Mining Social-Network Graphs

Hung Le

University of Victoria

March 16, 2019

Hung Le (University of Victoria)

э March 16, 2019 1/50

Social networks become more and more popular now. Most popular social networks (as of January 2019) are:

- Facebook: 2.2 B active users.
- Youtube: 1.9 B active users.
- WhatsApp: 1.5 B active users
- And more¹.

¹https://www.statista.com/statistics/272014/ global-social-networks-ranked-by-number-of-users/

Hung Le (University of Victoria)

Mining Social-Network Graphs

What is a Social Network

Some common characteristics:

- A set of entities in the network.
- At least one relationship between entities, so-called *friend relationship*. It may be:
 - Two-way: typical friend relationship.
 - One-way: following relationship.
 - Weighted: friends, family, acquaintances, etc.
- Locality or nonrandomness such as the formation of communities.

Representing Social Networks

We often represent social networks by graphs, call social graphs.

Figure: An example of a small social network.

Telephone Networks:

- Nodes: phone numbers.
- Edges: Calls placed between phones.
- Communities: groups of people communicate frequently, such as groups of friends, members of a club, or people working at the same company, etc.

Examples of Social Networks (Cont.)

Email Networks:

- Nodes: email addresses.
- Edges: (two-way) email exchanges between addresses.
- Communities: groups of people communicate frequently, such as groups of friends, members of a club, or people working at the same company, etc.

Examples of Social Networks (Cont.)

Collaboration Networks:

- Nodes: people who have published papers.
- Edges: people publishing papers jointly.
- Communities: groups of authors working on particular topics.

Examples of Social Networks (Cont.)

Many other types:

- Information Network (documents, web graphs, patents).
- Infrastructure networks (roads, planes, water pipes, powergrids).
- Biological networks (genes, proteins, food-webs of animals eating each other).
- Many more.

Graphs with more than one Node Types

Facebook has:

- Regular nodes: each node corresponds to a person.
- Group: each node correspond to a group of people sharing a common interest.

Our main goal in this lecture

Identify "communities" which are subset of nodes with unusually strong connections.

э

We can use clustering techniques, such as HC or K-means.

• Distance measure: shortest path distances between nodes in graphs. This typically produces undesirable or unstable results.

Edge Betweenness

Betweenness of an edge e, denoted by B(e), intuitively is the number of pairs of nodes (x, y) such that $e \in P(x, y)$, where P(x, y) is the shortest path between x, y.

(A) → (A

3

Edge Betweenness

Betweenness of an edge e, denoted by B(e), intuitively is the number of pairs of nodes (x, y) such that $e \in P(x, y)$, where P(x, y) is the shortest path between x, y.

- There maybe more than one shortest path between two nodes x, y.
- Define $B_{xy}(e)$ to be the *fraction* of shortest paths between x, y going through e.

$$B(e) = \sum_{x=1}^{n} \sum_{y=x+1}^{n} B_{x,y}(e)$$
(1)

assuming nodes are indexed from 1 to n.

Edge Betweenness - An example

High betweenness means the edge is likely between different communities.

э

Betweenness to Communities

Remove the edges by *decreasing order* of betweenness until we obtain a desired number of communities.

Computing Edge Betweenness

- $NL_{v}[u]$ is the number of shortest paths from v to u.
- $EL_{v}[e]$ is the contribution of shortest paths from v to e's betwenness.

・ 同 ト ・ ヨ ト ・ ヨ ト

Computing Edge Betweenness (Cont.)

NODELABELING(
$$T_v$$
, $G(V, E)$)
 $v \leftarrow$ the root of T
 $\{0, 1 \dots L\}$ levels of nodes in T
 $NL_v[v] \leftarrow 1$
for $\ell \leftarrow 1$ to L
foreach node u at level ℓ
 $P_u = \{w : uw \in E \text{ and level}(w) = \ell - 1\}$
 $NL_v[u] \leftarrow \sum_{w \in P(u)} NL_v[w]$
return $NL_v[1, \dots, n]$

• $NL_v[u]$ is the number of shortest paths from v to u.

< A IN

э

Computing Edge Betweenness (Cont.)

```
EDGELABELING(T_v, G(V, E), NL_v)
      v \leftarrow the root of T
      \{0, 1 \dots L\} levels of nodes in T
      foreach node u at level l
             C[u] \leftarrow 1
      for \ell \leftarrow L down to 1
             foreach \mu at level \ell
                    P_{\mu} = \{w : uw \in E \text{ and } \operatorname{level}(w) = \ell - 1\}
                    foreach w \in P_{\mu}
                          EL_v[uw] \leftarrow \frac{C[u] \cdot NL_v[w]}{NL_v[u]}
             foreach w at level \ell - 1
                    Pred_w = \{u : wu \in E \text{ and } level(u) = \ell\}
                   C[w] \leftarrow \sum_{u \in Pred} EL_v[wu] + 1.0
      return EL_{v}[1,\ldots,n]
```

• $EL_{v}[e]$ is the contribution of shortest paths from v to e's betweeness.

