MiniPool: Real-time artificial player for a 8-Ball
video game

David Silva
Computer Science and Engineering
IST/UL, Lisbon, Portugal
E-mail: david.d.silva@tecnico.ulisboa.pt

Abstract—The importance of artificial intelligence in games has
been growing over the years due to their continuous increasing
realism and the need to keep their immersiveness while playing.
Games like 8-Ball offer many interesting challenges to both
communities of AI and optimization duo to the continuous and
stochastic characteristics of the domain. To succeed a player must
be able to plan the best sequence of shots and execute a shot with
accuracy and precision, so he does not lose the turn.

There are already several good artificial players developed,
however they tend to take more than 30 seconds to select and
execute a shot. Under normal circumstances a player would give
up playing the game if he had to wait that long to play.

In this document I propose a real-time solution for an 8-Ball
artificial player using a Monte-Carlo Expectimax hybrid search
algorithm with raytracing techniques.

Index Terms—Artificial Player, Billiards, 8-Ball, Stochastic
Game, Video Game, Real-time

I. INTRODUCTION

Artificial players for §8-Ball games have been a topic of
investigation due to its interesting aspects that cannot be solved
using the traditional methods of the classic games [5]]. The
fact of having a continuous and stochastic domain makes it
possible to have an infinite number of states and actions. It’s
also difficult to predict the resulting state of an action due to
perturbations on the environment that cannot be controlled by
the player (there is a very small probability of two shots with
the same parameters to have the same resulting states).

In the last years took place the Pool Computer OZympiadsE]
where participants had to develop an artificial billiards player
and compete with each other. All these artificial players, that
will be mentioned later in section [[I} focus in different aspects
of the game and explore different points of view to overcome
the design difficulties found in 8-Ball.

One way of applying the state of the art in computer
billiards and further develop it in a more specific case, is to
use it on video games. The games industry has been growing
over the years. According to the Entertainment Software
Association E] statistics in 2014, 155 million Americans play
video games; 62% on PC, 56% on a dedicated game console
and 35% on a smartphone.

Developing artificial intelligence for games brings other
interesting challenges such as the limited resources, the real-
time response and the skill balance. A professional pool player

Uhttp://web.stanford.edu/group/billiards/index.htm]
Zhttp://www.theesa.com/

needs to have a good planning and understanding of the table
state to make the best decision. For the artificial player to
be able to do this and compete with the best pool players, it
will need the tools to plan the best sequence of shots, support
a large variety of shot patterns, mechanisms to evaluate and
find good reposition zones for the cue ball and methods to
optimize the shot parameters under stochastic environments.
The artificial players already developed for 8-Ball tend to take
more than 30 seconds to plan the best shot to be executed. This
delay on the response would make every player give up playing
the game. In the context of games players are expecting a real
time response from the opponent.

The main focus of this work will be to develop a real-
time artificial 8-Ball player capable of competing with the best
players while have a good balance between skill and resources
used.

The rest of this document is structured as follows. First,
in section [[I I present a short background of 8-Ball and an
overview of the characteristics of the game were the proposed
solution will be tested. In section [Il I introduce and discuss
some of the related work already done. In section [[V]I give an
overview of the proposed solution as well as some explanation
of the key elements of MiniPool. The section [V| contains all
the experimental results and analysis of the individual contri-
butions of each component of Minipool. Finally in section [V]|
there is some overall discussion and future work.

II. BACKGROUND

To provide a general idea of the challenges present in the
8-Ball game, I describe the general rules used in the game,
as well as the shot parameters and the most common shot
patterns used by professional players.

A. 8-Ball Rules

8-Ball belongs to the Pool-Billiards games family. It’s a
turn-based game played by two players on a rectangular pool
table with 6 pockets and 16 balls (7 solids, 7 stripes, the 8
ball and the cue ball). The game begins with a player striking
the cue ball anywhere behind the headstring (line with a semi-
circle, illustrated in figure E]) towards the cluster of the rest of
the balls (called break shot).

