain why large-scale pairwise analysis is useful and
necessary.

Listing 4.1 and 4.2 show parts of two apps, A and B, between which inter-app ICC introduces
risks. A has access to location information and sends it out through an implicit Intent. The
manifest of B defines an Intent filter that restricts the types of Intents to accept. Once A’s
Intent passes through the Intent filter, B then sends the received data out through SMS to
a phone number (phoneNo).

With single-app analysis (e.g., ComDroid [52]), B would be identified as always vulnerable
to Intent spoofing attacks because its SendSMSService component is exported without per-
mission protection (other apps can send SMS through B). Likewise, A would be detected as
always vulnerable too, as other apps could hijack the implicit Intent it sends out and get the
location information. However, single-app analysis does not consider specific communication
contexts. It cannot track the destination of the implicit sensitive Intent i in A, and unable to
identify which communicating peers may hijack i and abuse the sensitive data. The Android
design of ICC makes this type of vulnerabilities prevalent. ComDroid [52] reported that over
97% of the studied apps are vulnerable. However, reporting an app as generically vulnerable
or malicious is overly-conservative, and lead to insufficient precision and excessive alerts.

In practice, the risk becomes real when an app has actual communication contexts with other
specific apps. For example, A’s security risk increases if malicious apps are found being able
to leak A’s location information. More malicious hijacking apps trigger higher security risk
because users have larger possibilities to install A and the malicious apps at the same time.
In addition, A and B also may collude to leak the location information through the implicit
Intent, which existing single-app analyses cannot detect both of the apps.
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Listing 4.1: Code snippet of the app A which creates and sends out external ICC Intent
carrying location info.

public void onClick(View v) {

Intent i = new Intent ();

Location loc = locationManager.getLastKnownLocation ();

i.setAction ("android.Intent.action.SENDTO");

i.setCategory ("android.Intent.category.DEFAULT");

/*Set the intent data field as location */

i.setData(Uri.parse(loc.toString ()));

i.putExtra("PhoneNo.", "*********")

startService(i);

}

Listing 4.2: The manifest and code snippet of the app B which processes received Intents
and sends out intent data.

<service android:name=".SendSMSService" android:enabled="true">

<Intent -filter >

<action android:name="android.Intent.action.SENDTO"/>

<category android:name="android.Intent.category.DEFAULT"/>

</Intent -filter >

</service >

public void onStart(Intent Intent , int startId) {

String pn = Intent.getStringExtra("phoneNo.");

String msg = "Location: " + Intent.getData ();

/*Send intent data out through text message */

smsManager.sendTextMessage(pn, null , msg , null , null);

}
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To these ends, I need to evaluate security risks for a given app by not just checking its own
ICC properties, but also by carefully examining its external communications with its peers in
a neighbor-aware manner. For example, the analysis should be able to track which app may
hijack the Intent i of A and may collude with this app to abuse the location information;
the analysis should give a detailed list of apps (e.g., B) and their corresponding components
(e.g., B.SendSMSService) involved in the attacks.

The need for the large-scale risk analyses arises from the two main limitations in existing
approaches:

• Large Threats to Validity. Results are reported only with respect to small sets
of sampled apps, and thus suffer potentially large threats to validity (biases) in their
findings and/or conclusions.

• Lesser Security Guarantee. There is a potentially higher risk of missing true risk
warnings because of the limited size of communication context considered (e.g., a highly
vulnerable app may be declared safe when only a few external apps are analyzed).

In the rest of this chapter, I demonstrate how such a solution can be realized by a highly-
scalable distributed ICC graph and, a neighbor-aware security analysis. My solution not only
seeks to detect vulnerable apps but also label them with risk levels and rank accordingly.
This provides a big picture for the app market to identify the most vulnerable apps to
prioritize risk mitigation. Users can be aware of the risk of an app even before installing.
The developers can be better guided to fix vulnerabilities when they are aware of the trade-off
between functionality and vulnerability.

ICC links Internal flows Source Sink

Apps ICC graph Apps 

Figure 4.1: Illustration of data flows, inter-app Intent matching, and ICC graph. My MapRe-
duce algorithms compute the complete ICC graph information for a set of apps. internal
ICCs are excluded.
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4.1.3 Computational Goal
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Figure 4.2: The workflow for analyzing Android app pairs with MapReduce. The dashed
vertical lines indicate redistribution processes in MapReduce. E, I, S represent explicit edge,
implicit edge, and sharedUserId edge respectively.

The computational goal is two-fold.

1. Build a complete inter-app ICC graph and identify all communication app pairs for a
set of apps to provide the communication context (i.e., the neighbor set) for each one.

2. Further perform neighbor-aware inter-app security analysis on top of the ICC graph
and rank the apps and app pairs with respect to their risk levels.

The definition for an ICC graph is given in Definition 4.1.

Definition 4.1. Inter-app ICC graph is a directed bipartite graph G = (VS, VD, EVS→VD
),

where each node v ∈ VS∪VD represents the specifications of an entry or exit point of external
ICC of an app, and each edge e ∈ EVS→VD

represents the Intent-based communication
between one app’s ICC exit point vs ∈ VS to another app’s ICC entry point vd ∈ VD. A
node in the set VS in G is referred to as an ICC source or simply source. A node in the set
VD is referred to as an ICC sink or simply sink.

Figure 4.1 illustrates these definitions. In Table 4.1, I list some of the attribute details for
sources and sinks. Sources represent the outbound Intents. Sinks represent Intent filter
and/or public components.

Given apps, the construction of ICC graph requires i) identifying communication nodes (In-
tent, Intent filter, or component) and ii) identifying edges (properties of ICCs). Identifying
edges requires attributes matching and testing between sources and sinks. Both nodes and
edges information should be extracted from apps.
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Table 4.1: Nodes in ICC graph and their attributes. type is either “Activity”, “Service” or
“Broadcast”. pointType is either “Explicit”, “Implicit” or “sharedUserId”.

Node Attributes

Source ID, type, destPackage, destComponent, action, categoryList,

mimeType, uri, extraDataList, Permission, sharedUserId,

pointType
Sink ID, type, componentName, actionList, categoryList,

permission, priority, mimeTypeList, schemeList, hostList,

portList, pathList, pointType

4.1.4 The Workflow

As shown in Figure 4.2, the workflow involves a preprocessing step 1. Identify ICC
Nodes, two MapReduce jobs referred to as 2. Identify ICC Edges, 3. Group ICCs
Per App Pair, and a 4. Risk Analysis operation. Each MapReduce job consists of a
Map and a Reduce algorithm.

1. In Identify ICC Nodes, I extract the attributes of sources and sinks from apps.
Sources are extracted from the attributes in outbound Intents. Sinks are extracted
from the exported components in the manifest or from dynamic receivers created in
the code. (Details are in Section 4.2.1.)

2. Identify ICC Edges is the first MapReduce job which identifies edges between
communicating sources and sinks. The MapReduce job transforms the source and sinks
into 〈key, value〉 pairs, which enable parallel edge finding. (Details are in Section 4.2.2.)

3. Group ICCs Per App Pair is the second MapReduce job which performs the data
test and permission checking, and identifies and groups edges belonging to the same
pair.(Details are in Section 4.2.3.)

4. Risk Analysis utilizes the ICC analysis results from previous phases to compute key
ICC link features, and then uses the features to rank security risks for each app (for
hijacking and spoofing attacks) and app pair (for collusion attacks). (Details are in
Section 4.3.)

4.2 Distributed ICC Mapping

I now present the distributed market-wide ICC mapping algorithms in MR-Droid. The
purpose of the algorithms is to build the ICC graph. My distributed ICC mapping algo-
rithms involve three major operations: Identify ICC Nodes, Identify ICC Edges, and
Group ICCs Per App Pair, where the last two operations are performed in MapReduce
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framework. The entire workflow has many steps and is technically complex. For efficiency,
my prototype integrates the tests (on action, category, data, and permission) with other
edge-related operations in the last two operations. I describe details of each operation next.

4.2.1 Identify ICC Nodes

The purpose of Identify ICC Nodes is to extract all the sources and sinks from all available
apps. I customized the Android ICC analysis tool IC3 [104] for this purpose.

Sink Extraction. I analyze each app’s decoded manifest generated with IC3 [104] and
retrieve the attributes for sinks listed in Table 4.1. I also parse the dynamic receivers of each
app as exported receiver components.3 A public component4 may generate multiple sinks.
The number is determined by the number of the component’s Intent filters, as each Intent
filter is extracted into a sink in ICC graph. A component is extracted into a sink only when
it has no Intent filters.

Source Extraction. The attributes of sources are obtained by propagating values in fields
of outbound Intents. I utilize IC3 [104] to perform program slicing and string analysis. String
analysis may generate multiple possible values for one Intent field, which is due to multiple
paths from where the string value is defined. I track all the possible values, and label them
with the same identifier. Thus, there may be multiple values associated with an attribute of
a source.

4.2.2 Identify ICC Edges and Tests

Identify ICC Edges and Action/Category Tests5 operations are performed together
in MapReduce. The purpose is to identify all matching source and sink pairs, which are
connected with edges in the ICC graph. There are three types of edges: explicit edge,
implicit edge, and sharedUserId edge, which are shown in Table 4.2. The explicit edge and
implicit edge correspond to explicit and implicit intent. The sharedUserId edge corresponds
to the private ICC communication using sharedUserId.

The Map1 algorithm transforms sources or sinks into the 〈key, value〉 pairs. Table 4.3 shows
how three types of edges in ICC graph are transformed into <key, value> pairs in Map1.

3The main difference between a dynamic receiver and the components in the Android manifest is that
the former can only receive Intents when it is in pending or running status.

4A public component is a component that is available for access by other apps via ICCs.
5https://developer.android.com/guide/components/intents-filters.html
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Table 4.2: Tests completed at different MapReduce phases and the edges that the tests are
applicable to.

Name Phase Apply to

Action Test Map1, Reduce1 Implicit Edges

Category Test Map1, Reduce1 Implicit Edges

Data Test Map2 Implicit Edges

Permission Checking Map2 All Edges

Table 4.3: Summary of how three types of edges in ICC graph are obtained based on source
and sink information and transformed into <key, value> pairs in Map1.

Key Value

Explicit
Edge

EFlag,
source.type (sink.type),
source.destComponent
(sink.componentName);

hostPackage,
source (sink);

Implicit
Edge

IFlag,
source.type (sink.type),
source.action (sink.action),
source.categoryList
(sink.subCategoryList);

hostPackage,
source (sink);

SharedUserId
Edge

SFlag.
sharedUserId,
source.type (sink.type),
source.destComponent
(sink.componentName);

hostPackage,
source (sink);

During the redistribution phase (after Map1), the 〈key, value〉 pairs that have the same
key are sent to the same reducer. Reduce1 algorithm identifies qualified edges from the
redistributed records. Qualification is based on action test and category test for implicit
edges and exact string match for explicit and sharedUserId edges. These tests are efficiently
performed in the redistribution phase with only the edges that pass the action test and
category test sent to Reduce1.

Outputs at the end of Reduce1 phase are 〈key, value〉 pairs, where key consists of package
names of a communicating app pair (corresponding to one ICC edge), and value contains
properties of the edge.

4.2.3 Multiple ICCs Per App Pair

An app pair may have multiple ICC data flows between them. For the subsequent risk
analysis (in Section 4.3), I need to identify and cluster all the inter-app ICCs that belong
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to an app pair. Therefore, the main purpose of Group ICCs Per App Pair performed
in MapReduce is to group together ICCs that belong to the same app pair. In addition, I
perform permission checking on all the three types of edges and data test on implicit edges as
shown in Table 4.2. The key is the package names of an app pair. A reducer in the Reducer2

algorithm records the complete set of inter-app ICCs between two apps that pass the tests.

