Mining Social-Network Graphs

Hung Le
University of Victoria

March 16, 2019

Social-Network Graphs

Social networks become more and more popular now. Most popular social networks (as of January 2019) are:

- Facebook: 2.2 B active users.
- Youtube: 1.9 B active users.
- WhatsApp: 1.5 B active users
- And more ${ }^{1}$.

[^0]
What is a Social Network

Some common characteristics:

- A set of entities in the network.
- At least one relationship between entities, so-called friend relationship. It may be:
- Two-way: typical friend relationship.
- One-way: following relationship.
- Weighted: friends, family, acquaintances, etc.
- Locality or nonrandomness such as the formation of communities.

Representing Social Networks

We often represent social networks by graphs, call social graphs.

Figure: An example of a small social network.

Examples of Social Networks

Telephone Networks:

- Nodes: phone numbers.
- Edges: Calls placed between phones.
- Communities: groups of people communicate frequently, such as groups of friends, members of a club, or people working at the same company, etc.

Examples of Social Networks (Cont.)

Email Networks:

- Nodes: email addresses.
- Edges: (two-way) email exchanges between addresses.
- Communities: groups of people communicate frequently, such as groups of friends, members of a club, or people working at the same company, etc.

Examples of Social Networks (Cont.)

Collaboration Networks:

- Nodes: people who have published papers.
- Edges: people publishing papers jointly.
- Communities: groups of authors working on particular topics.

Examples of Social Networks (Cont.)

Many other types:

- Information Network (documents, web graphs, patents).
- Infrastructure networks (roads, planes, water pipes, powergrids).
- Biological networks (genes, proteins, food-webs of animals eating each other).
- Many more.

Graphs with more than one Node Types

Facebook has:

- Regular nodes: each node corresponds to a person.
- Group: each node correspond to a group of people sharing a common interest.

Our main goal in this lecture

Identify "communities" which are subset of nodes with unusually strong connections.

Clustering

We can use clustering techniques, such as HC or K-means.

- Distance measure: shortest path distances between nodes in graphs.

This typically produces undesirable or unstable results.

Edge Betweenness

Betweenness of an edge e, denoted by $B(e)$, intuitively is the number of pairs of nodes (x, y) such that $e \in P(x, y)$, where $P(x, y)$ is the shortest path between x, y.

Edge Betweenness

Betweenness of an edge e, denoted by $B(e)$, intuitively is the number of pairs of nodes (x, y) such that $e \in P(x, y)$, where $P(x, y)$ is the shortest path between x, y.

- There maybe more than one shortest path between two nodes x, y.
- Define $B_{x y}(e)$ to be the fraction of shortest paths between x, y going through e.

$$
\begin{equation*}
B(e)=\sum_{x=1}^{n} \sum_{y=x+1}^{n} B_{x, y}(e) \tag{1}
\end{equation*}
$$

assuming nodes are indexed from 1 to n.

Edge Betweenness - An example

High betweenness means the edge is likely between different communities.

Betweenness to Communities

Remove the edges by decreasing order of betweenness until we obtain a desired number of communities.

Computing Edge Betweenness

```
GirvanNewman(G(V,E))
    foreach node v}\in
            Find a BFS tree Tv rooted at v.
            NL
    E L _ { v } [ 1 , \ldots , n ] \leftarrow \operatorname { E d g e L a b e L i n g } ( T _ { v } , G , N L _ { v } )
    foreach edge e e\inE
        B[e]}\leftarrow
        foreach node v\inV
        B[e]}\leftarrowB[e]+E\mp@subsup{L}{v}{}[e
    B[e]}\leftarrowB[e]/
return }B[1,\ldots,m
```

- $N L_{v}[u]$ is the number of shortest paths from v to u.
- $E L_{v}[e]$ is the contribution of shortest paths from v to e's betwenness.