A player can only strike the cue ball and it needs to be
done with the cue stick. To pocket a ball, the player can try
to hit the object ball directly with the cue ball, hoping that

http://web.stanford.edu/group/billiards/index.html
http://www.theesa.com/

the velocity gain from the collision is enough to make the
object ball enter a pocket, or using collisions with other balls
or rails to reach that object ball. The first ball to enter a pocket
determines which ball type (solid or stripe) the player needs
to seek; having the opponent to seek the remaining type. The
cue ball needs to hit a ball when stroked and that ball needs
to be of the type that the current player is seeking, otherwise
it is called a foul. A foul also occurs when the cue ball enters
a pocket.

When a ball enters a pocket legally, the player keeps the
turn and must shoot again from the cue ball current position,
otherwise the opponent gets the turn. In the case of a foul,
the opponent also gets a ball-in-hand which gives him the
opportunity to place the cue ball anywhere on the table.

When the last ball type of the current player enters the
pocket, he needs to seek for the 8 ball. When the 8 ball enters
a pocket this way, and only at this situation, the player wins
the game, but if it enters a pocket in any other situation the
player loses the game automatically.

The complete game rules of §-Ball and other variations of
Billiards can be found in [6]].

Fig. 1: Initial pool table layout

B. Shot Parameters

In every Billiards variant a shot is defined by five continuous
parameters (illustrated in figure [2):
e ¢ : Aiming angle,
e 0 : Cue stick elevation angle,
e V : Initial cue stick impact velocity,
e a and b : Coordinates of the cue stick impact point on
the cue ball.

C. Shot Types

Pocketing, striking and kissing are some of the events
that can occur in a regular 8-Ball match. The event that
happens when a ball enters a pocket is called pocking; when a
moving ball collides with a stationary ball with the purpose of
moving the stationary ball is called strike; when the purpose
is just to adjust the trajectory of the moving ball is called a
kiss. A shot can also consist in combinations of events. By
combining them, human players can distinguish a variety of
shot types. The following are the most common [5] (illustrated

in figure [3):

Side View

/ Top View

Head-on View

'%; iS cue ball %
]
[

Fig. 2: Parameters that define a shot in Billiards (image from)

o Direct shot: The object ball is directly hit by the cue ball
towards a pocket without any other collisions involved.

o Bank shot: The rail is used to maneuver the object ball
towards a pocket.

o Kick shot: The rail is used to maneuver the cue ball
towards the object ball.

o Combination shot: A collision with another ball is used
to attempt to pocket the object ball.

o Pulk shot: Similar to combination shot but the two object
balls are very close to each other and align in a way that
they are pointing to a pocket.

¢ Kiss shot: An additional ball is used to adjust the
trajectory of another ball.

o Safe shot: This type of shot is used when the player
assumes that he is more likely to lose the turn. The
purpose of it is to reposition the cue ball such that it
will be difficult to the opponent to continue.

e Break shot: Is the name of the initial shot which have
the purpose of disperse the initial cluster of balls.

(d) (e) ()

Fig. 3: Shot types: (a) direct shot, (b) bank shot, (c) kick shot, (d)
combination shot, (¢) pulk shot, (f) kiss shot (image from)

D. 8-Ball video game

I developed a simple 8-Ball 2D video game to test the
artificial player. The game uses the FastFiz El physics engine

(the same engine used in [TI-[3], (3], [TT)}, [12], (T4]-{T6],

(191, [20]), which is based on the simulator used in the past

3http://web.stanford.edu/group/billiards/FastFiz/

http://web.stanford.edu/group/billiards/FastFiz/

Pool Computer Olympiads El, PoolFiz [17]]. This engine has
the particularity of having an event based physics system
implemented which allows to simulate shots faster than a time
based one.

In this video game the shot needs to be executed in less
than 20 seconds, otherwise the player will lose the turn. The
game can be set to use or not the noise models defined by
FastFiz.

III. RELATED WORK

Currently, there are already several artificial 8-Ball play-
ers developed; PickPocket [[19], [20]], CueCard [1]-[3]] and
PoolMaster [11]], [12], [14]-[16], who participated in the Pool
Computer Olympiads, and JPool [5]]. To better understand the
differences between them I will explain the most important
topics one by one, starting with a possible game model for
8-Ball found by Christopher Archibald et al.