4.2.4 Workload Balance

The types of actions and categories are unevenly distributed with very different frequencies.
This property leads to the unbalanced workload at different nodes in Reduce1. It highly
impacts the performance because most of the nodes are idle while waiting for the nodes with
heavy workload. To address this problem, I add a tag before each key emitted by the Map1.
The tag helps to divide the large amount of key-value pairs, which should be sent to one
reducer, into m parts feeding m reducers. The tags incur additional communication and
disk storage overhead. The optimal parameter m is selected to maximize performance and
achieve high scalability. I compare the operation time and computational complexity of my
approach with other available inter-app analyses in Section 4.2.5.

My distributed ICC mapping conservatively matches the sources with all the potential sinks
even if the links are of low likelihood. The full set of links provides security guarantees
for the risk analysis. For example, collusion apps may leverage rarely used implicit intent
specifications for targeted communication. Ignoring any low-likelihood links would miss
detecting such attacks. My following security analysis incorporates all the possible links and
gives a prioritized risk result to minimize security analysts’ manual investigation.

4.2.5 Complexity Analysis

Table 4.4: Worst-case complexity of different phases of my approach

Approaches Operation Time Complexity

Identify ICC Nodes T n O(n)

Identify ICC Edges tlmn O(mn)

Group ICCs Per App Pair tgmn O(mn)

Total (MapReduce) T n+ (tl + tg)mn O(mn)

I show operation times and computational complexities of different phases of my approach
in Table 4.4. The average time for identifying ICC nodes for each app is denoted as T , the
average time for identifying ICC edges of two apps as tl, the average time for grouping ICCs
per app pair as tg, the number of available apps as n and the average number of linked apps
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for each app is m. Note that tl + tg � T and m � n.6 I also assume that each app has a
constant number of entry and exit points on average.

Other inter-app analyses usually run static analysis on two or more apps together (e.g.,
IccTA coupled with ApkCombiner). Assuming two apps are analyzed each time, the time
complexity for parsing n apps is O(n2). The operation time is kT

(
n
2

)
with 2T being the

average analysis time of each two apps.

4.3 Neighbor-based Risk Analysis

Table 4.5: Features in my security risk assessment

Feature Definition Hijacking Spoofing Collusion
Data linkage Number of outbound/inbound links that carry data X X
Permission leakage Number of apps connected to via links that involve

permission leaks
X X X

Priority distribution Mean and standard deviation of priority set for out-
bound/inbound links

X X

Link ambiguity Number of outbound explicit links missing package
prefix in the target component

X

Connectivity Number of outbound/inbound links and/or number of
connected apps

X X X

I present my neighbor-aware security risk analysis of inter-app communications, covering
the three common types defined in the threat model. Neighbors of each app are the apps
connected to it in the ICC graph. The input of the risk analysis is the ICC graph produced
by the MapReduce pipeline previously described, and the output is the risk assessment per
communicating app pair in the graph for malware collusion threats, or per individual app
for (Intent) hijacking and spoofing threats.

For the latter two types of risks for a single app, the neighbor-aware security analysis differs
from previous approaches (e.g., ComDroid [52], Epicc [103]), because I examine ICC sinks
and sources in the app and all of its inter-app ICC links. My approach adds more semantic
and contextual information to the risk assessment than previous work. Including the neighbor
sets as communication contexts reduces false warnings. In addition, the risk assessment
identifies the presence of a risk (i.e., detection) and reports how serious that risk may be
(i.e., risk ranking). In this section, I explain how I compute the security risks associated
with app vulnerabilities and collusions.

4.3.1 Features

To leverage the neighbor sets for a more effective security risk analysis, I extract five key
ICC-link features and utilize varying combinations of them for assessing different types of

6The ICC graph is sparsely connected as demonstrated in Section 4.4.



4.3. Neighbor-based Risk Analysis 51

risks, as defined in Table 4.5. Note that the five features are all expressed as numerical
values.

I further explain the definition of each feature as follows: (1) an ICC link carries data if the
ICC Intent contains a non-empty data field; (2) a permission leak occurs when an unautho-
rized app gains access to the resources when it does not have the required permissions for
them itself; (3) the priority of a link is a property of the Intent filter for the corresponding
ICC Intent; I use median and standard deviation of priority values set for all inbound/out-
bound links to characterize the distribution; (4) when specifying the target component for
an explicit ICC call, the name of the enclosing package of that component may be missing;
(5) the number of ICC links and the number of connected apps are considered to quantify
link-connectivity and app-level connectivity, respectively.

4.3.2 Hijacking/Spoofing Risk

2 2

Low

Medium

High

Figure 4.3: Feature value distribution and classification.

For a given app, my analysis first computes its risk with respect to individual features, and
then aggregates them to obtain an overall risk value. Meanwhile, some features (e.g., priority
distribution) are of high importance and thus are used to determine the overall risk level
directly without involving other features.

Specifically, for hijacking and spoofing risks, given a feature f , the feature-wise risk of f
for the subject app a is evaluated based on the distribution of all f values in the ICC
graph, and classified into three risk levels from low to high as illustrated in Figure 4.3. The
rationale is that the risk level is proportional to the feature value and all feature values in
the ICC graph are normally distributed. I normalize the categorical value of each feature f
by mapping (low, medium, high) to (.1, .5, 1.0) respectively. To incorporate the varying
effects of different features on the overall risk, I assign customizable feature weights based
on heuristics. The eventual risk value is computed as the weighted sum of feature-wise risk
values. I upgrade the risk level if no apps are detected at the higher levels in order to
normalize the risk levels. Next, I give details on the risk-evaluation procedures for each risk
type.
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Hijacking

Since the Intent-sending app is the subject of evaluation (i.e., the app for which risks are
assessed) in a hijacking scenario, I consider outbound links only for all relevant features.
Also, since an Intent is much less likely to be hijacked if the target is specified explicitly
than implicitly, only implicit links are considered. The only exception is for link ambiguity,
computing which involves just explicit links. This special feature captures the possibility
of hijacking via ambiguous target-component specification—ignoring the package prefix in
the target component name. Using these five features, the overall risk value is computed as
follows.

• If link ambiguity ≥ 1 or the sum of the two priority distribution parameters is high
(mean+standard deviation≥500), report the risk as high and exit.

• Compute the numerical feature-wise risk values for data linkage, permission leakage,
app-level connectivity, and link-level connectivity, and sum them up with weights .3,
.4, .2, .1, respectively. Then, cast the resulting numerical risk value to its categorical
risk level, according to where the value falls in the three equal-length subintervals of
[0.1,1.0].

Spoofing

In a spoofing scenario, the Intent-receiving app is the subject of evaluation, thus I consistently
consider inbound links only for the three features involved (see Table 4.5). Also, except for
the priority distribution which counts implicit links only because the priority can only be
set for implicit Intents, the other two features consider both implicit and explicit links.
Nevertheless, as the spoofing attack is more likely to succeed when using explicit Intents
than using implicit ones, I weigh explicit links higher in the composite quantification of the
relevant features. Using these three features, the overall risk value is computed as follows.

• If the sum of the two priority distribution parameters is high (mean+STD≥500), report
the risk as high and exit.

• Compute the numerical feature-wise risk values for permission leakage, app-level con-
nectivity, and link-level connectivity with respect to explicit links, and sum up them
with weights .4, .2, and .2 (total of .8), respectively. Then, compute the same three risk
numbers with respect to implicit links, and sum up them with weights 0.1, 0.05, and
0.05 (total of 0.2). Finally, add the six risk numbers up and cast the sum back to its
categorical risk level, according to where it falls in the three equal-length subintervals
of [0.1,1.0].
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Table 4.6: Numbers of apps vulnerable to Intent spoofing/hijacking attacks and potentially
colluding app pairs reported by my technique, and percentages (in parentheses) manually
validated as indeed vulnerable or colluding, per risk category and level. The DroidBench
test result is not included in this table.

Intent Hijacking Intent Spoofing

Activity

Hijacking

Service

Hijacking

Broadcast

Theft

Activity

Launch

Service

Launch

Broadcast

Injection

Collusion

Pairs

High 94 (90%) 10 (70%) 15 (90%) 17(100%) 4(100%) 7(100%) 6 (100%)

Med. 790 (80%) 32 (60%) 303 (70%) 9(90%) 8( 100%) 0 169(8.3%)

Low 11,112(20%) 11,954(0%) 11,678(10%) 11,970(2%) 11,984(0%) 11,989(0%) 12,986,079(0%)

4.3.3 Collusion Risk

In collusion attacks, all communicating pairs are analyzed together. The three features
involved (see Table 4.5) count both inbound and outbound links. Also, both implicit and
explicit links are used for feature extraction.

MR-Droid looks for the existence of links between the app pair, ignoring the number of links
but examining whether the links are explicit or implicit. The analysis uses higher values for
features due to explicit links than for those due to implicit ones. The overall risk level is
computed as follows.

• Connectivity is quantified as 5 for unidirectional explicit connection (i.e., one app is
connected to the other via explicit ICCs yet the other connects back via implicit ones),
as 10 for bidirectional explicit connection (i.e., explicit ICCs exist in both directions),
and as 3 for bidirectional implicit connection (i.e., no explicit ICC exists between the
pair). The data linkage feature is quantified as 3 and 2 for data transfer through
explicit and implicit links, respectively. permission leakage is evaluated as 3 if the leak
potentially exists or 0 otherwise.

• Calculate as the aggregate risk value the sum of the three numerical feature values
above, and cast the sum into its categorical risk level ranging from low to high, ac-
cording to where it falls in the three equal-length subintervals of [1,16].

• Identify the apps with low implicit connectivity (empirically, the connectivity is low
if the number of inbound or outbound implicit apps is less than 20), and retrieve
the corresponding pairs with bidirectional implicit connections. Pairs with both apps
having a low implicit connectivity are set as having a high risk of collusion. Pairs
with only one app having a low implicit connectivity are set to have a medium risk of
collusion.
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4.4 Evaluation

I implemented the system with native Hadoop MapReduce framework. The input is the ICC
sources and sinks extracted from individual apps using IC3 [104], the most precise single-app
ICC resolution in the literature. I modified IC3 to accommodate the MapReduce paradigm.
The Hadoop system is deployed on a 15-node cluster, with one node as master and the rest
as slaves. Each node has two quad-core 2.8GHz Xeon processors and 8GB RAM.7

Datasets. For the evaluation, I apply my system to 11,996 most popular free apps from
Google Play. I select the top 500 apps from each of the 24 major app categories (4 apps
were unavailable due to bugs in program analysis). The detailed category list is shown in
Table 4.7. I downloaded the apps in December 2014 with an Android 4.2 client. I ran the
inter-app ICC analysis and security risk assessment on 12,986,254 app pairs.

In addition to this empirical dataset, I also test my system on DroidBench, the most com-
prehensive Android app benchmark for evaluating Android taint analysis tools. The latest
suite DroidBench 3.08 consists of 8 app-pair test cases for evaluating inter-app collusions.

Validation. Because of the lack of ground truth on the empirical data, I devote sub-
stantial efforts to manually inspect the apps for validation.9 In addition, I will evaluate the
performance of the distributed ICC analyses by gauging the running time of each phase of
the pipeline. The evaluation seeks to answer the following questions.