Computing Edge Betweenness (Cont.)

```
\(\operatorname{NodeLabeling}\left(T_{v}, G(V, E)\right)\)
    \(v \leftarrow\) the root of \(T\)
    \(\{0,1 \ldots L\}\) levels of nodes in \(T\)
    \(N L_{v}[v] \leftarrow 1\)
    for \(\ell \leftarrow 1\) to \(L\)
        foreach node \(u\) at level \(\ell\)
        \(P_{u}=\{w: u w \in E\) and \(\operatorname{level}(w)=\ell-1\}\)
        \(N L_{v}[u] \leftarrow \sum_{w \in P(u)} N L_{v}[w]\)
    return \(N L_{v}[1, \ldots, n]\)
```

- $N L_{v}[u]$ is the number of shortest paths from v to u.

Computing Edge Betweenness (Cont.)

$\operatorname{EdgeLabeling}\left(T_{v}, G(V, E), N L_{v}\right)$
$v \leftarrow$ the root of T
$\{0,1 \ldots L\}$ levels of nodes in T
foreach node u at level L

$$
C[u] \leftarrow 1
$$

for $\ell \leftarrow L$ down to 1
foreach u at level ℓ

$$
P_{u}=\{w: u w \in E \text { and } \operatorname{level}(w)=\ell-1\}
$$

foreach $w \in P_{u}$

$$
E L_{v}[u w] \leftarrow \frac{C[u] \cdot N L_{v}[w]}{N L_{v}[u]}
$$

foreach w at level $\ell-1$

$$
\begin{aligned}
& \operatorname{Pred}_{w}=\{u: w u \in E \text { and } \operatorname{level}(u)=\ell\} \\
& C[w] \leftarrow \sum_{u \in \operatorname{Pred}_{w}} E L_{v}[w u]+1.0
\end{aligned}
$$

return $E L_{v}[1, \ldots, n]$

- $E L_{v}[e]$ is the contribution of shortest paths from v to e 's betwenness.

Computing Edge Betweenness (Cont.)

```
GirvanNewman(G(V,E))
    foreach node v\inV
            Find a BFS tree Tv rooted at v.
            NL
            EL}[1,\ldots,n]\leftarrow\operatorname{EdgeLabeling}(\mp@subsup{T}{v}{},G,N\mp@subsup{L}{v}{}
foreach edge e }\in
            B[e]}\leftarrow
            foreach node v \inV
                B[e]}\leftarrowB[e]+E\mp@subsup{L}{v}{}[e
            B[e]}\leftarrowB[e]/
return }B[1,\ldots,m
```

Running time: $O(n m)$.

- In practice, we pick a subset of the nodes at random and use these as the roots of breadth-first searches to get an approximation of betweenness.

Graph Partitioning

Divide the graph into two parts so that the cut, the set of edges between two parts, is minimized.

- Typically want two parts have roughly equal size.

Figure: An example of a good cut.

Normalized Cut

Let $S \subset V$ and $T=V \backslash S$. Let $E(S, T)$ be the set of edges with one endpoint in S and one endpoint in T.

$$
\begin{gather*}
\operatorname{Cut}(S, T)=|E(S, T)| \\
\operatorname{Vol}(S)=\sum_{u \in S} \operatorname{deg}_{G}(u) \quad \operatorname{Vol}(T)=\sum_{u \in T} \operatorname{deg}_{G}(u) \tag{2}
\end{gather*}
$$

The normalized cut value for S, T, denoted by $\mathrm{NC}(S, T)$, is:

$$
\begin{equation*}
\mathrm{NC}(S, T)=\frac{\operatorname{Cut}(S, T)}{\operatorname{Vol}(S)}+\frac{\operatorname{Cut}(S, T)}{\operatorname{Vol}(T)} \tag{3}
\end{equation*}
$$

We want to find cut with minimum $\mathrm{NC}(S, T)$.

Graphs as Matrices

Adjacency matrix $A_{n \times n}$ where:

$$
A[i, j]= \begin{cases}1 & \text { if edge } i-j \in E \\ 0 & \text { otherwise }\end{cases}
$$

Graphs as Matrices (Cont.)

Degree matrix $D_{n \times n}$ where:

$$
D[i, j]= \begin{cases}\operatorname{deg}_{G}[i] & \text { if edge } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Graphs as Matrices (Cont.)