A. Billiards Game Model

Christopher Archibald et al. proved in [1]], [4]] that billiards
has a pure stationary Markov perfect equilibrium. This means
that when a player is selecting a shot to execute, he only
needs to think about the current state of the game to get the
optimal shot. At some state s of the game he will not change
his strategy concerning on how that state was reach, if the
game is at the beginning or at the end or if the opponent is
good or bad. When selecting a shot we want it to pocket a
ball and have the cue ball at a good reposition to continue
playing. If that is not possible under our strategy, we want the
cue ball to be at a position where a successful shot would be
as difficult as possible for any opponent. With this in mind,
we have theoretical proof that we only need to explore shots
based on the current and future states (for position play) of the
game to reach the optimal shot and that trying to understand
who is our opponent and what are his actions on the game
will not give us better results. If a strategy is optimal it will
remain optimal regardless the opponent actions and strategy.
However, the proposed model remains intractable due to the
action space being continuous. To compute the value of a state
using the proposed equation, we would need to try all the
possible actions, which are infinite. Thus, any approach still
needs to perform an intelligent search space partitioning to
overcome this problem.

An explanation of this model for stochastic games in general
can be found in [8]].

B. Search Algorithms

For the particular case of 8-ball and considering stochastic
environments, PickPocket [[19], [20] and JPool [5] suggested
Expectimax and Monte-Carlo as possible search algorithms.

Expectimax generates chance nodes for ever action with a
stochastic outcome. This chance nodes will be evaluated with
its probability of occurrence, which in the case of 8-Ball a
direct approach would mean a sum of over an infinite number
of outcomes, each with a minuscule probability of occurring.

4http://web.stanford.edu/group/billiards/index.htm]

Monte-Carlo was used in all the artificial players that will
be explained in section with the exception of PoolMaster,
since that Monte-Carlo by sampling shots avoid the limitation
of Expectimax and gives the developer more control over the
algorithm complexity.

PoolMaster uses a heuristic based search algorithm to select
the best sequence of shots. They cluster balls with the K-Means
algorithm [18]] to improve the search and explore less riskier
shots first.

C. Shot Generation

8-ball has a continuous and stochastic domain nature, so
it is impossible to enumerate all the possible shots. Generate
only the most relevant shots for a particular situation is the
key for an intelligent search space partitioning and improve
the overall performance of the program.

Since the shot generator algorithm differs from each one of
the artificial players, I will explain them individually.

1) PickPocket [|19], [20)]: Generates shots one type at a
time in order of increase difficulty. Variations are generated
by perturbing the original shot with the base velocity retrieved
from a precomputed table. The break shot parameters are
selected by sampling 200 shot variations and selecting the
one which returns better results. Safe shots are generated
by perturbing V' and ¢ and evaluating in the opponent’s
perspective. For Ball-in-hand situation the table is discretized
in a grid and every cell is assigned with the value of the best
shot as the ball was there and then an Hill-Climbing search is
performed in several random cells to find the local maximum.

2) CueCard [|1|]-/3]: Similar to PickPocket but does not
prioritize the shot types. Cluster similar resulting states with
K-Means to reduce state space. The Break Shot used was
precomputed. The Ball-in-hand is similar PickPocket too but
before discretizing the table it first tries to place the cue ball
where the ghost-ball would be (see section [[II-D).

3) PoolMaster [11f], [12], [|14]]-[16|]]: The focus of Pool-
Master lies on position play. First they generate all pairs ball-
pocket possible given the table state, then they analyze the
table for the possible next shots. Once this information is
gathered they call an optimization algorithm to minimize an
objective function which have into account the distance to the
next shot as well as pocketing the target ball.

4) JPool [5|]: Takes a different approach, given that it
models a shot as a series of steps like a tree, being not
limited to predefined shot types. The break shot parameters
were precomputed. For position play JPool creates polygons
around every ball where it would be a good place to pocket and
then does a line-polygon overlap detection using the trajectory
of the cue ball at maximum speed. The crossing zones are rated
as the cue ball was there and the cue ball is aimed to reach
these areas. The rest of the parameters as discretized.