• Q1: What are the risk levels of app pairs? (Section 4.4.1)

• Q2: How accurate is the risk assessment and ranking? (Section 4.4.2)

• Q3: What do detected attacks look like? (Section 4.4.3)

• Q4: What is MR-Droid’s runtime, including per-app ICC resolution and ICC graph
analyses? (Section 4.4.4)

4.4.1 Q1: Results of Risk Assessment

I apply the system to the collected app dataset. The resulting ICC graph contains 38,134,207
source nodes, 26,227,430 sink nodes and 75,123,502 edges. On the per-app level, there are
in total 12,986,254 app pairs that have at least one ICC link. Each app averagely connects
with 1185 external apps (9.9% of all apps), confirming the overall sparsity of the graph. For
non-connected app pairs, I can safely exclude them during the security analysis. The security

7The algorithms can also be implemented with Spark [9] with faster in-memory processing. It will require
much larger RAMs to hold all the data.

8https://github.com/secure-software-engineering/DroidBench/tree/develop
9I plan to share these manually labeled datasets as benchmarks to the Android security community.
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Table 4.7: App categories in the evaluation dataset

Index Category # of Apps

1 BOOKS AND REFERENCE 500

2 BUSINESS 498

3 COMICS 500

4 COMMUNICATION 500

5 EDUCATION 500

6 ENTERTAINMENT 500

7 FINANCE 500

8 HEALTH AND FITNESS 500

9 LIBRARIES AND DEMO 500

10 LIFESTYLE 499

11 MEDIA AND VIDEO 500

12 MEDICAL 500

13 MUSIC AND AUDIO 500

14 NEWS AND MAGAZINES 500

15 PERSONALIZATION 500

16 PHOTOGRAPHY 500

17 PRODUCTIVITY 500

18 SHOPPING 500

19 SOCIAL 499

20 SPORTS 500

21 TOOLS 500

22 TRANSPORTATION 500

23 TRAVEL AND LOCAL 500

24 WEATHER 500

Total: 11996

analysis focuses on all potential security risks related to Intent hijacking, Intent spoofing and
app collusion (Section 4.1.1). I quantify and rank security risks into as categorical risk levels
following the procedures detailed in Section 4.3. In total, my system identified 150 high-risk
apps, 1,021 medium and 10,825 low risk apps.

Table 4.6 summarizes the results, highlighting the numbers of apps or app pairs vulnerable
to the high and medium level of risks. Prominently, stealthy attacks such as activity hijacking
and broadcast theft dominate medium and high risks of any type. These attacks often involve
passively steal user data.

The more intrusive types of attacks such as service launch and broadcast injection are less
prevalent. In addition, considerably collusion-attacks are revealed by my analyses. There
are six colluding app pairs are of high risk, and 169 are of medium risk.

Through risk ranking, I successfully prioritize alerts. Single-app analysis detects the vul-
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Figure 4.4: The heat maps of the number of app pairs across app categories. The tick label
indexes represent 24 categories. Detailed index-category mapping in Table 4.7.

nerabilities based on whether the app has exposed its (component) interfaces. In contrast,
my approach further examines an app’s empirical neighbor set and determines whether it is
currently subject to real threats.

App Categories. Figure 4.4 depicts the number of app pairs that communicate within
or across categories. Figure 4.4(a) includes all the 13 million app pairs and Figure 4.4(b)
shows pairs with at least one app in the high & medium risk lists. I observe that PER-
SONALIZATION (#15) apps have the most significant contribution to high-risk pairs (Fig-
ure 4.4(b)). These apps usually help users to download themes or ringtones using vulnerable
implicit intents. For example, the app com.aagroup.topfunny provides options for user to
download apps and ringtones from the web. A malicious app can easily hijack the implicit
intent and redirect user to downloading malicious apps or visiting phishing websites. EN-
TERTAINMENT (#6) apps are also heavily involved high-risk ICCs in similar ways. For
example, app com.rayg.soundfx also offers downloading ringtones via vulnerable implicit
intents. Another high-risk category is LIFESTYLE (#10). These apps often require sensor
data (e.g., GPS, audio, camera) for their functionalities. One example vulnerable app is
com.javielinux.andando. It is a location tracking app but it broadcasts GPS information
through an implicit broadcast intent. Other apps can eavesdrop the broadcasted intent and
acquire location data even if they don’t have location permissions.

I find that categories such as FINANCE (#7) are less involved in high-risk ICCs. Since
these apps often deal with banking and financial payments, it is likely that these apps have
put more efforts on security. Even so, I still find high-risk apps under these categories. For
example the app com.ifs.androidmobilebanking.fiid3383 has links in its app to visit its
website. However, they trigger implicit intents, which can be easily redirected to phishing
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websites by malicious apps.

Validation with DroidBench. I have used DroidBench to confirm the effectiveness of
the analysis. The latest suite DroidBench 3.0 consists of 8 app-pair test cases for evaluating
inter-app collusion. My approach detected all 8 of them: 6 were labeled as high risk under
collusion, and 2 were labeled as high risk under intent hijacking. My system put the two
apps under hijacking category because the way they collude leads to a hijacking vulnerability.
They use implicit intents with the default Category and “ACTION SEND” Action. The
experiment shows that many other apps can receive this type of implicit intents and acquire
sensitive information.

4.4.2 Q2: Manual Validation

To further assess the usefulness of MR-Droid, I manually examined over 200 apps to verify
the validity of the detection results. More specifically, I randomly select 10 apps from all 7
attack categories at all 3 risk-levels — for category/level with fewer than 10 apps, I chose
all of them. I carefully inspected the selected apps in two ways to check their behavior: (1)
static inspection, by which I examine relevant Intent attributes of each app and manually
match them against peer apps (in its neighbor set); (2) dynamic verification, in which I run
individual apps and app pairs on an Android emulator and observe suspicious behaviors in
the activity logs.

The validation result is presented in (the parentheses of) Table 4.6. For each selected set of
apps or app pairs, I report the percentage that was verified to be indeed vulnerable. Overall,
this work justified my risk detection and ranking approach. I find apps labeled as high-risk
have a much higher rate to be actually vulnerable. I have a 100% true positive rate in
detecting collusion, broadcast injection, activity- and service-launch based intent spoofing. I
have a 90% true positive rate for activity hijacking and broadcast theft detection. For apps
labeled as low risks, the true positive rate is much lower: 5 out of 7 categories have a true
positive rate of 0%. These results suggest that the rankings produced by my approach can
help users and security analysts prioritize their inspection efforts.

Sources of Errors. My approach still have a few false alerts (at high-risk level). I
find that most of them were caused by unresolved attributes in relevant Intent objects. In
those cases, I conservatively match unresolved source points to all the sinks in order to cover
possible ICCs. This matching leads to false positives. One improvement this is to combine
the static program analysis with probabilistic models to better resolve ICC attributes [105].
Regarding false negatives, I cannot give a reliable estimation since I did not scan all apps
within the market and due to the lack of ground truth.
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4.4.3 Q3: Attack Case Studies

Based on my manual analysis, I present a few case studies to discuss empirical insights on
ICC-based attacks.

Stealthy Collusion via Implicit Intents. During my analysis, I find some colluding
apps also use implicit intents in an effort to avoid detection. Colluding apps usually use
explicit intent, since they know “explicitly” which app(s) they are colluding with. However,
using explicit intent makes the collusion easier to detect, even by single-app analyses. The
new collusion uses highly customized “action” and “category” to mark the implicit intent,
hoping no other apps will accidentally interrupt their communication. For example, the
app org.geometerplus.fbreader.plugin.local opds scanner has open interfaces with a
customized action name android.fbreader.action.ADD OPDS CATALOG in its intent filter.
Another app com.vng.android.zingbrowser.labanbookreader sends implicit intent with
the same action and leverages the first app to scan the local WiFi network (the second app
itself does not have the permission). This type of collusion cannot be detected if each app
was analyzed individually.

Risks of Automatically Generated Apps. I found many of the high-risk apps were
automatically generated by app-generating websites (e.g., www.appsgeyser.com). These apps
send a large number of implicit Intents, attempting to reuse other apps’ functionality as much
as possible. For example, com.conduit.app 39b8211270ff4593ad85daa15cbfb9c6.app is
an automatically generated app and it contains a number of unprotected interfaces including
those for viewing social-media feeds from Facebook and Twitter. It has 20,805 connections
with other apps, five times more than the average.

Hijacking Vulnerabilities in Third-Party Libraries. I observed that a significant
amount of vulnerable exit points are from third-party libraries. For example, a flash light
app com.ihandysoft.ledflashlight.mini.apk bundles multiple third-party libraries for
Ads and analytics. One of the libraries com.inmobi.androidsdk sends implicit intents to
access external websites (e.g., connecting to Facebook). A malicious app can hijack the
Intent and redirect the user to a phishing website to steal the user’s Facebook password.

Colluding Apps by the Same Developers. I find that colluding apps were usually de-
veloped by the same developers. One example is the org.geometerplus.zlibraryui.android
and org.geometerplus.fbreader.plugin.local opds scanner app pair. The first app is
a book reader app with 167,625 reviews and 10 million – 50 million installs. It leverages
the later app (100K – 500K installs) to scan the user’s local network interface. The first
app itself does not have the permission to do so. Both of the two apps were developed by
“FBReader.ORG Limited”.

Another example is the pair of uda.onsiteplanroom and uda.projectlogging. The first
app is for document sharing in collaborative projects, and the second app is for project
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progress logging. With a click of a button, users will be redirected from the first app to
the second app. User’s sensitive information in the first app is also sent to the second app
without user knowledge. Such information includes user’s name, email address, password,
etc. These two apps were written by the same developer “UDA Technologies, Inc.”.

The practical risk of app collisions varies from case to case. The bottom line is, different
apps written by the same developer should not open backdoors for each other to exchange
user data and access privileges without the user knowledge.

Insecure Interfaces for Same-developer Apps. Usually, apps developed by the
same developer have specialized interface to communicate with each other. The secure
way to do this is to use sharedUserID mechanism to protect the data and interface from
exposing to other apps. In my empirical analysis, I find 560 app pairs are developed by
the same developer without using sharedUserID links. Instead, they use explicit intents to
implement the communication interface, which is exposed to all other apps, leaving hijacking
vulnerabilities.

4.4.4 Q4: Runtime of MR-Droid

Finally, I analyze the runtime performance of MR-Droid. Figure 4.5 depicts the time cost of
the MapReduce pipeline (y axis) as the number of apps increases (x axis). Overall, the result
shows that my approach is readily scalable for large-scale inter-app analysis. The running
time of ICC node identification appears to dominate the total analysis cost, yet its growth
is linear with the number of apps. In addition, given the sparse nature of the ICC graph
(rarely does an app communicate to all apps), I manage to achieve near-linear complexity for
edge identification and grouping ICCs. In total, It takes 25 hours to perform the complete
analysis on 13 million ICC pairs for 12K apps.

Noticeably, grouping ICCs for all app pairs only took 44 minutes, rendering 0.0012 seconds
per app pair. This speedup benefits from the reduced input size — a large portion of
(unmatched) ICC links have been excluded in the previous phase. The load balancing design
also contributes to speeding up the process. Currently, the cluster has 15 nodes. I anticipate
that increasing the cluster size would further speed up the inter-app ICC analysis.

As a baseline comparison, I evaluated the performance of IccTA [90], a non-distributed inter-
app ICC analysis system. IccTA needs to first combine two or more apps into one app and
then perform ICC analytics. I evaluate IccTA with 57 randomly selected real world apps
on a workstation (64GB RAM). It took IccTA over 200 hours to analyze all the apps. I
estimate that processing 200 apps with IccTA would take about 18 thousand hours, making
it impractical for analyzing market-scale apps.