Laplacian Matrix $L=D-A$.

$$
\left[\begin{array}{rrrrrrr}
2 & -1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 3 & -1 & -1 & 0 & 0 & 0 \\
-1 & -1 & 2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 4 & -1 & -1 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -1 & -1 & 3 & -1 \\
0 & 0 & 0 & -1 & 0 & -1 & 2
\end{array}\right]
$$

Eigenvalues and Eigenvectors of Laplacian Matrices

Laplacian L has an eigenvector $\mathbf{x} \in \mathrm{R}^{n}$ associated with an eigenvalue $\lambda \in \mathrm{R}$ if:

$$
\begin{equation*}
L \mathbf{x}=\lambda \mathbf{x} \tag{4}
\end{equation*}
$$

Fact 1: L has n eigenvalues s.t $0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$.

Eigenvalues and Eigenvectors of Laplacian Matrices

Laplacian L has an eigenvector $\mathbf{x} \in \mathrm{R}^{n}$ associated with an eigenvalue $\lambda \in \mathrm{R}$ if:

$$
\begin{equation*}
L \mathbf{x}=\lambda \mathbf{x} \tag{4}
\end{equation*}
$$

Fact 1: L has n eigenvalues s.t $0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$.
Fact 2: The eigenvector associated with $\lambda_{1}(=0)$ of L is $\mathbf{1}_{n}$.

Eigenvalues and Eigenvectors of Laplacian Matrices

Laplacian L has an eigenvector $\mathbf{x} \in \mathrm{R}^{n}$ associated with an eigenvalue $\lambda \in \mathrm{R}$ if:

$$
\begin{equation*}
L \mathbf{x}=\lambda \mathbf{x} \tag{4}
\end{equation*}
$$

Fact 1: L has n eigenvalues s.t $0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$.
Fact 2: The eigenvector associated with $\lambda_{1}(=0)$ of L is $\mathbf{1}_{n}$.
Fact 3: The second eigenvector, denoted by \mathbf{x}_{2}, associated with λ_{2} of L satisfies:

$$
\begin{equation*}
\mathbf{x}_{2}=\arg \min \mathbf{x}^{T} L \mathbf{x} \tag{5}
\end{equation*}
$$

subject to

$$
\begin{align*}
\mathbf{x}_{2}^{\top} \mathbf{1}_{n} & =0 \\
\sum_{i=1}^{n} x_{2}[i]^{2} & =1 \tag{6}
\end{align*}
$$

Understanding λ_{2} and \mathbf{x}_{2}

$$
\begin{equation*}
\mathbf{x}^{\top} L \mathbf{x}=\sum_{(i, j) \in E}(x[i]-x[j])^{2} \tag{7}
\end{equation*}
$$

Why? Let $N[i]$ be the set of neighbors of i, including i.

$$
\begin{align*}
\mathbf{x}^{\top} L \mathbf{x} & =\sum_{i=1}^{n} \sum_{j \in N[i]} x[i] L[i, j] x[j] \\
& =\sum_{i=1}^{n} \sum_{j \in N[i]} x[i](D[i, j]-A[i, j]) x[j] \tag{8}\\
& =\sum_{i=1}^{n} d[i] \times\left[[]^{2}-2 \sum_{(i, j) \in E} x[i] \times[j]\right. \\
& =\sum_{(i, j) \in E}(x[i]-x[j])^{2}
\end{align*}
$$

Understanding λ_{2} and \mathbf{x}_{2}

$$
\begin{equation*}
\mathbf{x}^{T} L \mathbf{x}=\sum_{(i, j) \in E}(x[i]-x[j])^{2} \tag{9}
\end{equation*}
$$

Recall: The second eigenvector, denoted by \mathbf{x}_{2}, associated with λ_{2} of L satisfies:

$$
\begin{equation*}
\mathbf{x}_{2}=\arg \min \mathbf{x}^{\top} L \mathbf{x} \tag{10}
\end{equation*}
$$

subject to

$$
\begin{align*}
\mathbf{x}_{2}^{T} \mathbf{1}_{n} & =0 \\
\sum_{i=1}^{n} x_{2}[i]^{2} & =1 \tag{11}
\end{align*}
$$

Understanding λ_{2} and \mathbf{x}_{2}

Eigenvalue	0	1	3	3	4	5
Eigenvector	1	1	-5	-1	-1	-1
	1	2	4	-2	1	0
	1	1	1	3	-1	1
	1	-1	-5	-1	1	1
	1	-2	4	-2	-1	0
	1	-1	1	3	1	-1

Finding Overlapping Community

It's is natural to expect that a person belonging to two or more community.