D. Aiming

PickPocket [[19], [20] and CueCard [1]], [3]] use the tradi-
tional concept called ghost ball (illustrated in figure [{a). If
the cue ball is aimed in such a way that hits the object ball

http://web.stanford.edu/group/billiards/index.html

in the position of the ghost ball, the object ball will travel in
the direction of the target position.

PoolMaster [T1]], [12], [14]-[16]] and JPool [3]] use the same
concept in a different way. Instead of aiming the object ball
to the center of the pocket they aim it to the limits of the
pocket, which gives them two ghost ball positions (illustrated
in figure[@b). These leftmost and rightmost are adjusted to have
into account the possible obstacles in the way, so if the ball
does not fit between these margins the shot will be impossible.
A better explanations of this concept can be found in [7].

4

object ball

ghost ball
cue ball

N

(a) Ghost ball concept (image from)

(b) Leftmost and rightmost concept (image

from [EI])
Fig. 4: Aiming concepts

E. Evaluation Function

The search algorithm evaluates shots to differentiate them
and select the best one for execution. There are several ways
of measuring and differentiating shots from each other.

JPool [5]] uses a Monte-Carlo search base algorithm with
a sample size of 400. The leaves are evaluated using a sum
of several heuristics advised in [13]] such as the quality of
current cue ball position, the number of balls in game and the
difficulty of pocketing the other balls.

PickPocket [19], and CueCard [T], use a Monte-
Carlo search base algorithm too, with 15 and 25 to 100
samples (depending on the time available), respectively. The
leaves are evaluated using the sum of the probability of success
of the best 3 shots retrieved from the precomputed table.

PoolMaster [[T1]], [12], [I4]-[16] calculates the value of a
node using a function that takes into account the quality of
the cue ball position, the probability of being in that position
zone and the range of successful parameters with a sample of
15.

Shing Chua et al. shown in [9], the calculation of the
shot difficulty using fuzzy logic. The fuzzy sets were defined
for the distance traveled by the cue ball before the collision
with the target ball, the distance from the target ball to the
pocket and the cut angle. On runtime they infer the rule for
the specific shot situation. Only direct, bank and combination
shots are considered and they are prioritized in this order,
respectively.

IV. IMPLEMENTATION

In this section I will explain the implementation of the
artificial player developed for the propose of this document.
As mentioned in section [[]] there are three main components
in every search-based architecture: search algorithm, shot gen-
erator and evaluation function. I will explain in the following
topics how each one was explored and implemented.

| Nextshottype

Search Algorithi

Search for best Find best repositions Shot
WJD[SI ifsate shol) ne?

Shot Generato

Table State

Execute Shot

Generate
Generate Shots

Fig. 5: General architecture of MiniPool

A. Search Algorithm

The search algorithm will be responsible for selecting the
best sequence of shots. At this level of the artificial player
program it is crucial to only explore the most relevant nodes of
the tree to reach a solution, especial when the time constraints
are tight.

Monte Carlo was selected as base for the search algorithm
since it works very well in the 8-Ball domain, as can be seen
in the artificial players studied in section [III}

As first iteration lets start by evaluating each node as success
or failure, being success pocketing the target ball in the target
pocket and failure otherwise. With this evaluation we are
selecting for execution the sequence of shots that has the
highest probability of success. The main problem with this
approach is that it highly depends on sampling and has a huge
explosion of states generated since Monte Carlo performs a
new search at every sample. The only option to reduce the
explosion of states is to use some pruning. The easier and more
obvious pruning is to stop the search when the probability of
success of a given shot is under a certain threshold, however
this is not enough. Based on the results in [19], [20], shots
besides the direct ones are only used 6% of the time. By
generating shots for a given table state one type at a time
in order of increasing difficulty we can reduce enormously
the number of states generated when a direct shot is found.

Before the search starts shots are rated and sorted based on
their difficulty using a function from [9]], [10]. This function
to evaluates shots based on the distance between the balls and
the pocket and the cut angle.