Summary of Findings. The manual verification confirms the accuracy of my system.
For app pairs at high-risk level, I obtain a 100% TP rate for the detection of collusion,
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Figure 4.5: Analysis time of the three phases in my approach.

broadcast injection, activity- and service-launch based intent spoofing; I have a 90% TP
rate for broadcast theft, activity- and service hijacking detection. On the other hand, app
pairs at low-risk level indeed have substantially lower TP rate. This result indicates that
the risk prioritization is effective. My empirical analysis reveals new types of app collusion
and hijacking risks (e.g., leveraging rarely implicit intents for more stealthy collusion). My
runtime experiments demonstrate that MapReduce pipeline scales well to a large number of
apps. Analyzing 11,996 apps and performing ICCs matching took less than 25 hours. More
importantly, the runtime cost has a near-linear increase with respect to the number of apps.

4.5 Security Recommendations

Based on my empirical study and manual verification, I make the following recommendations
for app developers to reduce potential security risks.

• When carrying out sensitive operations, developers are encouraged to use explicit In-
tents instead of implicit ones. For example, to access Facebook account, communicating
to the Facebook app via explicit Intents is preferred over a https URL as an implicit
Intent to the Facebook webpage.

• When possible, it is recommended to integrate all necessary functionalities into a single
app. If the developer has to develop multiple apps that communicate with each other,
it is encouraged to use the safe communication via sharedUserID to restrict other apps
accessing the interfaces.

• Developers are encouraged to use customized actions and to enforce data and permis-
sion restrictions. These customized configurations (compared to using the default) will
greatly reduce the chance to accidentally communicate with other apps, hence reducing
risks.



4.6. Discussion 61

• It is recommended to avoid automatically generating apps using tools or services.
Developers should be aware that third-party libraries could be vulnerable or leak user’s
sensitive information.

4.6 Discussion

The risk analysis is primarily based on Intent attributes, while dismissing data flows that
involve the Intents. It is possible that this approach misses true vulnerabilities. Alternatively,
one can perform more in-depth and fine-grained data-flow analysis [19, 67]. However, they
conflict with efficiency and scalability, and thus less practical for market-wide app analyses.
Compared to static analysis, dynamic approaches, either single app analyses [62] or inter-app
analyses [70] are typically more precise. The issue is that dynamic analysis is much slower,
and it often misses true threats that are not triggered during the analyzed executions.

My current analysis focuses on app pairs. It is possible for attacks to span across three or
more apps. One way to generalize my approach to cluster app pairs into app groups. One
needs to efficiently parallel the clustering process.

Alternative Implementations. The ICC mapping algorithm is designed under the
universal MapReduce programming model. Any platforms that are built on the MapReduce
programming model can implement my algorithm. For example, my system can easily fit
in Spark [9] with “flatMap” and “groupByKey” functions for faster in-memory processing.
However, it will require the cluster to have very large RAMs to batch process all the apps
in memory.

One way to further speed up the system is to use GPU (CUDA). In practice, GPU (CUDA) is
for computation only and orthogonal to MapReduce. GPU alone is not enough for large-scale
data processing, but could be integrated with MapReduce to achieve better performance and
scalability [129].

My system is not very suitable for MPI clusters. MPI is network-bounded when processing
large-scale dataset. Developers have to work on the parallelization and data distribution
themselves. In addition, MPI lacks the fault tolerance feature, which is essential for large-
scale long-time processing tasks.
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Measure Mobile Deep Link Risks

In this chapter, I present the first large-scale measurement on the current ecosystem of mobile
deep links [95]. The goal is to detect and measure link hijacking vulnerabilities across the
web and mobile apps, and understand the effectiveness of new linking mechanisms in battling
hijacking attacks.

Recently, two new deep link mechanisms were proposed to address the security risks in
scheme URLs: App link and Intent URL. While most existing works focus on vulnerabilities
in scheme URLs [42, 53, 138], little is known about how widely App links and Intent URLs
are adopted, and how effective they are in mitigating the threats in practice.

I perform extensive measurements on a large collection of mobile apps and websites. To
measure the adoption of different mobile deep links, I collect two snapshots of 160,000+
most popular Android apps from Google Play in 2014 and 2016, and crawled 1 million web
pages (using a dynamic crawler) from Alexa top domains. I primarily focus on Android for
its significant market share (87%) [79] and availability of apps. I also perform a subset of
analysis on iOS deep links. At the high-level, my method is to extract the link registration
entries (URIs) from apps, and then measure their empirical usage on websites. To detect
hijacking attacks, I group apps that register the same URIs as link collision groups. I find
that not all link collisions are malicious — certain links are expected to be shared such
as links for common functionality (e.g., “tel”) or third-party libraries (e.g., “zxing”). I
develop methods to identify malicious hijacking attempts.

Findings. My study has four surprising findings, which lead to one overall conclusion:
the newly introduced deep link solutions not only fail to improve security, but significantly
increased hijacking risks for users.

First, App links’ verification mechanism fails in practice. Surprisingly, among 8,878 Android
apps with App links, only 194 (2.2%) correctly implemented link verification. The reasons are
a combination of the lack of motivation from app developers and various developer mistakes.

62
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I confirm a subset of mistakes in iOS App links too: 1925 out of 12,570 (15%) failed the
verification due to server misconfigurations, including popular apps such as Airbnb.

Second, I uncover a new vulnerability in App links, which allows malicious apps to stealthily
intercept HTTP/HTTPS URLs in the browser. The root cause is that Android grants ex-
cessive permissions to unverified App links through the preference setting. For an unverified
App link, Android by default will prompt users to choose between the app and the browser.
To disable promoting, users may set a “preference” to always use the app for this link. This
preference is overly permissive, since it not only disables prompting for the current link, but
all other unverified links registered by the app. A malicious app, once received preference,
can hijack any sensitive HTTP/HTTPS URLs (e.g., to a bank website) without alerting
users. I validate this vulnerability in the latest Android 7.1.1.

Third, I detect more malicious hijacking attacks on App links (1593 apps) than scheme URLs
(893 apps). Case studies show that popular websites (e.g., “google.com”) and apps (e.g.,
Facebook) are common targets for traffic hijacking. In addition, I identify suspicious apps
that act as man-in-the-middle between websites and the original app to record sensitive
URLs and the parameters (e.g., “https://paypal.com”).

Finally, Intent URLs have very limited impact in mitigating hijacking risks due to the low
adoption rate among websites. Only 452 websites out of the Alexa top 1 million contain
Intent URLs (0.05%), which is a much lower ratio than that of App links (48.0%) and
scheme URLs (19.7%). Meanwhile, among these websites, App links drastically increase the
number of links that have hijacking risks compared to existing vulnerable scheme URLs

To the best of my knowledge, my study is the first empirical measurement on the ecosystem
of mobile deep links across web and apps. I find the new linking methods not only failed
to deliver the security benefits as designed, but significantly worsen the situation. There
is a clear mismatch between the security design and practical implementations due to the
lack of incentives of developers, developer mistakes, and inherent vulnerabilities in the link
mechanism. Moving forward, I propose a list of suggestions to mitigate the threat. I have
reported the over-permission vulnerability to the Google Android team. The detailed plan
for further notification and risk mitigation is described in §5.7.

5.1 Background and Research Goals

Mobile deep links are URIs that point to specific locations within mobile apps. Through deep
links, websites can initiate useful interactions with apps, which is instrumental to many key
user experiences, for example, opening apps, sharing and bookmarking in-app pages [131],
and searching in-app content using search engines [3]. In the following, I briefly introduce
how deep links work and the related security vulnerabilities. Then I describe my research
goals and methodology.
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https://foo.com/p
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intent://p#Intent;scheme=

foo;package=com.foo;end
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Explicit intent

Implicit intent

Scheme URL:

App Link:

Intent URL:

Figure 5.1: Three types of mobile deep links: Scheme URL, App Link and Intent URL.

scheme  host     path

scheme            host                          path

App Link:    http://facebook.com/pro�le/1234

Scheme URL:    fb://pro�le/1234

Figure 5.2: URI syntax for Scheme URLs and App links.

5.1.1 Mobile Deep Links

To understand how deep links work, I first introduce inter-app communications on Android.
An Android app is essentially a package of software components. One app’s components
can communicate with another app’s components through Intent, a messaging object char-
acterized “action”, “category” and “data”. By sending an intent, one app can communicate
with the other app’s front-end Activities, or background Services, Content Providers and
Broadcast Receivers.

Mobile deep links trigger a particular type of intent to enable communications between the
web and mobile apps. As shown in Figure 5.1, after users click on a link in the browser (or
in-app webview), the browser sends an intent to invoke the corresponding component in the
target app. Unlike app-to-app communication, mobile deep link can only launch front-end
Activity in the app.

Mobile deep links work in two simple steps: 1) Registration: an app “foo” should first
register its URIs (“foo://” or “https://foo.com”) to the mobile OS during installation.
The URIs are declared in the in the “data” field of intent filters. 2) Addressing: when
“foo://” is clicked, mobile OS will search all the intent filters for a potential match. Since
the link matches the URI of app “foo”, mobile OS will launch this app.

5.1.2 Security Risks of Deep Linking

Hijacking Risk in Scheme URL. Scheme URL is the first generation of mobile deep
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Figure 5.3: App link verification process.

links, and is the least secure one. It was introduced since Android 1.0 [7] and iOS 2.0 [8]
in 2008. Figure 5.2 shows the syntax of a scheme URL. App developers can customize any
schemes and URIs for their app without restriction.

Prior research has pointed out key security risks in scheme URLs [53, 138], given that any app
can register other apps’ schemes. For example, apps other than Facebook can also register
“fb://”. When a deep link is clicked, it triggers an “implicit intent” to open any app with
a matched URI. This allows a malicious app to hijack the request to the Facebook app to
launch itself, either for phishing (e.g., displaying a fake Facebook login box), or stealing
sensitive data in the request [53].

With an awareness of this risk, Android lets users be the security guard. When multiple
apps declare the same URI, users will be prompted (with a dialog box) to select/confirm
their intended app. However, if the malicious app is installed but the victim app is not,
the malicious app will automatically skip the prompting and hijack the link without user
knowledge. Even when both apps are installed, the malicious app may trick users to set
itself as the “preference” and disable prompting. Historically speaking, relying on end-users
as the sole security defense is risky since users often fail to perceive the nature of an attack,
leading to bad decisions [16, 59, 137].

Solution1: App Link. App Link was introduced recently in October 2015 to Android
6.0 [5] as a more secure version of deep links. App link is designed to prevent hijacking with
two mechanisms. First, the authentic app can build an association with the corresponding
website, which allows the mobile OS to open the App link exclusively using the authentic app.
Second, App link no longer allows developers to custom their own schemes, but exclusively
uses the http or https scheme.

Figure 5.3 shows the App link association process. Suppose app “foo” wants to register
“http://foo.com/*”. Mobile OS will contact the server at “foo.com” for verification. The
app’s developer needs to set up an association file “assetlinks.json” beforehand under the
root directory (“/.well-known/”) of the foo.com server. This file must be hosted on an
HTTPS server. If the file contains an entry that certifies that app “foo” is associated with
the link “http://foo.com/*”, the mobile OS will confirm the association. The association
file contains a field called “sha256 cert fingerprints”, which is the SHA256 fingerprint of
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the associated app’s signing certificate. The mobile OS is able to verify the fingerprint and
prevent hijacking because only the authentic app has the corresponding signing certificate.
Suppose a malicious app “bar” also wants to register “http://foo.com/*”, the verification
will fail, assuming the attacker cannot access the root of foo.com server to modify the
association file and the fingerprint.