Computing Edge Betweenness (Cont.)

```
GIRVANNEWMAN(G(V, E))
     foreach node v \in V
           Find a BFS tree T_{v} rooted at v.
           NL_{v}[1,\ldots,n] \leftarrow \text{NODELABELING}(T_{v},G)
           EL_{v}[1,\ldots,n] \leftarrow EDGELABELING(T_{v}, G, NL_{v})
     foreach edge e \in E
           B[e] \leftarrow 0
           foreach node v \in V
                 B[e] \leftarrow B[e] + EL_{v}[e]
           B[e] \leftarrow B[e]/2
     return B[1, \ldots, m]
```

Running time: O(nm).

 In practice, we pick a subset of the nodes at random and use these as the roots of breadth-first searches to get an approximation of betweenness.

Hung Le (University of Victoria)

Graph Partitioning

Divide the graph into two parts so that the *cut*, the set of edges between two parts, is minimized.

• Typically want two parts have roughly equal size.

Figure: An example of a good cut.

Normalized Cut

Let $S \subset V$ and $T = V \setminus S$. Let E(S, T) be the set of edges with one endpoint in S and one endpoint in T.

$$\operatorname{Cut}(S, T) = |E(S, T)|$$
$$\operatorname{Vol}(S) = \sum_{u \in S} \deg_G(u) \quad \operatorname{Vol}(T) = \sum_{u \in T} \deg_G(u)$$
(2)

The normalized cut value for S, T, denoted by NC(S, T), is:

$$\operatorname{NC}(S,T) = \frac{\operatorname{Cut}(S,T)}{\operatorname{Vol}(S)} + \frac{\operatorname{Cut}(S,T)}{\operatorname{Vol}(T)}$$
(3)

We want to find cut with minimum NC(S, T).

Graphs as Matrices

Adjacency matrix $A_{n \times n}$ where:

$$A[i,j] = egin{cases} 1 & ext{if edge } i-j \in E \ 0 & ext{otherwise} \end{cases}$$

< A > <

Graphs as Matrices (Cont.)

Degree matrix $D_{n \times n}$ where:

$$D[i,j] = \begin{cases} \deg_G[i] & \text{if edge } i = \\ 0 & \text{otherwise} \end{cases}$$

< A > <

Graphs as Matrices (Cont.)

Laplacian Matrix L = D - A.

Eigenvalues and Eigenvectors of Laplacian Matrices

Laplacian L has an eigenvector $\mathbf{x} \in \mathbf{R}^n$ associated with an eigenvalue $\lambda \in \mathbf{R}$ if:

$$L\mathbf{x} = \lambda \mathbf{x}$$
 (4)

Fact 1: *L* has *n* eigenvalues s.t $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$.

Eigenvalues and Eigenvectors of Laplacian Matrices

Laplacian L has an eigenvector $\mathbf{x} \in \mathbf{R}^n$ associated with an eigenvalue $\lambda \in \mathbf{R}$ if:

$$L\mathbf{x} = \lambda \mathbf{x}$$
 (4)

Fact 1: *L* has *n* eigenvalues s.t $0 = \lambda_1 \le \lambda_2 \le \ldots \le \lambda_n$.

Fact 2: The eigenvector associated with λ_1 (= 0) of *L* is $\mathbf{1}_n$.

Eigenvalues and Eigenvectors of Laplacian Matrices

Laplacian L has an eigenvector $\mathbf{x} \in \mathbf{R}^n$ associated with an eigenvalue $\lambda \in \mathbf{R}$ if:

$$L\mathbf{x} = \lambda \mathbf{x}$$
 (4)

Fact 1: *L* has *n* eigenvalues s.t $0 = \lambda_1 \le \lambda_2 \le ... \le \lambda_n$. **Fact 2:** The eigenvector associated with λ_1 (= 0) of *L* is $\mathbf{1}_n$. **Fact 3:** The second eigenvector, denoted by \mathbf{x}_2 , associated with λ_2 of *L* satisfies:

$$\mathbf{x}_2 = \arg\min \mathbf{x}^T L \mathbf{x} \tag{5}$$

subject to

$$\mathbf{x}_{2}^{T} \mathbf{1}_{n} = 0$$

$$\sum_{i=1}^{n} x_{2}[i]^{2} = 1$$
(6)