A — dconOp (1)
cos?a

Where A is the shot difficulty, d., is the distance between
the cue ball and the target ball, d,,, is the distance between the
target ball and the pocket and « is the cut angle between the
two balls. Since this formula penalizes longs shots and high
cut angles, the shots that will be explored first will be the
ones closer to the cue ball and less vulnerable to noise. This
formula doesn’t need to be very precise since it will only serve
to differentiate the easiest shots from the others. Rating every
shots with this formula and sorting the list in crescent order
we are guaranteeing that the shots with the highest probability
of success will be at the beginning. Since we are evaluating
shots one type at a time it is wise to stop the search when the
difficulty of a shot is too high and start searching another shot
type because a easier solution will probably be found.

Although we have reduce the state space a lot with these
modifications, there is still the case where the shots are all too
difficult and the cut condition is never reached. PoolMaster
optimize the shot parameters for every next ball with a local
optimization algorithm, which is the approach that have better
results. So, if we use the search only to find the next ball,
and the sampling only to evaluate the probability of succeed
the plan of pocketing the target ball and repositioning for the
next ball we won’t need to perform a search in every sample,
because we already know which ball we want to reach and
the probability of succeeding the plan will already give us
the difficulty of succeeding. The question is, what table state
should we use to search for next ball? The answer is, the
noiseless state, because it will be the average resulting position
of the cue ball.

By using the reposition for the next ball as part of the
evaluation we are forcing a shot to have to be at a good
reposition. This allow us in implicit way to benefit shots that
not only break clusters but also guarantee that the cue ball
will be at the best position possible, given the situation, for
the next ball.

B. Shot Generator

The shot generator will be responsible for generating all
the possible shots for a given table state. For the purpose of
having a more feasible shot oriented generation it was used
a backtracking search algorithm with ray-tracing. With this
kind of search for shots we are guaranteeing from the root
that the shots will be executable and will also give us for
free a complete description of what will happen on the table,
such as the balls and rails involved and distance traveled. This
information if very important to control the complexity of the
shots being generated and also give us a tool to control the
skill on the player in terms of tactic behavior for a single shot.

The general algorithm is the following:

1) For every pocket, set the objective point as the its center:
2) Cast a ray from every ball to the objective point:

a) If the ray reaches the objective point, set the
objective point as the center of the ghost ball
position for this ball.

i) If cut angle is greater than a certain limit, stop
iteration on this path.
ii) Else if this ball is the cue ball, calculate the
shot parameters and add it to the list of shots.
iii) Else go to step [2]
b) Else stop iteration on this path.

Ball collisions with high cut angles are not explored to
remove shots that barley touch the balls and do not produce
relevant results.

For the case of the bank and kick shots it was used the Pool-
Master [11]], [12], [14]-[16] table mirroring method adapted
for raytracing approach. For every rail collision allowed it
is added to the raytracer object list a level of mirrors, for
example, with 1 rail allowed we add 4 mirrored tables (one
on the left, right, top and bottom of the original table), with 2
rails allowed we add 12 tables (4 from the level 1 and 8 around
level 1 for the level 2). With this information on the raytracer
we can treat bank and kick shots like direct and combinations
shots. However, the higher the number of rails allowed the
slower the raytracing will be due to the number of objects in
the list; that is why the bank and kick shots are only explored
after combination shots. Using this method we are assuming
that the angle of incidence is equal to the angle of reflection,
which is not true in the FastFiz engine. The solution to this
problem will be explain later on this section.

As you can see, by only controlling the depth of the search
and the number of rail collisions allowed we have a general
algorithm for almost every shot type without having to explicit
look for it.

The calculation of the initial shot parameters is done as
follows:

e theta is set to the minimum possible value.

o phi is calculated aiming the cue ball center to the ghost
ball center (the objective point of the ball before the cue
ball).

e a and b are set to zero.

e V is retrieved from a precomputed table of minimum
velocities.

To quickly find the minimum velocity required for a given
shot situation to pocket a ball it was precomputed a minimum
velocities table. PickPocket [19], [20] and CueCard [1]-[3]
done this generating direct shot situations by discretizing the
cut angle (the angle that the cue ball does with the target ball),
the distance between the cue ball and the target ball and the
distance of the target ball to the pocket and simulating shots
incrementing the velocity by 0.1m/s until the ball is pocketed. I
generalized this to every shot type by discretizing the distance
traveled by the sum of all the balls involved and the number
of balls and rail collisions involved in the shot too.