The iOS version of App links is called universal link, introduced at iOS 9.0 [10], which has
the same verification process. The association file for iOS is “apple- app-site-association”.
However, iOS and Android have different policies to handle failed verifications. iOS prohibits
opening unverified universal links in apps. Android, however, leaves the decision to users: if
an unverified link is clicked, Android prompts users to choose if they want to open the link
in the app or browser.

Solution 2: Intent URL. Intent URL is introduced in 2013 and only works on An-
droid [6]. Intent URLs prevent hijacking by changing how the deep link is called on the
website. As shown in Figure 5.1, instead of calling “foo://p”, Intent URL is structured as
“intent://p/#Intent;scheme=foo;package=com
.foo;end” where the package name of the target app is explicitly specified. Package name
is a unique identifier for an Android app. Clicking an intent URL will launch an “explicit
intent” to open the specified app.

Compared to scheme URLs and App links, Intent URL does not need special URI registration
on the app. Intent URL can invoke the same interfaces defined by the URIs of scheme URLs
or App links, as well as other exposed components [6].

5.1.3 Research Questions

While the hijacking risk of scheme URLs has been reported by existing research [42, 53, 138],
little is known about how prevalently this risk exists among apps, and how effective the new
mechanisms (App links and Intent URLs) are in reducing this risk in practice. I hypothesize
that upgrading from scheme URL to App link/Intent URL is a non-trivial task, considering
that scheme URLs may already have significant footprints on the web. Mobile platforms
may be able to enforce changes to apps through OS updates, but their influence on the web
is likely less significant. I conduct the first large-scale measurement on the mobile deep link
ecosystem to understand the adoption of different linking methods and their effectiveness in
battling hijacking threats.

Threat Model. My study focuses on link hijacking threat since this is the security issue
that App Links and Intent URLs aim to address. Link hijacking happens when a malicious
app registers the URI that belongs to the victim app. If mobile OS redirects the user to
the malicious app, it can lead to phishing (e.g., the malicious app displays forged UI to lure
user passwords) or data leakage (e.g., the deep link may carry sensitive data in the URL
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Link Conditions Prompt
Type > 1 Set As Link User?

Apps Preference Verified

Scheme
URL

3 7 / 3

3 3 / 7

7 7 / 7

7 3 / 7

App
Link∗

/ 7 7 3

/ 3 7 7

/ 7 3 7

/ 3 3 7

Intent URL / / / 7

Table 5.1: Conditions for whether users will be prompted after clicking a deep link on
Android. ∗App Links always have at least one matched app, the mobile browser.

parameters such as PII and session IDs) [53]. In this threat model, mobile OS and browser
(or webview) are not the target of the attack, and I assume they are not malicious.

The Role of Users. Users also play a role in this threat model. After clicking a deep
link, a user may be prompted by a dialog box to confirm the destination app. As shown in
Table 5.1, prompting can be skipped in many cases. For scheme URLs, a malicious app can
skip prompting if the victim app is not installed, or by tricking users to set the malicious app
as the “preference”. App link can skip prompting if the link has been verified. Otherwise,
users will be prompted to choose between the browser and the app. Intent URLs will not
prompt users at all since the target app is explicitly specified.

My Goals. My study seeks to answer key questions regarding how mobile deep links
are implemented in the wild and their security impact. I ask three sets of questions. First,
how prevalently are different deep links adopted among apps over time? Are App links and
Intent URLs implemented properly as designed? Second, how many apps are still vulnerable
to hijacking attacks? How many vulnerable apps are exploited by other real-world apps?
Third, how widely are hijacked links distributed among websites? How much do App links
and Intent URLs contribute to mitigating such links?

To answer these questions, I first describe data collection (§5.2), and measure the adoption
of App links and scheme URLs among apps (§5.3). I perform extensive security analysis
to understand how effective App links can prevent hijacking (§5.4), and then describe the
method to detect hijacking attacks among apps (§5.5). Finally, I move to the web to measure
the usage of Intent URLs, and the prevalence of hijacked links (§5.6). In §5.7, I summarize
key implications and discuss possible solutions
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Dataset Total Apps accept Apps accept Apps accept Unique Unique
Apps Scheme URLs App Links either Links Schemes Web Hosts

App2014 164,322 10,565 (6.4%) 4,545 (2.8%) 12,428 (7.6%) 8,845 6,471
App2016 164,963 20,257 (12.3%) 8,878 (5.4%) 23,830 (14.5%) 18,839 18,561

Table 5.2: Two snapshots of Android apps collected in 2014 and 2016. 115,399 apps appear
in the both datasets; 48,923 apps in App2014 are no longer listed on the market in 2016;
App2016 has 49,564 new apps.

5.2 Datasets

I collect data from both mobile apps and websites, including two snapshots of 160,000+ most
popular Android apps in 2014 and 2016, and web pages from Alexa top 1 million domains.

Mobile Apps. To examine deep link registration, I crawled two snapshots of mobile
apps from Google Play. The first snapshot App2014 contains 164,322 most popular free
apps from 25 categories in December 2014 (crawled with an Android 4.0.1 client). In August
2016, I crawled a second snapshot of top 160,000 free apps using an Android 6.0.1 client. I
find that 48,923 apps in App2014 are no longer listed on the market in 2016. 4,963 apps
in 2014 snapshot already fell out of the top 160K list in 2016. To match the two datasets,
I also crawled these 4,963 apps in 2016, forming an App2016 dataset of 164,963 apps. The
two snapshots have 115,399 overlapping apps. For each app in App2016, I also obtained the
developer information, downloading count, review count and rating.

My app dataset is biased towards popular apps among the 2.2 million apps in Google
Play [128]. Since these popular apps have more downloads, potential vulnerabilities could
affect more users. The result can serve as a lower bound of empirical risks.

Alexa Top 1 Million Websites. To understand deep link usage on the web, I
crawled Alexa top 1 million domains [1] in October 2016. I simulate using an Android
browser (Android 6.0.1, Chrome/41/0/2272.96) to visit these web domains and load both
static HTML page (index page) and the dynamic content from JavaScript. This is done using
modified OpenWPM [63], a headless browser-based crawler. For each visit, the crawler loads
the web page and waits for 300 seconds allowing the page to load the dynamic content, or
perform the redirection. I store the final URL and HTML content. This crawling is also
biased towards popular websites, assuming that deep links on these sites are more likely to
be encountered by users. I refer this dataset as Alexa1M.
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5.3 Deep Link Registration by Apps

In this section, I start by analyzing mobile apps to understand deep link registration and
adoption. In order to receive deep link requests, an app needs to register its URIs to mobile
OS during installation. My analysis in this section focuses on Scheme URLs and App links.
For Intent URLs, as described in §5.1, developers do not need special registrations in the
app. Instead, it is up to the websites to decide whether to use Intent URLs or scheme URLs
to launch the app. I will examine the adoption Intent URLs later by analyzing web pages
(§5.6).

I provide an overview of deep link adoption by analyzing 1) how widely the scheme URLs
are adopted among apps, and 2) whether App links are in the process of replacing scheme
URLs for a better security.

5.3.1 Extracting URI Registration Entries

Android apps register their URIs in the manifest file (AndroidManifest.xml). Both Scheme
URLs and App Links are declared in Intent filters as a set of matching rules, which can either
be actual links (fb://login/) or a wild card (fb://profile/*). Since there is no way to
exhaustively obtain all links behind a wild card, I treat each matching rule as a registration
entry. Given a manifest file, I extract deep link entries in three steps:

• Step1: Detecting Open Interfaces. I capture all the Activity intent filters whose
“category” field contains both BROWSABLE and DEFAULT. This returns all the com-
ponents that are reachable from the web.

• Step2: Extracting App Link. Among intent filters in Step 1, I capture those whose
“action” contains VIEW. This returns intent filters with either App Links or Scheme
URLs in their “data” fields1. I extract App Link URIs as those with http/https scheme.
Note that App Link intent filters have a special field called autoVerify. If its value is
TRUE, then mobile OS will perform verification on the App link.

• Step3: Extracting Scheme URL. All the non-http/https URIs from Step2 are Scheme
URLs.

I apply the above method to the dataset and the result is summarized in Table 5.2. Among
the 160K apps in App2016, I find that 20.3K apps adopted scheme URLs and 8.9K apps
adopted App links. Note that for the apps in App2014 (Android 4.0 or lower), App Link
had not been introduced to Android yet. I find that 4,545 apps in App2014 registered
http/https URIs, which are essentially scheme URLs with “http” or “https” as the scheme.
For consistency, I still call these http/https links as App links, but link verification is not
supported for these apps.

1The rest intent filters whose “action” is not VIEW can still be triggered by Intent URLs.
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5.3.2 Scheme URL vs. App Link

Next, I compare the adoption for Scheme URLs and App links across time, app categories
and app popularity. I seek to understand if the new App links are on the way of replacing
Scheme URLs.

Adoption over Time. As shown in Table 5.2, there are significantly more apps that
started to adopt deep links from 2014 to 2016 (about 100% growth). However, the growth
rate is almost the same for App links and Scheme URLs. There are still 2-3 times more apps
using scheme URLs than those with App links. Apps links are far from replacing scheme
URLs.

Figure 5.4 specifically looks at apps in both snapshots. I select those that adopted either type
of deep links in either snapshot (13,538 apps), and compute the differences in their number of
schemes/hosts between 2014 and 2016. I find that the majority of apps (over 96.2%) either
added more deep links or remained the same. Almost no apps remove or replace scheme
URLs with App links. The conclusion is the same when I compare the number of URI rules
(omitted for brevity). This suggests that scheme URLs are still heavily used, exposing users
to potential hijacking threat.

App Popularity. I find that deep links are more commonly used by popular apps (based
on download count). In Figure 5.5, I divide apps in 2016 into three buckets based on their
download count: [0, 1K), [1K, 1M), [1M,∞). Each has 20,654, 127,323 and 5,223 apps
respectively. Then I calculate the percentage of apps that adopted deep links in each bucket.
I observe that 33% of the 5,223 most popular apps adopted scheme URL, and the adoption
rate goes down to 8% for apps with <1K downloads. The trend is similar for App links. In
addition, I find that apps with deep links have averagely 4 million downloads per app, which
is orders of magnitude higher than apps without deep links (125K downloads per app). As
deep links are associated with popular apps, potential vulnerabilities can affect many users.
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App Categories. Among the 25 app categories, I find that the following categories have
the highest deep link adoption rate: SHOPPING (25.5%), SOCIAL (23.4%), LIFESTYLE
(21.0%), NEWS AND MAGAZINES (20.5%) and TRAVEL AND LOCAL (20.2%). These
apps are content-heavy and often handle user personally identifiable information (e.g., social
network app) and financial data (e.g., shopping app). Link hijacking targeting these apps
could have practical consequences.

5.4 Security Analysis of App Links

The result shows App links are still not as popular as scheme URLs. Then for apps that
adopted App links, are they truly secure against link hijacking? As discussed in §5.1.2, App
link is designed to prevent hijacking through a link verification process. If a user clicks on
an unverified App link, the mobile OS will prompt users to choose whether she would like
to open the link in the browser or using the app. In the following, I empirically analyze the
security properties of App links in two aspects. First, I measure how likely app developers
make mistakes when deploying App link verification. Second, I discuss a new vulnerability
I discovered which allows malicious apps to skip user prompting when unverified App links
are clicked. Malicious apps can exploit this to stealthily hijack arbitrary HTTP/HTTPS
URLs in the mobile browser without user knowledge.