Maximum Likelihood Estimation - MLE

Ideas: Assume that the network is generated by a probabilistic process with a set of parameters \mathbf{p}. Find \mathbf{p} so that the probability (or likelihood) of observing the network is maximum.

- The process of finding \mathbf{p} will give us the set of (overlapping) communities.

MLE - An example

Suppose that each edge is generated with probability p.

- What is the probability of observing this graph? Answer: $p^{4}(1-p)^{2}$.
- When this probability is maximize? Answer $p=2 / 3$ (see the board calculation)

The Affiliation Graph Model

(1) There is a given number of communities and nodes.
(2) Each community has a set of nodes as members. The memberships are parameters of the model.
(3) Each community C has a parameter p_{C} : two people in the community is connected by an edge with probability p_{C}. All p_{C} values are parameters of the model.
(9) If two nodes u, v belong to more than one community, then there is an edge $u v$ if any community containing both u, v justifies for it.

The Affiliation Graph Model

(1) There is a given number of communities and nodes.
(2) Each community has a set of nodes as members. The memberships are parameters of the model.
(3) Each community C has a parameter p_{C} : two people in the community is connected by an edge with probability p_{C}. All p_{C} values are parameters of the model.
(4) If two nodes u, v belong to more than one community, then there is an edge $u v$ if any community containing both u, v justifies for it.

Property (4) means:

$$
\begin{equation*}
p_{u v}=1-\prod_{C:\{u, v\} \subseteq C}\left(1-p_{C}\right) \tag{12}
\end{equation*}
$$

The Affiliation Graph Model - An Example

- Two communities $C=\{x, y, w\}$ and $D=\{y, w, z\}$.
- Unknown parameters: p_{C}, p_{D}.

Find p_{C}, p_{D} to maximize the MLE of the network.

The Affiliation Graph Model - An Example (Cont.)

$$
\begin{aligned}
p_{x w}=p_{x y}=p_{C} & p_{y z}=p_{D} \quad p_{w y}=1-\left(1-p_{C}\right)\left(1-p_{D}\right) \\
p_{w z}=1-p_{D} & p_{x z}=1-\epsilon
\end{aligned}
$$

Then

$$
\begin{equation*}
p_{\text {network }}=p_{C}^{2} p_{D}\left(p_{D}+p_{C}-p_{C} p_{D}\right)\left(1-p_{D}\right)(1-\epsilon) \tag{13}
\end{equation*}
$$

which is maximized when $p_{C}=1, p_{D}=\frac{1}{2}$.

The Affiliation Graph Model - An Example (Cont.)

We found $p_{C}=1, p_{D}=\frac{1}{2}$. But what is the point? Our goal is to find overlapping communities, not just the parameters.

The Affiliation Graph Model- Revisited

(1) There is a given number of communities and nodes.
(2) Each community has a set of nodes as members. The memberships are parameters of the model.
(3) Each community C has a parameter p_{C} : two people in the community is connected by an edge with probability p_{C}. All p_{C} values are parameters of the model.
(9) If two nodes u, v belong to more than one community, then there is an edge $u v$ if any community containing both u, v justifies for it.

We haven't seen membership parameters. These parameters will give us communities.

The Affiliation Graph Model- Membership Parameters

For each node x and a given community C, there is a strength of membership parameter $F_{x} C$.

- Given a community C and two nodes $u, v \in C$, the probability that there is an edge $u v$ in C is:

$$
\begin{equation*}
p_{C} u v=\left(1-e^{-F_{u c} F_{v c}}\right) \tag{14}
\end{equation*}
$$

(No need to have p_{C} anymore.)
Key point: each node belongs to every community but with different degree of membership.

The Affiliation Graph Model- Membership Parameters (Cont.)