At this point we have a list of shots that puts the target
ball in the target pocket with the minimum velocity. There
are an infinite number of variants of these shots that could
still pocket the target ball. For position play, it is important
to generate a set of shots that captures the range of possible
follow-up states. The solution used to find the most significant
variants was to pick n values equally spaced starting from the
minimum parameter value up to the maximum for each shot
parameter. The shots that accomplish the goal of pocketing the
target ball are added to the shot list.

C. Evaluation Function

The evaluation function is responsible for differentiating
shots from each other with a specific metric. In MiniPool
the evaluation of a shot is made by counting the number of
times a shot is successful while sampling it a number of times
with noise. A shot is considered successful if it pockets the
target ball in the target pocket and it has a clear way to the
target reposition point. If, while calculating this probability
of success, a shot cannot reach a minimum threshold the
evaluation stops. This is done reduce computation time on
low reliable shots.

With this evaluation function we have a metric of how
difficult it will be to execute a shot and be at a good reposition
for the next one. There is no need for anything else since, if
a shot is more successful than another it is because it will be
less vulnerable to noise. This approach however might make a
ball closer to a pocket better than another. According to Jack
Koehler in [13] these balls should only be pocket in special
situations. But foreseeing these situations requires a better plan
for a sequence of shots which, due to shot execution time
constraints, cannot be done in this work.

V. RESULTS

To demonstrate the quality and potential of the approach
develop for the purpose of this document, the results of various
tests are presented in this section as well as the environment in
which the tests where made. In every tests only one component
is modified in order to better demonstrate the impact of it. The
graphics in every tests show the accumulated average of the
clean success percentage of the table and the time per shot
to demonstrate that the value being shown stabilizes before
the end of the test, and reason why the algorithm stop the
iteration to better understand whats causing it to stop and how
to improve it.

The tests were made using the FastFiz engine. For each test,
500 random tables were randomly generated and the algorithm
was executed until it loses the turn. The average time until it
executes a shot and the reason why the iteration stopped are
stored for each table. The computer used for the tests has a
Windows 10 Pro operative System, Intel Core i5 CPU at 2.30
GHz and 4 GB of RAM.

In FastFiz shots are affected by a perturbation model, noise.
The standard deviations for each parameter are: ¢ = 0.125°, 0
=0.1°, V =0.075 m/s, a = 0.5 mm and b = 0.5 mm. In these

tests the simulations were made with at Ox and 0.5x of these
deviations.

The maximum cut angle is set to 70°, the maximum number
of balls involved is set to 3, the maximum number of rails
involved is set to 1, the maximum shot difficulty is set to
0.7, the minimum success probability is set to 60% and the
acceptable probability of success is set to 80%.

A. Analysis

1) Results with noise: In general the clean success prob-
ability in a noise environment is very low comparing with
the other players. PickPocket is able to reach 67% within 60
seconds per shot, JPool reaches 74% with 44 seconds per shot
and PoolMasters reaches 97% with 35 seconds per shot. But
given the time constraints that this project was developed for
it is difficult reach those values too. However, looking at [f] we
can see that the main problem for the low results are shots that
failed to pocket the target ball. This problem can occur for 2
reasons; or the shot parameters were wrong or the shot was
risky. But since the search algorithm only selects shots that
accomplish the objective of pocketing the ball and that have
a probability of success greater than 60% we can exclude the
first reason. Looking at the results in[8]and 0] by taking 7 more
seconds per shot we can increase by 10% the clean success
probability using a bigger sample size.

In [7] we used 2 more variants per parameter, resulting in
343 variants per shot. As expected this did not change much
the success of the player. For the change in the number of
variants to be relevant the gap between each parameter variant
needed to be as small as possible, however for this gap to be
small enough we would meed much more than 7 variants per
parameters. A possible solution to not be dependent on shot
variants is using an optimization algorithm like PoolMaster
did. For each ball-pocket combination it makes an optimization
search to find the parameters that pocket the ball and reach
a good position. This kind of approach, however, relays on
an objective function that needs to be as much continuous as
possible for the algorithm to find a result faster. Finding such
function in 8-Ball domain it is not an easy problem.