5.4.1 App Link Verification

I start by examining whether link verification truly protects apps from hijacking attacks.
Since App link has not been introduced for App2014, all the http/https links in 2014 were
unverified. In the following, I focus on apps in App2016. In total, there are 8,878 apps that
registered App links, involving 18,561 unique web domains. I crawled two snapshots of the
association files for each domain in January and May of 2017 respectively. I use the January
snapshot to discuss the key findings, and then use the May snapshot to check if the identified
problems have been fixed.

Failed Verifications. As of Januray 2017, I find a surprisingly low ratio of verified
App links. Among 8,878 apps that registered App Links, only 194 apps successfully passed
the verification (2%). More specifically, only 415 apps (4.7%) set the “autoVerify” field as
TRUE, which triggers the verification process during app installation. This means the vast
majority of apps (8,463, 95.3%) did not even start the verification process. Interestingly, 434
apps actually have the association file ready on their web servers, but the developers seem
to forget to configure the apps to turn on the verification.

Even for apps that turned on the verification, only 194 out of 415 can successfully complete
the process as of January 2017. Table 5.3 shows the common mistakes of the failed apps
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(one app can have multiple mistakes). More specifically, 26 apps incorrectly set the App link
(e.g., with a wildcard in the domain name), which is impossible for mobile OS to connect to.
On the server-side, 177 apps turned on the verification, but the destination domain did not
host the association file; 11 apps host the file under a HTTP server instead of the required
HTTPS server; 10 apps’ files are in invalid JSON format; 60 apps’ association files do not
contain the App link (or the app) to be verified. Note that for these failed apps, I don’t
distinguish whether they are malicious apps attempting to verify with a domain they don’t
own, or simply mistakes by legitimate developers.

I confirm all these mistakes lead to failed verifications by installing and testing related apps
on a physical phone. I observe many of these mistakes are made by popular apps from big
companies. For example, “com.amazon.mp3” is Amazon’s official music app, which claims
to be associated with “amazon.com”. However, the association file under amazon.com did
not certify this app. I tested the app on my phone, which indeed failed the verification.

In May 2017, I checked all the apps again and found that most of the identified problems
remained unfixed. Moreover, some apps introduced new mistakes: there are 8 more apps
with an invalid association files in May compared to that of January. Manual examination
shows that new mistakes were introduced when the developers updated the association files.

Date Apps w/
App
Links

Apps
Turned

Verif. On

Apps
Verified

Apps with Failed Verifications∗

App
Misconfig.

Host w/o
Assoc. F.

Host w/
HTTP

Wrong
Path

Host
Invalid F.

Host Assoc.
Other apps

Jan.17 8,878 415 194 26 177 11 0 10 60
May.17 8,878 415 192 26 171 8 0 18 57

Table 5.3: App Link verification statistics and common mistakes (App2016) based on data
from January 2017 and May 2017. ∗One app can make multiple mistakes.

Misconfigurations for iOS and Android. To show that App links verification can
be easily misconfigured, I put together 1,012,844 web domains to scan their association files.
These 1,012,844 domains is a union of Alexa top 1 million domains and the 18,561 domains
extracted from the apps. I scan the association files for both Android and iOS.

As of January 2017, 12,570 domains (out 1 million) has iOS association files and only 1,833
domains have Android association files (Table 5.4). It is unlikely that there are 10x more
iOS-exclusive apps. A more plausible explanation is iOS developers are more motivated
to perform link verification, since iOS prohibits opening unverified HTTP/HTTPS links in
apps. In contrary, Android leaves the decision to users by prompting users to choose between
using apps or a browser.

I find iOS apps also have significant misconfigurations. This analysis only covers a subset of
possible mistakes compared to Table 5.3, but still returns a large number. As of January 2017,
1817 domains (14%) are hosting the association file under HTTP, and there are additional
108 domains (1%) with invalid JSON files. One example is the Airbnb’s iOS app. The
app tries to associate with “airbnb.com.gt”, which only hosts the association file under an
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Type Date Hosts w/ Assoc. F. Under HTTP Wrong Path Invalid File

iOS
Jan.17 12,570 1,817 (14%) 0 (0%) 108 (1%)
May.17 13,541 1,820 (13%) 0 (0%) 113 (.8%)

Android
Jan.17 1,833 330 (18%) 4 (.2%) 81 (4%)
May.17 2,779 474 (17%) 0 (0%) 118 (4%)

Table 5.4: Association files for iOS and Android obtained after scanning 1,012,844 domains.

HTTP server. This means users will not be able to open this link in the Airbnb app.

In May 2017, I scanned these domains again. I observed 7.7% of increase of hosts with asso-
ciation files for iOS and 51.6% increase for Android. However, the number of misconfigured
association files also increased.

5.4.2 Over-Permission Vulnerability

In addition to verification failures, I identify a new vulnerability in the setting preferences
for App links. Recall that unverified App links still have one last security defense — the
end user. Android OS prompts users when unverified App links are clicked, and users can
choose between a browser and the matched app. I describe an over-permission vulnerability
that allows malicious apps to skip prompting for stealthy hijacking.

Over-Permission through Preference Setting. User prompting is there for better
security, but prompting users too much can hurt usability. Android’s solution is to take
a middle ground using “preference” setting. When an App link is clicked, users can set
“preference” for always opening the link in the native app without prompting again.

I find that the preference setting gives excessive permissions to this app. Specifically, the
preference not only disables the prompting for the current link that the user sees, but all
other (unverified) HTTP/HTTPS links that this app registered. For example, if the user
sets preference for “https://bar.com”, all the links with “https://” in this app receive the
permission. Exploiting this vulnerability allows malicious apps to hijack any HTTP/HTTPS
URLS without alerting users.

Proof-of-Concept Attack. Suppose “bar” is a malicious app that registered both
“https://bar.com” and “https://bank.com/transfer/*”. The user sets preference for
using “bar” to open the link “https://bar.com”, which is considered as a normal action.
Then the permission also applies to “https://bank.com/transfer/*” without user knowl-
edge.

Later, suppose this user visits her bank’s website in a mobile browser, and transfers money
through an HTTPS request “https://bank.com/transfer?cookie=1
&amount=1000&recipient=tom”. Because of the preference setting, this request will auto-
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matically trigger bar without prompting the user. The browser wraps up this URL and the
parameters in plaintext to create an Intent, and hand it over to the app bar. bar can then
change the recipient and use the cookie to transfer money to the attacker. In this example,
the attacker sets the path of the URI as “/transfer/*” so that bar would only be triggered
during money transfer. The app can make this even more stealth by quickly terminating
itself after the hijacking, and bouncing the user back to the bank website in the browser.

I validate this vulnerability in both Android 6.0.1 and 7.1.1 (the latest version). I implement
the proof-of-concept attack by writing a malicious Android app to hijack the author’s own
blog website (instead of an actual bank). The attack is successful: the malicious app hijacked
the plaintext cookie in the URL parameter, and quickly bounced the user back to original
page in the browser. The bouncing is barely noticeable by users.

Discussion. Fundamentally, this vulnerability is caused by the excessive permission to
unverified App links. When setting preferences, the permission is not applied to the link-
level, but to the scheme-level. I suspect that the preference system of App links is directly
inherent from scheme URLs. For scheme URLs, the preference is also set to the scheme level
which makes more sense (e.g., allowing Facebook app to open all “fb://”). However, for
App links, scheme-level permission means attackers can hijack any HTTPS links. I have
filed a bug report to the Android team in 02/2017.

To successfully exploit this vulnerability, a malicious app needs to trick users to set the
preference (e.g., using benign functionalities). For example, an attacker may design a recipe
app that allows users to open recipe web links in the app for an easy display and sharing.
This recipe app can ask users to set the preference for opening recipe links but secretly
registers an online bank’s App links to receive the same preference. I have filed a bug report
through Google’s Vulnerability Reward Program (VRP) in February 2017. I am currently
working with the VRP team to mitigate the threat.

iOS has a similar preference setting, but not vulnerable to this over-permission attack. In
iOS, if the user sets preference for one app to open an HTTPS link. The permission goes
to all the HTTPS links that the app has successfully verified. The Android vulnerability is
caused by the fact that permission goes to unverified links.

5.4.3 Summary of Vulnerable Apps.

Thus far, my analysis shows that most apps are still vulnerable to link hijacking. First,
scheme URLs are still heavily used among apps. Second, for apps that adopt App links, only
2% can pass the link verification. The over-permission vulnerability described above makes
the situation even worse. In 2016, out of all 23,830 apps that adopted deep links, 23,636 apps
either use scheme URLs or unverified App links. These are candidates of potential hijacking
attacks.
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5.5 Link Hijacking

While many apps are vulnerable in theory, the real question is how many vulnerable apps
are exploited in practice? For a given app, how likely would other apps register the same
URIs (a.k.a., link collision)? Do link collisions always have a malicious intention? If not,
how can I classify malicious hijacking from benign collisions?

To answer these questions, I first measure how likely it is for different apps to register the
same URIs. My analysis reveals key categories of link collisions, and I develop a systematic
procedure to label all of them. This allows us to focus on the highly suspicious groups
that are involved in malicious hijacking. Finally, I present more in-depth case studies to
understand the risk of typical attacks.

5.5.1 Characterizing Link Collision

Links collision happens when two or more apps register the same deep link URIs. When
the link is clicked, it is possible for mobile OS to direct users to the wrong app. Note that
simply matching “scheme” or app link “host” is not sufficient. For example, “myapp://a/1”
and “myapp://a/2” do not conflict with each other since they use different “paths” in the
URI. To this end, I define two apps have link collision only if there is at least one link that
is opened by both apps.

Prevalence of Link Collisions. To identify link collision, I first group apps based on the
scheme (scheme URL) or web host (App links). Figure 5.6 and Figure 5.7 shows the number
of apps that each scheme/host is associated with. About 95% of schemes are exclusively
registered by one single app. The percentage is slightly lower for App links (76%–82%).
Then for each group, I filter out apps that have no conflicting URIs with any other apps in
the group, and produce apps with link collisions. Within App2014, I identify 394 schemes,
1,547 web hosts from 5,615 apps involved in link collisions. The corresponding numbers for
2016 are higher: 697 schemes and 3,272 web hosts from 8,961 apps.

The result is a lower bound of actual collisions, biased towards popular apps. Schemes/hosts
that are currently mapped to a single app might still have collisions with apps outside of the
dataset. For the rest of my analysis, I focus on the more recent 2016 dataset.

Categorizing Link Collisions. I find that not all collisions have malicious inten-
tion. After manually analyzing these schemes and hosts, I categorize collisions into 3 types.
Table 5.5 shows the top 10 mostly registered schemes/hosts and their labels.

• Functional scheme (F) is reserved for a common functionality, instead of a particular
app. “file” is registered by 1,278 apps that can open files. “geo” is registered by 238
apps that can handle GPS coordinates. These schemes are expected to be registered by
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host.

multiple apps. IANA [21] maintains a list of URI schemes, most of which are functional
ones. This collision type does not apply to App links.

• Per-app scheme/host (P) is designated to an individual app. “maps.google.com” is
to open Google Maps (but registered by 186 other apps) and “fb” is supposed to open
Facebook app (but registered by 4 other apps). Collisions on per-app schemes/hosts are
often malicious, with the exception if all apps are from the same developer.