Understanding λ_2 and \mathbf{x}_2

$$\mathbf{x}^{T} L \mathbf{x} = \sum_{(i,j)\in E} (x[i] - x[j])^{2}$$
(7)

Why? Let N[i] be the set of neighbors of *i*, including *i*.

$$\mathbf{x}^{T} \mathcal{L} \mathbf{x} = \sum_{i=1}^{n} \sum_{j \in \mathcal{N}[i]} x[i] \mathcal{L}[i, j] x[j]$$

= $\sum_{i=1}^{n} \sum_{j \in \mathcal{N}[i]} x[i] (D[i, j] - A[i, j]) x[j]$
= $\sum_{i=1}^{n} d[i] x[i]^{2} - 2 \sum_{(i, j) \in E} x[i] x[j]$
= $\sum_{(i, j) \in E} (x[i] - x[j])^{2}$ (8)

Hung Le (University of Victoria)

3

• • • • • • • • • •

Understanding λ_2 and \mathbf{x}_2

$$\mathbf{x}^{T} L \mathbf{x} = \sum_{(i,j)\in E} (x[i] - x[j])^{2}$$
(9)

Recall: The second eigenvector, denoted by \mathbf{x}_2 , associated with λ_2 of *L* satisfies:

$$\mathbf{x}_2 = \arg\min \mathbf{x}^T L \mathbf{x} \tag{10}$$

subject to

$$\mathbf{x}_{2}^{T} \mathbf{1}_{n} = 0$$

$$\sum_{i=1}^{n} x_{2}[i]^{2} = 1$$
(11)

э

Understanding λ_2 and \mathbf{x}_2

Eigenvalue	0	1	3	3	4	5
Eigenvector	1	1	-5	-1	-1	-1
	1	2	4	-2	1	0
	1	1	1	3	-1	1
	1	-1	-5	-1	1	1
	1	-2	4	-2	-1	0
	1	-1	1	3	1	-1

э

A D N A B N A B N A B N

Finding Overlapping Community

It's is natural to expect that a person belonging to two or more community.

A A A A

3

Maximum Likelihood Estimation - MLE

Ideas: Assume that the network is generated by a probabilistic process with a set of parameters \mathbf{p} . Find \mathbf{p} so that the probability (or likelihood) of observing the network is maximum.

• The process of finding **p** will give us the set of (overlapping) communities.

MLE - An example

Suppose that each edge is generated with probability p.

- What is the probability of observing this graph? Answer: $p^4(1-p)^2$.
- When this probability is maximize? Answer p = 2/3 (see the board calculation)

The Affiliation Graph Model

- There is a given number of communities and nodes.
- ② Each community has a set of nodes as members. The memberships are parameters of the model.
- Search community C has a parameter p_C: two people in the community is connected by an edge with probability p_C. All p_C values are parameters of the model.
- If two nodes u, v belong to more than one community, then there is an edge uv if any community containing both u, v justifies for it.

医静脉 医黄脉 医黄脉 一直

The Affiliation Graph Model

- There is a given number of communities and nodes.
- ② Each community has a set of nodes as members. The memberships are parameters of the model.
- Seach community C has a parameter p_C: two people in the community is connected by an edge with probability p_C. All p_C values are parameters of the model.
- If two nodes u, v belong to more than one community, then there is an edge uv if any community containing both u, v justifies for it.

Property (4) means:

$$p_{uv} = 1 - \prod_{C:\{u,v\}\subseteq C} (1 - p_C)$$
(12)

医静脉 医原体 医原体 医原

The Affiliation Graph Model - An Example

- Two communities $C = \{x, y, w\}$ and $D = \{y, w, z\}$.
- Unknown parameters: p_C, p_D .

Find p_C , p_D to maximize the MLE of the network.

The Affiliation Graph Model - An Example (Cont.)

$$p_{xw} = p_{xy} = p_C$$
 $p_{yz} = p_D$ $p_{wy} = 1 - (1 - p_C)(1 - p_D)$
 $p_{wz} = 1 - p_D$ $p_{xz} = 1 - \epsilon$

Then

$$p_{\text{network}} = p_C^2 p_D (p_D + p_C - p_C p_D) (1 - p_D) (1 - \epsilon)$$
 (13)

which is maximized when $p_C = 1$, $p_D = \frac{1}{2}$.

э

The Affiliation Graph Model - An Example (Cont.)