Mumber of games

Tableclean Failto pocket Mo shots found

Reason to stop

Fig. 6: Motive for the algorithm to stop the iteration with 0.5x noise

2) Results without noise: The results without noise are very
good comparing with the others, JPool and PoolMaster are
able to achieve 100% in 44 and 18 seconds respectively. With

Awverage Time Per Shot (seconds)

100 200 300 400 500

Game Number

Fig. 7: Average time per shot using 343 variants per shot. Stabilizes
at 6.69 seconds with 0.5x noise

=
@

-
)

-
=}

@

Average Time Per Shot (seconds)

w

100 200 300 400 500

Game Number

Fig. 8: Average time per shot with a sample size of 100. Stabilizes
at 9.79 seconds with 0.5x noise

=}
]

CleanSuccess Percentaga
=
n

o o o o
R O T TR

100 200 300 400 500

Game number

Fig. 9: Table clean success percentage with a sample size of 100.
Stabilizes at 45.2% with 0.5x noise

a depth of 2 and 125 variants MiniPool can reach a 86% clean
table success in less than half a second. Using all shot types
we can have an improvement of 5%, which, given the time
cost of four more seconds is not worth it in my opinion.
Since there is no noise in these tests the reason for the
algorithm to not be able to clean the plan is probably a
planning problem. To check this it was made a test using a
depth of 3, [T3] however the results did not improved at all.
My guess for this, and looking at the results in [[3] where the
results were better, is that the situations where the algorithm
is not able to continue are when the pocket its obstructed by
the opponent balls. This situation prevents a direct shot from
being executed for that ball, and since the algorithm search
for one type at a time another direct shot will be chosen, and

the next sequence of shots might put the cue ball in a situation
where the algorithm cannot place it near the problematic ball
again. When we generate all shots at once, the algorithm will
probability find a situation where the ball can be pocket to
another pocket earlier.

[
o

-
in

[
ha

=

a8

L

Awerage Time Per Shot (seconds)
s o

100 200 300 400 500

Game Number

Fig. 10: Average time per shot generating shot types one by one.
Stabilizes at 0.29 seconds without noise

100 200 300 400 500

Game number

Fig. 11: Table clean success percentage generating shot types one by
one. Stabilizes at 86% without noise

Average Time Per Shot (seconds)

100 200 300 400 500

Game Number

Fig. 12: Average time per shot generating all shot types. Stabilizes
at 4.57 seconds without noises

VI. CONCLUSION

The main purpose of this work was to develop an artificial
player for 8-Ball video game with a real-time response.
Looking at the good results of the tests without noise we
consider that this goal was a success since games normally
do not have noise perturbations. By ordering the shots by
difficulty, which have into account the distance of the balls, we

Yo B e

in o

o o oo oo

uccess Percentage
e oo W R

Clean

0 100 200 300 400 500

Game number

Fig. 13: Table clean success percentage generating all shot types.
Stabilizes at 91% without noise

@

w

1

[

Average Time Per Shot (seconds)

=)

200 300 400 500

0 100 200 300 00 500

Game Number

Fig. 14: Average time per shot with a depth of 3. Stabilizes at 4.12
seconds without noise

4w o e

nomw

CleanSuccess Percentaga

o D o oo oo oo

e v o W e

>

100 200 300 400 500

¢

Game number

Fig. 15: Table clean success percentage with a depth of 3. Stabilizes
at 87% without noise

are able to clear the table by zones. Combining this with the
evaluation function, which benefits shots that are in a good
position for the next ball, MiniPool can clear almost every
table in less than half a second without having to search deeper
in the tree.

On the other hand , a goal that was also in mind when
developing MiniPool was to develop a player that could play
in a environment with noise. The results for this case were
not as good as expected and there are still some improvements
that can be done as future work. One of the main problems
of the algorithm was relaying too much on the number of
shot variants for the look-ahead. PoolMaster, by using the
optimization approach removed this dependence and could
expend more time generating a more robust shot. Using a

similar approach in MiniPool might be the solution to improve
the performance in a environment with noise.