• Third-party scheme/host (T) is used by third-party libraries, which often leads to
(unintentional) link collision. “x-oauthflow-twitter” is a callback URL for Twitter
OAuth. Twitter suggests developers defining their own callback URL, but many devel-
opers copy-paste this scheme from an online tutorial (unintentional collision). Another
third-party scheme is“feedproxy.google.com”, which is from a third-party RSS aggre-
gator. Apps use this service to redirect user RSS requests to their apps (benign collision).

Because of the “shared” nature, functional schemes or third-party schemes/hosts are ex-
pected to be used by multiple apps. Related link collisions are benign or unintentional. In
contrary, per-app scheme/hosts are (expected to be) designated to each app, and thus link
collision can indicate malicious hijacking attempts.

5.5.2 Detecting Malicious Hijacking

Next, I detect malicious hijacking by labeling per-app schemes/hosts. This is challenging
since schemes and hosts are registered without much restriction—it is difficult to tell based
on the name of the scheme/host. The high-level intuition is: 1) third-party schemes/hosts
often have official documentations to teach developers how to use the library, which are
searchable online; 2) functional schemes are well-documented in public URI standard. To
these ends, I develop a filtering procedure to label per-app schemes/hosts. For any manual
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Scheme Apps Web Host Apps
file F© 1278 google.com P© 480
content F© 727 google.co.uk P© 441
oauth T© 520 zxing.appspot.com T© 410
x-oauthflow-twitter T© 369 maps.google.com P© 187
x-oauthflow-espn-twitter T© 359 beautygirlsinc.com P© 148
zxing T© 321 triposo.com P© 131
testshop T© 278 feeds.feedburner.com T© 126
shopgate-10006 T© 278 feeds2.feedburner.com T© 123
geo F© 238 feedproxy.google.com T© 112
tapatalk-byo T© 180 feedsproxy.google.com T© 110

Table 5.5: Top 10 schemes and app link hosts with link collisions in App2016. I manually
label them into three types: F©= Functional, P©= Per-App, T©= Third-party

Deep Links
In Total

Link Collisions
After Pre-
Processing

Functional Third-party Per-app

#Schemes (#Apps) 18,839 (20,257) 697 (7,432) 376 (6,350) 30 (2,135) 197 (3,972) 149 (893)
#Hosts (#Apps) 18,561 (8,878) 3,272 (2,868) 2,451 (2,083) N/A 137 (999) 2,314 (1,593)

Table 5.6: Filtering and classification results for schemes and App link hosts (App2016).

labeling tasks, I have two authors perform the task independently, and a third person to
resolve any disagreements.

Pre-Processing. I start with the 697 schemes and 3,272 hosts (8,961 apps) that have
link collisions in App2016. I exclude schemes/hosts where all the collision apps are from the
same developer. This leaves 376 schemes and 2,451 web hosts for further labeling.

Classifying Schemes. I label schemes in two steps. The results are shown in Table 5.6.
First, I filter out functional schemes. IANA [21] lists 256 common URI schemes, among
which there are a few per-apps scheme under “provisional” status (e.g., “spotify”). I
manually filtered them out and got 175 standard functional schemes. Matching this list with
the dataset returns 30 functional schemes with link collisions. Then, to label third-party
schemes, I manually search for their documentations or tutorials online. For certain third-
party schemes, I also check the app code to be sure. In total, I identify 197 third-party
schemes, and the rest 149 schemes are per-app schemes (also manually checked).

Figure 5.8 shows the number of collision apps for different schemes. Not surprisingly, per-app
scheme has fewer collision apps than functional and third-party schemes.

Classifying App Link Hosts. This only requires labeling third-party hosts from per-
app hosts. In total, there are 2,451 hosts after pre-processing. I observe that 1633 hosts are
jointly registered by 5 apps, and 347 subdomains of “google.com” are registered by 2 apps.
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All these hosts are not third-party hosts, which helps to trim down to 471 hosts for manual
labeling. I follow the same intuition to label third-party web hosts by manually searching
their official documentations. In total, I label 137 third-party hosts, and 2,314 per-app hosts.
Figure 5.9 compare per-app hosts and third-party hosts on their number of collision apps,
which are very similar.

Testing Automated Classification. Clearly manually labeling cannot scale. Now
that I have obtained the labels, I briefly explore the feasibility of automated classification.
As a feasibility test, I classify per-app schemes from third-party schemes using 10 features
such as unique developers per scheme, and apps per scheme (feature list in Table 5.7). 5-
fold cross-validation using SVM and Random Forests classifiers return an accuracy of 59%
(SVM) and 62% (RF). If I only focus on schemes that have a higher-level of collisions (e.g.,
> 4 developers), it returns a higher accuracy: 84% (SVM) and 75% (RF). The accuracy
is not high enough for practical usage. Intuitively, there are not many restrictions on how
developers register their URIs, and thus it is possible that the patterns of per-app schemes
are not that strong.

Since fully automated classification is not yet feasible, I then explore useful heuristics to help
app market admins to conduct collision auditing. I rank features based on the information
gain, and identify top 3 features: average number of apps from the same developer (apDev),
number of unique no-prefix components (npcNum) and number of unique components (uc-
Num). Regarding apDev, the intuition is that developers are likely to use a different per-app
scheme for each of their apps, but would share the same third-party schemes (e.g., oauth)
for all their apps. A larger apDev of the collision link indicates a higher chance of being
a third-party scheme. Moreover, third-party schemes are likely to use the same component
name for different apps (i.e., less unique), leading to smaller npcNum and ucNum.

Feature Description

aNum Total # of apps

uDev # of developers

cNum Total # of components

ucNum # of unique components

utcNum # of unique third-party components

npcNum # of unique components name (no prefix)

tDev # of developers with third-party components

apDev Average # of apps per developer

tDevP % of third-party developers

ucP % of unique components

Table 5.7: Features used for scheme classification.
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Figure 5.8: # of collision apps per scheme.
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Figure 5.9: # of collision apps per host.

5.5.3 Hijacking Results and Case Studies

In total, I identify 149 per-app schemes and 2,314 per-app hosts that are involved in link
collisions. The related apps (893 and 1,593 respectively) are either the attacker or victim in
the hijacking attacks. To understand how per-app schemes and hosts are hijacked, I perform
in-depth cases studies on a number of representative attacks.

Traffic Hijacking. I find that rogue apps often register popular websites’ links (or pop-
ular apps’ schemes) seeking to redirect user traffic to themselves. For example, “google.com”
is registered by 480 apps from 305 non-Google developers. The scheme “google.navigation”
from Google Maps is hijacked by 79 apps from 32 developers. The intuition is that popular
sites and apps already have a significant number of links distributed to the web. Hijacking
their links are likely to increase the attacker apps’ chance of being invoked. I find many
popular apps are among the hijacking targets (e.g., Facebook, Airbnb, YouTube, Tumblr).
Traffic hijacking is the most common attacks.

URL Redirector MITM. A number of hijackings are conducted by “URL Redirector”
apps. When users click on an http/https link in the browser, these Redirector apps redi-
rect users to the corresponding apps. Essentially, Redirector apps play the role of mobile
OS in redirecting URLs, but their underlying mechanisms have several security implica-
tions. For example, URLLander (com.chestnutcorp.android.urlander) and AppRedirect
(com.nevoxo.tapatalk.redirect) each has registered HTTPS links from 36 and 75 web
domains respectively (unverified) and has over 10,000 installs. I suspect that users install
Redirector apps because of the convenience, since these apps allow users to open the des-
tination apps (without bouncing to the browser) even if the destination apps have not yet
adopted App links. The redirection is hard coded without the consent of the destination
apps or the originated websites.

In addition, URL redirector apps can act as man-in-the-middle (MITM). For example,
URLLander registered “https://www.paypal.com” for redirection. When a user visits
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Figure 5.10: Deep link distribution among Alexa top 1 million websites. Website domains
are sorted and divided into 20 even-sized bins (50K sites per bin). I report the % of websites
that contain deep links in each bin.

paypal.com using a browser (usually logged-in), the URL contains sensitive parameters
including a SESSIONID. Once the user agrees to use URLLander for redirection, the URL
and SESSIONID will be handed over to URLLander by the browser in plaintext. This
MITM threat applies to all the popular websites that Redirector apps registered such as
facebook.com, instagram.com, and ebay.com. Particularly for eBay, I find that the official
eBay app explicitly does not register to open the link “payments.ebay.com”, but this link
was registered by Redirector apps. I analyze the code of AppRedirect and find it actually
writes every single incoming URL and parameters in a log file. Redirection (and MITM) can
be automated without prompting users by exploiting the over-permission vulnerability (see
§5.4.2) — if the user once sets a preference for just one of those links.

Hijacking a Competitor’s App. Many apps are competitors in the same busi-
ness, and I find targeted hijacking cases between competing apps. For example, Careem
(com.careem.acma) and QatarTaxi (com.qatar.qatartaxi) are two competing taxi book-
ing apps in Dubai. Careem is more popular (5M+ downloads), which uses scheme “careem”
for many functionalities such as booking a ride (from hotel websites) and adding credit card
information. QatarTaxi (10K downloads) registers to receive all “careem://*” deep links.
After code analysis, I find all these links redirect users to the QatarTaxi app’s home screen,
as an attempt to draw customers.

Bad Scheme Names. Hijackings are also caused by developers using easy-to-conflict
scheme names. For example, Citi Bank’s official app uses “deeplink” as its per-app scheme,
which conflicts with 6 other apps. These apps are not malicious, but may cause confusions
— a user was going to open the Citi Bank app, but a non-related app shows up (and vice
versa). I detect 14 poorly named per-app schemes (e.g., “myapp”, “app”).
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Dataset
App Link
(Webpage)

Scheme URL
(Webpage)

Intent URL
(Webpage)

Alexa1M 3.2M (480K) 431K (197K) 1,203 (452)

Table 5.8: Number of deep links (and webpages that contain deep links) in Alexa top 1
million web domains.

5.6 Mobile Deep Links on The Web

My analysis shows that hijacking risks still widely exist within apps. Now I move to the
web-side to examine how mobile deep links are distributed on the web, and estimate the
chance of users encountering hijacked links. In addition, I focus on Intent URL to examine
its adoption and usage. I seek to estimate the impact of Intent URLs to mitigating hijacking
threats.

In the following, I first measure the prevalence Intent URLs on the web, and compare with
scheme URLs and App links. Then, I revisit the hijacked links detected in §5.5 and analyze
their appearance on the web.

5.6.1 Intent URL Usage

Intent URL is a secure way of calling deep links from websites by specifying the target app’s
package name (unique identifier). In theory, Intent URL can be used to invoke existing app
components defined by scheme URLs (and even App links) to prevent hijacking. The key
question is how widely are Intent URLs adopted in practice. .

Intent URLs vs. Other Links I start by extracting mobile deep links from web pages
in Alexa1M collected in §5.2. For App links and scheme URLs, I match all the hyperlinks
in the HTML pages with the link registration entries extracted from apps. I admit that this
method is conservative as I only include deep links registered by apps in the dataset. But the
matching is necessary since not all the HTTP/HTTPS links or schemes on the web can invoke
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apps. For Intent URLs, I identify them based on their special format (“intent://*;end”).
The matching results are shown in Table 5.8.

The key observation is Intent URLs are rarely used. Out of 1 million web domains, only 452
(0.05%) contain Intent URLs in their index page. As a comparison, App links and Scheme
URLs appear in 480K (48%) and 197K (19.7%) of these sites. For the total number of links,
Intent URL is also orders of magnitude lower than other links (1,203 versus 3.2M and 431K).
This extremely low adoption rate indicates that Intent URLs have little impact to mitigating
hijacking risks in practice.