We found $p_C = 1$, $p_D = \frac{1}{2}$. But what is the point? Our goal is to find overlapping communities, not just the parameters.

The Affiliation Graph Model- Revisited

- There is a given number of communities and nodes.
- Each community has a set of nodes as members. The memberships are parameters of the model.
- Seach community C has a parameter p_C: two people in the community is connected by an edge with probability p_C. All p_C values are parameters of the model.
- If two nodes u, v belong to more than one community, then there is an edge uv if any community containing both u, v justifies for it.

We haven't seen membership parameters. These parameters will give us communities.

(人間) トイヨト イヨト ニヨ

The Affiliation Graph Model- Membership Parameters

For each node x and a given community C, there is a strength of membership parameter F_{xC} .

• Given a community C and two nodes $u, v \in C$, the probability that there is an edge uv in C is:

$$p_C uv = (1 - e^{-F_{uC}F_{vC}})$$
 (14)

(No need to have p_C anymore.)

Key point: each node belongs to every community but with different degree of membership.

The Affiliation Graph Model- Membership Parameters (Cont.)

Key point: each node belongs to every community but with different degree of membership.

$$p_{uv} = 1 - \prod_{C} (1 - p_{C}(uv)) = 1 - e^{-\sum_{C} F_{uC} F_{vC}}$$
(15)

The likelihood of the graph:

$$p_{\text{network}} = \prod_{uv \in E} (1 - e^{-\sum_{C} F_{uC} F_{vC}}) \prod_{uv \notin E} e^{-\sum_{C} F_{uC} F_{vC}}$$
(16)

How to maximize $p_{network}$? Answer: we maximize $log(p_{network})$ instead.

The Affiliation Graph Model- Membership Parameters (Cont.)

$$\log p_{\text{network}} = \sum_{uv \in E} \log(1 - e^{-\sum_{C} F_{uC} F_{vC}}) - \sum_{uv \notin E} \sum_{C} F_{uC} F_{vC}$$
(17)

How to maximize log $p_{network}$? Answer: find each F_{uC} one at a time, assuming other values are fixed.

SimRank

Measure similarities between nodes in social graphs of many node types.

э

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Given a node N, we want to find the similarity between N and other nodes.

Idea: start a random walk from N, with restart. The limiting distribution will give us a similarity measure.

SimRank (Cont.)

Transition matrix M[i, j]:

$$M[i,j] = egin{cases} rac{1}{\deg_G(i)} & ext{ if } (i,j) \in E \ 0 & ext{ otherwise} \end{cases}$$

3

< □ > < □ > < □ > < □ > < □ > < □ >

Random Walk with Restart

Random walk with teleportation:

$$\mathbf{v}_t = \beta M \mathbf{v}_{t-1} + (1-\beta) \mathbf{1}_n \tag{18}$$

Random walk with restart:

$$\mathbf{v}_t = \beta M \mathbf{v}_{t-1} + (1 - \beta) \mathbf{e}_N \tag{19}$$

where $\mathbf{e}[N] = 1$ and $\mathbf{e}[\mathbf{i}] = 0$ for all $i \neq N$

3

Random Walk with Restart - An example

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{Picture 1} \\ \text{Picture 2} \\ \text{Sky} \end{array} \begin{array}{c} \text{Picture 2} \\ \text{Tree} \end{array} \end{array} \\ \mathbf{v}_{t} = \left[\begin{array}{c} \begin{array}{c} 0 & 0 & 0 & 4/15 & 2/5 \\ 0 & 0 & 0 & 4/15 & 0 \\ 0 & 0 & 0 & 4/15 & 2/5 \\ 2/5 & 4/5 & 2/5 & 0 & 0 \\ 2/5 & 0 & 2/5 & 0 & 0 \end{array} \right] \\ \mathbf{v}_{t-1} + \left[\begin{array}{c} 1/5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right] \\ \left[\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right] \\ \left[\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right] \\ \left[\begin{array}{c} 1/5 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right] \\ \left[\begin{array}{c} 35/75 \\ 8/75 \\ 20/75 \\ 6/75 \\ 2/5 \end{array} \right] \\ \left[\begin{array}{c} 95/375 \\ 8/375 \\ 20/375 \\ 142/375 \\ 110/375 \end{array} \right] \\ \left[\begin{array}{c} 2353/5625 \\ 568/5625 \\ 1228/5625 \\ 786/5625 \\ 690/5625 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .066 \\ .145 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .196 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .249 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .249 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .249 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .249 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \\ .249 \end{array} \right] \\ \left[\begin{array}{c} .345 \\ .249 \end{array} \right] \\ \\ \left[\begin{array}{c} .345 \\ .249 \end{array} \right] \\ \left[\begin{array}{c} .345$$

3

- ∢ ⊒ →

Image: A matrix and a matrix

Counting Triangles

A triangle is a triangle.