Another improvements that can be done to reduce the
time needed to generate the shots for a given state are the
raytracing acceleration techniques, such as kd-trees. By using
these techniques we can reduce the number of objects that
need to be tested for collision, and optimize the performance
of the raytracer up to 4 times. This optimization will probably
allow us to generate all shot types at once with a lower cost
in time.

MiniPool was developed to be highly configurable and give
a complete control of its skill. It would also be interesting
to study how to simulate several types of skill or even
automatically adapt the skill to its opponent, since MiniPool
was developed to be used as an artificial opponent in a 8-Ball
video game.

REFERENCES

[1] Christopher Archibald. Skill And Billiards. (August), 2011.

[2] Christopher Archibald, Alon Altman, Michael Greenspan, and Yoav
Shoham. Computational Pool : Game Theory Pragmatics. pages 33—41,
2010.

[3] Christopher Archibald, Alon Altman, and Yoav Shoham. Analysis of a
Winning Computational Billiards Player. pages 1377-1382, 2009.

[4] Christopher Archibald and Yoav Shoham. Modeling Billiards Games.
2009.

[5] Jens-uwe Bahr. A computer player for billiards based on artificial
intelligence techniques. (September), 2012.

[6] Billiards Congress of America. Billiards: The Official Rules and Records
Book. 2014.

[7] Nicolas Bureau. Sensibilité des coups au billard. 2:9-26, 2012.

[8] K Chakrabarti. Pure Strategy Markov Equilibrium in Stochastic Games.
(June 2011), 2013.

[9] S.C. Chua, E.K. Wong, and V.C. Koo. Performance evaluation of fuzzy-

based decision system for pool. Applied Soft Computing, 7(1):411-424,

January 2007.

Shing Chyi Chua, Eng Kiong Wong, and Voon Chet Koo. Intelligent

Pool Decision System Using Zero-Order Sugeno Fuzzy System. Journal

of Intelligent and Robotic Systems, 44(2):161-186, January 2006.

Jean-pierre Dussault. Optimization of a Billiard Player — Position Play.

pages 263-272, 2006.

Jean-pierre Dussault. Optimization of a Billiard Player — Tactical Play.

pages 256-270, 2007.

J. Koehler. The Science of Pocket Billiards. Sportology Publications,

1995.

Jean-Francois Landry and Jean-Pierre Dussault. AI Optimization of a

Billiard Player. Journal of Intelligent and Robotic Systems, 50(4):399—

417, October 2007.

Jean-Francois Landry, Jean-Pierre Dussault, and Philippe Mahey. A

robust controller for a two-layered approach applied to the game of

billiards. Entertainment Computing, 3(3):59-70, August 2012.

Jean-Francois Landry, Jean-Pierre Dussault, and Philippe Mahey. A

Heuristic-Based Planner and Improved Controller for a Two-Layered

Approach for the Game of Billiards. IEEE Transactions on Computa-

tional Intelligence and Al in Games, 5(4):325-336, December 2013.

Will Leckie and Michael Greenspan. An event-based pool physics sim-

ulator. Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

4250 LNCS(1995):247-262, 2006.

J B MacQueen. Some Methods for classification and Analysis of

Multivariate Observations. S5th Berkeley Symposium on Mathematical

Statistics and Probability 1967, 1(233):281-297, 1967.

Michael Smith. PickPocket: An Artificial Intelligence For Computer

Billiards. 2006.

Michael Smith. PickPocket: A computer billiards shark. Artificial

Intelligence, 171(16-17):1069-1091, November 2007.

[10]

[11]
[12]
[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

	Introduction
	Background
	8-Ball Rules
	Shot Parameters
	Shot Types
	8-Ball video game

	Related Work
	Billiards Game Model
	Search Algorithms
	Shot Generation
	PickPocket Smith2006, Smith2007
	CueCard Archibald2009, Archibald2010a, Archibald2011
	PoolMaster Dussault2006, Dussault2007, Landry2007, Landry2012, Landry2013
	JPool Bahr2012

	Aiming
	Evaluation Function

	Implementation
	Search Algorithm
	Shot Generator
	Evaluation Function

	Results
	Analysis
	Results with noise
	Results without noise

	Conclusion
	References

