
Python for Chemistry in 21 days

Dr. Noel O'Boyle

Dr. John Mitchell and Prof. Peter Murray-Rust

UCC Talk, Sept 2005
Available at http://www-mitchell.ch.cam.ac.uk/noel/

minutes

Introduction

● This talk will cover
– what Python is

– why you should be interested in it

– how you can use Python in chemistry

Introduction

● This talk will cover
– what Python is

– why you should be interested in it

– how you can use Python in chemistry

● This talk will not cover
– how to program in Python

● See references at end of talk

Word of warning!!

“My mental eye could now distinguish larger structures, of
manifold conformation; long rows, sometimes more closely
fitted together; all twining and twisting in snakelike motion.
But look! What was that? One of the snakes had seized
hold of its own tail, and the form whirled mockingly before
my eyes. As if by the flash of lightning I awoke...Let us learn
to dream, gentlemen”

Friedrich August Kekulé (1829-1896)

What is Python?

● For a computer scientist...
– a high-level programming language
– interpreted (byte-compiled)

– dynamic typing

– object-oriented

What is Python?

● For a computer scientist...
– a high-level programming language
– interpreted (byte-compiled)

– dynamic typing

– object-oriented

● For everyone else...
– a scripting language (like Perl or Ruby) released by

Guido von Rossum in 1991

– easy to learn

– easy to read (!)

What is Python?

● For a computer scientist...
– a high-level programming language
– interpreted (byte-compiled)

– dynamic typing

– object-oriented

● For everyone else...
– a scripting language (like Perl or Ruby) released by

Guido von Rossum in 1991

– easy to learn

– easy to read (!)

– named after Cambridge comedians

Sir Lancelot:
We were in the nick of time. You were in great Perl.
Sir Galahad:
I don't think I was.
Sir Lancelot:
You were, Sir Galahad. You were in terrible Perl.
Sir Galahad:
Look, let me go back in there and face the Perl.
Sir Lancelot:
No, it's too perilous.

(adapted from Monty Python and the Holy Grail)

The Great Debate

Why you should be interested (1)

● Python has been adopted by the cheminformatics community

● For example, AstraZeneca has moved some of its codebase
from 'the other scripting language' to Python

Job Description – Research Software Developer/Informatician
[section deleted]
Required Skills:

At least one object oriented programming language, e.g., Python, C++, Java.
Web-based application development (design/construction/maintenance)
UNIX, UNIX scripting & Linux OS

Position in AstraZeneca R&D, 02-09-05

Why you should be interested (2)

● Scientific computing: scipy/pylab (like Matlab)

● Molecular dynamics: MMTK

● Statistics: scipy, rpy (R), pychem

● 3D-visualisation: VTK (mayavi)

● 2D-visualisation: scipy, pylab, rpy

● coming soon, a wrapper around OpenBabel

● cheminformatics: OEChem, frowns, PyDaylight, pychem

● bioinformatics: BioPython

● structural biology: PyMOL

● computational chemistry: GaussSum

● you can still use Java libraries...like the CDK

scipy/

pylab

>>> from scipy import *
>>> from pylab import *
>>> a = arange(0,4)
>>> a
[0,1,2,3]
>>> mean(a)
1.5
>>> a**2
[0,1,4,9]
>>> plot(a,a**2)
>>> show()

> a <- seq(0,3)
> a
[1] 0 1 2 3
> mean(a)
[1] 1.5
> a**2
[1] 0 1 4 9
> plot(a,a**2)
> lines(a,a**2)

R

– cluster: information theory functions (currently, vq and kmeans)
– weave: compilation of numeric expressions to C++ for fast execution
– cow: parallel programming via a Cluster Of Workstations
– fftpack: fast Fourier transform module based on fftpack and fftw when

available
– ga: genetic algorithms
– io: reading and writing numeric arrays, MATLAB .mat, and Matrix

Market .mtx files
– integrate: numeric integration for bounded and unbounded ranges. ODE

solvers.
– interpolate: interpolation of values from a sample data set.
– optimize: constrained and unconstrained optimization methods and

root-finding algorithms
– signal: signal processing (1-D and 2-D filtering, filter design, LTI

systems, etc.)
– special: special function types (bessel, gamma, airy, etc.)
– stats: statistical functions (stdev, var, mean, etc.)
– linalg: linear algebra and BLAS routines based on the ATLAS

implementation of LAPACK
– sparse: Some sparse matrix support. LU factorization and solving

sparse linear systems

Scipy

● descriptive statistics: variance, standard deviation, standard error, mean,
mode, median

● correlation: Pearson r, Spearman r, Kendall tau

● statistical tests: chi-squared, t-tests, binomial, Wilcoxon, Kruskal,
Kolmogorov-Smirnov, Anderson, etc.