Key point: each node belongs to every community but with different degree of membership.

$$
\begin{equation*}
p_{u v}=1-\prod_{C}\left(1-p_{C}(u v)\right)=1-e^{-\sum_{C} F_{u c} F_{v c}} \tag{15}
\end{equation*}
$$

The likelihood of the graph:

$$
\begin{equation*}
p_{\text {network }}=\prod_{u v \in E}\left(1-e^{-\sum_{C} F_{u C} F_{v C}}\right) \prod_{u v \notin E} e^{-\sum_{C} F_{u C} F_{v C}} \tag{16}
\end{equation*}
$$

How to maximize $p_{\text {network }}$? Answer: we maximize $\log \left(p_{\text {network }}\right)$ instead.

The Affiliation Graph Model- Membership Parameters (Cont.)

$$
\begin{equation*}
\log p_{\text {network }}=\sum_{u v \in E} \log \left(1-e^{-\sum_{C} F_{u C} F_{v C}}\right)-\sum_{u v \notin E} \sum_{C} F_{u C} F_{v C} \tag{17}
\end{equation*}
$$

How to maximize $\log p_{\text {network }}$? Answer: find each $F_{\mu C}$ one at a time, assuming other values are fixed.

SimRank

Measure similarities between nodes in social graphs of many node types.

SimRank (Cont.)

Given a node N, we want to find the similarity between N and other nodes.

Idea: start a random walk from N, with restart. The limiting distribution will give us a similarity measure.

SimRank (Cont.)

Transition matrix $M[i, j]$:

$$
M[i, j]= \begin{cases}\frac{1}{\operatorname{deg}_{G}(i)} & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Picture 1) Picture 2 Picture 3

Random Walk with Restart

Random walk with teleportation:

$$
\begin{equation*}
\mathbf{v}_{t}=\beta M \mathbf{v}_{t-1}+(1-\beta) \mathbf{1}_{n} \tag{18}
\end{equation*}
$$

Random walk with restart:

$$
\begin{equation*}
\mathbf{v}_{t}=\beta M \mathbf{v}_{t-1}+(1-\beta) \mathbf{e}_{N} \tag{19}
\end{equation*}
$$

where $\mathbf{e}[N]=1$ and $\mathbf{e}[\mathbf{i}]=0$ for all $i \neq N$

Random Walk with Restart - An example

Picture 1) Picture 2 Picture 3
Sky
$\mathbf{v}_{\mathrm{t}}=\left[\begin{array}{rcccc}0 & 0 & 0 & 4 / 15 & 2 / 5 \\ 0 & 0 & 0 & 4 / 15 & 0 \\ 0 & 0 & 0 & 4 / 15 & 2 / 5 \\ 2 / 5 & 4 / 5 & 2 / 5 & 0 & 0 \\ 2 / 5 & 0 & 2 / 5 & 0 & 0\end{array}\right] \mathrm{v}_{\mathrm{t} \text { t-1 }}+\left[\begin{array}{c}1 / 5 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}1 / 5 \\ 0 \\ 0 \\ 2 / 5 \\ 2 / 5\end{array}\right],\left[\begin{array}{r}35 / 75 \\ 8 / 75 \\ 20 / 75 \\ 6 / 75 \\ 6 / 75\end{array}\right],\left[\begin{array}{r}95 / 375 \\ 8 / 375 \\ 20 / 375 \\ 142 / 375 \\ 110 / 375\end{array}\right],\left[\begin{array}{r}2353 / 5625 \\ 568 / 5625 \\ 1228 / 5625 \\ 786 / 5625 \\ 690 / 5625\end{array}\right], \ldots,\left[\begin{array}{l}.345 \\ .066 \\ .145 \\ .249 \\ .196\end{array}\right]$

Counting Triangles

A triangle is a triangle.

How many triangle do we have in this figure?

Why Counting Triangles?

Given a graph with n nodes and m edges. How many triangle do you expect to find?

- Assume that each edges is generated with probability $\frac{m}{\binom{n}{2}}$.

Why Counting Triangles?

Given a graph with n nodes and m edges. How many triangle do you expect to find?

- Assume that each edges is generated with probability $\frac{m}{\binom{n}{2}}$.

$$
\begin{equation*}
\mathbb{E}[\# \text { triangles }]=\binom{n}{3}\left(\frac{m}{\binom{n}{2}}\right)^{3} \sim \frac{4}{3}(m / n)^{3} \tag{20}
\end{equation*}
$$

Why Counting Triangles?

Given a graph with n nodes and m edges. How many triangle do you expect to find?