Challenges to Intent URL Adoption. Since Android still supports scheme URLs, it is
possible that developers are not motivated to use Intent URLs to replace the still-functional
scheme URLs. In addition, even if security-aware developers use Intent URLs on their own
websites, it is difficult for them to upgrade scheme URLs that have been distributed to other
websites.

As shown in Figure 5.10(a), Intent URLs are highly skewed towards to high-ranked websites.
In contrary, Scheme URLs are more likely to appear in low-ranked domains (Figure 5.10(b)),
and App links’ distribution is relatively even (Figure 5.10(c)). A possible explanation is that
popular websites are more security-aware.

Then I focus on apps, and examine how many websites that contain an app’s deep links
(Figure 5.11). I find that most apps have their Intent URLs on a single website (90%). I
randomly selects 40+ pairs of the one-to-one mapped apps and websites for manual exam-
ination. I find that almost all websites (except 2) are owned by the app developer, which
confirms my intuition. Scheme URLs are found in more than 5 websites for 90% of apps
(50 websites for more than half of the apps). It is challenging to remove or upgrade scheme
URLs across all these sites.

Insecure Usage of Intent URL. Among the 1,203 Intent URLs, I find 25 Intent URLs
did not specify the package name of the target app (only the host or scheme). These 25
Intent URLs can be hijacked.

5.6.2 Measuring Hijacking Risk on Web

To estimate the level of hijacking risks on the web, I now revisit the hijacking attacks detected
in §5.5 (those on per-app schemes/hosts). I seek to measure the volume of hijacked links
among webpages, and estimation App link’s contributions over existing risks introduced by
scheme URLs.

Hijacked Mobile Deep Links. I extract links from Alexa1M that are registered by
multiple apps, which returns 408,455 scheme URLs and 2,741,817 App links. Among them,
7,242 scheme URLs and 2,619,565 App links contain per-app schemes/hosts (i.e., hijacked
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links).

The key observation is that App links introduce orders of magnitude more hijacked links that
App links than scheme URLs, as shown in Figure 5.12 (log scale y-axis). I further examine
the number of websites that contain hijacked links. As shown in Figure 5.13, App links have
a dominating contribution: 456K websites (out of 1 million, 45.6%) contains per-app App
links that are subject to link hijacking. The corresponding number for scheme URL is 5.3K
websites (0.5%).

App links, designed as the secure version of deep links, actually expose users to a higher
level of risks. Intuitively, http/https links have been used on the web for decades. Once apps
register App links, a large number of existing http/https links on the web are automatically
interpreted as App links. This creates more opportunities for malicious apps to perform link
hijacking.

Links Carrying Sensitive Data. To illustrate the practical consequences of link
hijacking, I perform a quick analysis on the hijacked links with a focus on their parameters.
A quick keyword search returns 74 sensitive parameter names related to authentications
(e.g., cookie, authToken, sessionid, password, access token, full list in Table 5.9). I
find that 1075 hijacked links contain at least one of the sensitive parameters. A successful
hijacking will expose these parameters to the attacker app. This is just one example, and by
no means exhaustive in terms of possibly sensitive data carried in hijacked links (e.g., PII,
location).

access token, actionToken, api key, apikey, apiToken, Auth,
auth key, auth token, authenticity token, authkey, auth-
Token, autologin, AWSAccessKeyId, cookie, csrf token,
csrfKey, csrfToken, ctoken, fk session id, FKSESSID,
FOGSESSID, force sid, formkey, gsessionid, guestaccessto-
ken, hkey, IKSESSID, imprToken, jsessionid, key, keycode,
keys, LinkedinToken, live configurator token, LLSESSID,
MessageKey, mrsessionid, navKey, newsid, oauth callback,
oauth token, pasID, pass, pass key, password, PHPSESSID,
piggybackCookie, plkey, redir token, reward key, roken2,
seasonid, secret key, secret perk token, ses key, sesid, SESS,
sessid, sessid2b4f0b11dea2f7ae4bfff49b6307d50f, SESSION,
session id, session rikey, sessionGUID, sessionid, sh auth,
sharedKey, SID, tok, token, uepSessionToken, vt session id,
wmsAuthSign, ytsession

Table 5.9: Sensitive parameters in mobile deep links.
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5.7 Discussion

Key Implications. My results shed light on the practical challenges to mitigate vul-
nerable mobile deep links. First, scheme URL is designed for mixed purposes, including
invoking a generic function (functional/third-party schemes) and launching a target app
(per-app schemes). The multipurpose design makes it difficult to uniformly enforce security
policies (e.g., associating schemes to apps). A more practical solution should prohibit per-
app schemes, while not crippling the widely deployed functional/third-party schemes on the
web.

Second, App links and Intent URLs are designed with security in mind. However, their
practical usage has deviated from the initial design. Particularly for App links, 98% of apps
did not implement link verification correctly. In addition to various configuration errors, a
more important reason is unverified links still work on Android, and developers are likely not
motivated to verify links. As a result, App links not only fail to provide a better security,
but worsen the situation significantly by introducing more hijacked links.

Finally, the insecurity of deep links leads to a tough trade-off between security and usability.
Mobile deep links are designed for usability, to enable seamless context-aware transitions
from web to apps. However, due to the insecure design, mobile platforms have to constantly
prompt users to confirm the links they clicked, which in turn hurts usability. The current
solution for Android (and iOS) takes a middle ground, by letting users set “preference”
for certain apps to disable prompting. I find this leads to new security vulnerabilities (over
permission risk in §5.4.2) that allow malicious apps to hijack arbitrary HTTP/HTTPS URLs
in the Android browser.

Legacy Issue. Android does not strongly enforce App link verification possibly due to
the legacy issues. First, scheme URLs are still widely used on websites as discussed in §5.6.
Disabling scheme links altogether would inevitably affect users’ web browsing experience
(e.g., causing broken links [4]). Second, according to Google’s report [13], over 60% of
Android devices are still using Android 5.0 or earlier versions, which do not support App link
verification. Android allows apps (6.0 or higher) to use verified App links while maintaining
backward compatibility by not enforcing the verification.

Countermeasures. I discuss three countermeasures to mitigate link hijacking risks.
In the short term, the most effective countermeasures would be disabling scheme URLs in
mobile browsers or webviews. Note that this is not to disable the app interfaces defined by
schemes, but to encourage (force) websites to use Intent URLs to invoke per-app schemes
safely. Android may also whitelist a set of well-defined functional schemes to avoid massively
breaking functional links. For custom scheme URLs that are still used on the web, Android
needs to handle their failure gracefully without severely degrading user experience. Second,
prohibiting apps from opening unverified App links to prevents link hijacking. The drawback
is that apps without a web front would face difficulties to use deep links — they will need to
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rely on third-party services such as Brach.io [2] or Firebase [3] to host their association files.
Third, addressing the over-permission vulnerability (§5.4.2), by adopting more fine-grained
preference setting (e.g., at the host level or even the link level). This threat would also go
away if Android strictly enforces App link verifications.

Vulnerability Notification & Mitigation. My study identified new vulnerabilities and
attacks, and I am taking active steps to notifying the related parties for the risk mitigation.
First, regarding the over-permission vulnerability, I have filed a bug report through Google’s
Vulnerability Reward Program (VRP) in February 2017. As of June 2017, I have established
a case and submitted the second round of materials including the proof-of-concept app and a
demo of the attack. I am waiting for further responses from Google. Second, I have reported
my findings to the Android anti-malware team and the Firebase team regarding the massive
unverified App links and the misconfiguration issues. Details regarding their mitigation plan,
however, were not disclosed to us. Third, as shown in §5.4.1, most of the misconfigured App
links haven’t been fixed after 5 months. In the next step, I plan to contact the developers,
particularly those of hijacked apps and help them to mitigate the configuration errors.

Limitations. My study has a few limitations. First, the conclusions are limited to
mobile deep links of Android. Although iOS takes a more strict approach to enforcing
the link verification, it remains to be seen how well the security guarantee are achieved
in practice. The brief measurement in §5.4.1 already shows that iOS universal links also
have misconfigurations. More extensive measurements are needed to fully understand the
potential security risks of iOS deep links (future work). Second, the measurement scope
is still limited comparing to the size of Android app market and the whole web. I argue
that data size is sufficient to draw the conclusions. By measuring the most popular apps
(160,000+) and web domains (1,000,000), I collect strong evidence on the incompetence of
the newly introduced linking mechanisms in providing better security. Third, I only focus on
the link hijacking threat, because this is the security issue that App links and Intent URLs
are designed to address. There are other threats related to web-to-mobile communications
such as exploiting webviews and browsers [51, 98], and cross-site request forgery on apps [69,
120, 132]. my work is complementary to existing work to better understand and secure the
web-and-app ecosystem.



Chapter 6

Conclusions and Future Work

In this thesis, I present my attempts to mining security risks in massive datasets: detect
data leakage in large datasets while preserving the privacy of sensitive data in outsourced
environment, prioritize inter-app communication risks based on analyzing the communication
context of large number of Android apps, measure the effectiveness of mobile deep links and
their impact on mobile phone and the web.

In Chapter 3, I presented a data leak detection system and the MapReduce collection inter-
section algorithms for detecting the occurrences of sensitive data patterns in massive-scale
content in data storage or network transmission. My system provides privacy enhancement
to minimize the exposure of sensitive data during the outsourced detection. I deployed and
evaluated my prototype with the Hadoop platform on Amazon EC2 and a local cluster, and
achieved 225 Mbps analysis throughput.

In Chapter 4, I presented the design and implementation of MR-Droid, a MapReduce pipeline
for large-scale inter-app ICC risk analyses. By constructing ICC graphs with efficient par-
allelization, my system enables highly scalable inter-app security analysis and accurate risk
prioritization. Using MR-Droid, I analyzed 11,996 most popular Android apps (13 million
app pairs) and examined their security risk levels against intent hijacking, intent spoofing,
and collusion attacks. My analysis reveals new types of app collusion and hijacking risks
(e.g., collusion through stealthy implicit intent). I manually inspected a subset of the apps
and validated the security risk analysis. The empirical results and manual validation demon-
strated the merits of MR-Droid in prioritizing various ICC risks and the effectiveness of the
prioritization.

In Chapter 5, I conducted the first large scale measurement study on mobile deep links across
popular apps and websites. The results show strong evidences that the newly proposed deep
link methods (App links and Intent URLs) in Android fail to address the existing hijacking
risks in practice. In addition, I identify new vulnerabilities and empirical misconfigurations
in App links, which ultimately expose users to a higher level of risks. Moving forward, I
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make a list of suggestions to countermeasure the link hijacking risks in Android.

For future work, I plan to continue to work on mining the security risks in massive datasets.
For example, I only measured the hijacking risks of deep links. Deep links can also be used
to attack mobile browser or mobile apps. I will work on the detection of vulnerable mobile
apps and malicious deep links on web. In addition, I will polish my current approaches
making it more practical for various real-world applications. For example, I plan to update
the current data leak detection algorithms and platforms so that it can process streaming
network traffic efficiently.
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[87] Feng Li, Beng Chin Ooi, M. Tamer Özsu, and Sai Wu. Distributed data management
using MapReduce. ACM Comput. Surv., 2014.

[88] Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui Ren, and Wenjing Lou. Fuzzy keyword
search over encrypted data in cloud computing. In INFOCOM, 2010.

[89] Kang Li, Zhenyu Zhong, and Lakshmish Ramaswamy. Privacy-aware collaborative
spam filtering. IEEE Trans. Parallel Distrib. Syst., 2009.
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