How many triangle do we have in this figure?

э

Why Counting Triangles?

Given a graph with n nodes and m edges. How many triangle do you expect to find?

• Assume that each edges is generated with probability $\frac{m}{\binom{n}{2}}$.

Why Counting Triangles?

Given a graph with n nodes and m edges. How many triangle do you expect to find?

• Assume that each edges is generated with probability $\frac{m}{\binom{n}{2}}$.

$$\mathbb{E}[\# \text{ triangles}] = \binom{n}{3} (\frac{m}{\binom{n}{2}})^3 \sim \frac{4}{3} (m/n)^3 \tag{20}$$

Why Counting Triangles?

Given a graph with n nodes and m edges. How many triangle do you expect to find?

• Assume that each edges is generated with probability $\frac{m}{\binom{n}{2}}$.

$$\mathbb{E}[\# \text{ triangles}] = \binom{n}{3} (\frac{m}{\binom{n}{2}})^3 \sim \frac{4}{3} (m/n)^3 \tag{20}$$

We expect the social network graph has *much larger* # triangles because A is a friend of B, B is a friend of C then A likely is a friend of C.

• We can qualify non-randomness of the social network by counting triangles.

Counting Triangles- A Naive Algorithm

COUNTING TRIANGLE(
$$G(V, E)$$
)
 $C \leftarrow 0$
foreach edge $uv \in E$
 $C \leftarrow C + |N(u) \cap N(v)|$
return $C/3$

Running time? $O(m\Delta)$ where Δ is the maximum degree of the graph.

Counting Triangles with High Degree Vertices

• Assume that nodes are from $\{1, 2, \ldots, n\}$.

• Call a node v heavy hitter if deg_G(v) $\geq \sqrt{m}$. Call it light otherwise.

How many heavy hitters can we have?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Counting Triangles with High Degree Vertices

- Assume that nodes are from $\{1, 2, \ldots, n\}$.
- Call a node v heavy hitter if $\deg_G(v) \ge \sqrt{m}$. Call it light otherwise.

How many heavy hitters can we have?

$$\sum_{v \in V} \deg_G(v) = 2m \tag{21}$$

implies # of heavy hitters is at most $2\sqrt{m}$.

Counting Triangles with High Degree Vertices- Step 1

Step 1: Counting all triangles that only contain heavy hitters.

COUNTHEAVYTRIANGLES(G(V, E)) $V_{\text{heavy}} \leftarrow \emptyset$ for each node $v \in V$ if deg_C(v) > \sqrt{m} add v to V_{heavy} $C_{\text{heavy}} \leftarrow 0$ for each triple $\{u, v, w\} \subset V_{\text{heavy}}$ if $uv \in E$ and $uw \in E$ and $vw \in E$ $C_{\text{heavy}} \leftarrow C_{\text{heavy}} + 1$ return C_{heavy}

Running time $O(m^{1.5})$ if using a Hash table to index E.

Counting Triangles with High Degree Vertices- Step 2

Step 2: Counting all triangles that contains at least one light vertex.

• Say $v \prec u$ if (i) deg_G(v) < deg_v(u) or (ii) deg_G(v) = deg_G(u) and v < u.

COUNTLIGHTTRIANGLES(G(V, E)) $V_{\texttt{light}} \leftarrow V \setminus V_{\texttt{heavy}}$ $C_{\texttt{light}} \leftarrow 0$ for each edge $uv \in V$ if $\{u, v\} \cap V_{\texttt{light}} \neq \emptyset$ suppose $v \prec u$ for each $w \in N(v)$ if $v \prec w$ $C_{\text{light}} \leftarrow C_{\text{light}} + 1$ return C_{light}

Running time $O(m\sqrt{m})$

通 ト イ ヨ ト イ ヨ ト

Counting Triangles with High Degree Vertices

COUNTTRIANGLES(G(V, E)) $C_{\text{heavy}} \leftarrow \text{COUNTHEAVYTRIANGLES}(G(V, E))$ $C_{\text{light}} \leftarrow \text{COUNTLIGHTTRIANGLES}(G(V, E))$ return $C_{\text{heavy}} + C_{\text{light}}$

Overall running time $O(m\sqrt{m})$.

 Recall the naive algorithm has running time O(mΔ) where Δ is the maximum degree.