- Assume that each edges is generated with probability $\frac{m}{\binom{n}{2}}$.

$$
\begin{equation*}
\mathbb{E}[\# \text { triangles }]=\binom{n}{3}\left(\frac{m}{\binom{n}{2}}\right)^{3} \sim \frac{4}{3}(m / n)^{3} \tag{20}
\end{equation*}
$$

We expect the social network graph has much larger \# triangles because A is a friend of B, B is a friend of C then A likely is a friend of C.

- We can qualify non-randomness of the social network by counting triangles.

Counting Triangles- A Naive Algorithm

$$
\begin{aligned}
& \text { CountingTriangle }(G(V, E)) \\
& C \leftarrow 0 \\
& \text { foreach edge } u v \in E \\
& C \leftarrow C+|N(u) \cap N(v)| \\
& \text { return } C / 3
\end{aligned}
$$

Running time? $O(m \Delta)$ where Δ is the maximum degree of the graph.

Counting Triangles with High Degree Vertices

- Assume that nodes are from $\{1,2, \ldots, n\}$.
- Call a node v heavy hitter if $\operatorname{deg}_{G}(v) \geq \sqrt{m}$. Call it light otherwise. How many heavy hitters can we have?

Counting Triangles with High Degree Vertices

- Assume that nodes are from $\{1,2, \ldots, n\}$.
- Call a node v heavy hitter if $\operatorname{deg}_{G}(v) \geq \sqrt{m}$. Call it light otherwise. How many heavy hitters can we have?

$$
\begin{equation*}
\sum_{v \in V} \operatorname{deg}_{G}(v)=2 m \tag{21}
\end{equation*}
$$

implies \# of heavy hitters is at most $2 \sqrt{m}$.

Counting Triangles with High Degree Vertices- Step 1

Step 1: Counting all triangles that only contain heavy hitters.

$$
\begin{aligned}
& \text { CountHeavyTriangles }(G(V, E)) \\
& V_{\text {heavy }} \leftarrow \emptyset \\
& \text { for each node } v \in V \\
& \text { if } \operatorname{deg}_{G}(v) \geq \sqrt{m} \\
& \text { add } v \text { to } V_{\text {heavy }} \\
& C_{\text {heavy }} \leftarrow 0
\end{aligned}
$$

for each triple $\{u, v, w\} \subset V_{\text {heavy }}$ if $u v \in E$ and $u w \in E$ and $v w \in E$ $C_{\text {heavy }} \leftarrow C_{\text {heavy }}+1$
return $C_{\text {heavy }}$
Running time $O\left(m^{1.5}\right)$ if using a Hash table to index E.

Counting Triangles with High Degree Vertices- Step 2

Step 2: Counting all triangles that contains at least one light vertex.

- Say $v \prec u$ if (i) $\operatorname{deg}_{G}(v)<\operatorname{deg}_{v}(u)$ or (ii) $\operatorname{deg}_{G}(v)=\operatorname{deg}_{G}(u)$ and $v<u$.

```
CountLightTriangles \((G(V, E))\)
    \(V_{\text {light }} \leftarrow V \backslash V_{\text {heavy }}\)
    \(C_{\text {light }} \leftarrow 0\)
    for each edge \(u v \in V\)
        if \(\{u, v\} \cap V_{\text {light }} \neq \emptyset\)
        suppose \(v \prec u\)
        for each \(w \in N(v)\)
        if \(v \prec w\)
        \(C_{\text {light }} \leftarrow C_{\text {light }}+1\)
    return \(C_{\text {light }}\)
```

Running time $O(m \sqrt{m})$

Counting Triangles with High Degree Vertices

```
CountTriangles(G(V,E))
    Cheavy }\leftarrow\operatorname{CountHEavyTriangles(G(V,E))
    Clight }\leftarrow\operatorname{CountLightTriangles}(G(V,E)
    return C Cheavy }+\mp@subsup{C}{\mathrm{ light}}{
```

Overall running time $O(m \sqrt{m})$.

- Recall the naive algorithm has running time $O(m \Delta)$ where Δ is the maximum degree.

[^0]: ${ }^{1}$ https://www.statista.com/statistics/272014/ global-social-networks-ranked-by-number-of-users/