● linear regression

● analysis of variance (ANOVA)

● (and more)

Scipy statistical functions

pylab

pychem: Using scipy for chemoinformatics

● Many multivariate analysis techniques are based on matrix
algebra

● scipy has wrappers around well-known C and Fortran
numerical libraries (ATLAS, LAPACK)

● pychem can do:

– principal component analysis, partial least squares
regression, Fisher's discriminant analysis

– clustering: k-means, hierarchical (used Open Source
clustering library)

– feature selection: genetic algorithms with PLS

– additional methods can be added

Python and R
● Advantages of R:

– a large number of statistical libraries are available
● Disadvantages of R:

– difficult to write algorithms

– slow (most R libraries are written in C)

– chokes on large datasets (use scan instead of read.table)

http://www.redbrick.dcu.ie/~noel/RversusPython.html

Method 300K 600K 1.6M
Python 6.8 13.9 41
R (read.table) 42 105
R (scan) 9 20 56

Reading in data

Method 300K 600K 1.6M
Python 2.2 3.6 42
R (read.table) 5 10
R (scan) 3 5 29

Principal component analysis

Python and R
● rpy module allows Python programs to interface with R

● have the best of both worlds

– access to the statistical functions of R

– access to the numerous modules available for Python

– can program in Python, instead of in R!!

>>> from rpy import r
>>> x = [5.05, 6.75, 3.21, 2.66]
>>> y = [1.65, 26.5, -5.93, 7.96]
>>> print r.lsfit(x,y)['coefficients']
{'X': 5.3935773611970212,
 'Intercept': -16.281127993087839}

> x <- c(5.05, 6.75, 3.21, 2.66)
> y <- c(1.65, 26.5, -5.93, 7.96)
> lsfit(x, y)$coefficients
 Intercept X
-16.281128 5.393577

Python R

Python and R

> hc$merge
 [,1] [,2]
 [1,] -32 -33
 [2,] -39 -71
 [3,] -43 -47
 [4,] -10 -55
 [5,] -19 -36
 [6,] -5 -24
 [7,] -62 -63
 [8,] -74 -75
 [9,] -35 -76
 [10,] -1 -84
 [11,] -41 -42
 [12,] -83 -96
 [13,] -2 -29
 [14,] -7 -21
 [15,] -61 4

Problem: Analyse a hierarchical clustering

Solution: Use R to cluster, and Python to
analyse the merge object of the cluster

Problem 1

Graphically show the distribution of molecular weights of
molecules in an SD file. The molecular weight is stored in
a field of the SD file.

1,2-Diaminoethane
 MOE2004 3D

 6 3 0 0 0 0 0 0 0 0999 V2000
 -0.6900 -0.6620 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
 0.5850 -1.9590 0.8240 H 0 0 0 0 0 0 0 0 0 0 0 0
 0.5350 1.5040 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0
 0.6060 2.0500 0.8460 H 0 0 0 0 0 0 0 0 0 0 0 0
 1.3040 0.8520 -0.0460 H 0 0 0 0 0 0 0 0 0 0 0 0
 1 2 1 0 0 0 0
 1 3 1 0 0 0 0
 1 4 1 0 0 0 0
M END
> <chem.name>
1,2-Diaminoethane

> <molecular.weight>
60.0995

$$$$

Object-oriented approach

SD file

Molecule 1 Molecule 2 Molecule n

object

object

attributes

name atoms

fields

The code for creating these objects is stored in sdparser.py,
which can be imported and used by any scripts that need to
parse SD files.

from sdparser import SDFile
from rpy import *

inputfile = "mddr_complete.sd"

allmolweights = []

for molecule in SDFile(inputfile):
 molweight = molecule.fields['molecular.weight']
 allmolweights.append(float(molweight))

r.png(file="molwt_r.png")
r.hist(allmolweights,xlab="Mol. weights",main="MDDR", col="red")
r.dev_off()

Solution

from sdparser import SDFile
from rpy import *

inputfile = "mddr_complete.sd"

allmolweights = []

for molecule in SDFile(inputfile):
 molweight = molecule.fields['molecular.weight']
 allmolweights.append(float(molweight))

r.png(file="molwt_r.png")
r.hist(allmolweights,xlab="Mol. weights",main="MDDR", col="red")
r.dev_off()

Solution

from sdparser import SDFile
from rpy import *

inputfile = "mddr_complete.sd"

allmolweights = []

for molecule in SDFile(inputfile):
 molweight = molecule.fields['molecular.weight']
 allmolweights.append(float(molweight))

r.png(file="molwt_r.png")
r.hist(allmolweights,xlab="Mol. weights",main="MDDR", col="red")
r.dev_off()

Solution

from sdparser import SDFile
from rpy import *

inputfile = "mddr_complete.sd"

allmolweights = []

for molecule in SDFile(inputfile):
 molweight = molecule.fields['molecular.weight']
 allmolweights.append(float(molweight))

r.png(file="molwt_r.png")
r.hist(allmolweights,xlab="Mol. weights",main="MDDR", col="red")
r.dev_off()

Solution

Every molecule in an SD file is missing the name. To be
compatible with proprietary program X, we need to set the
name equal to the value of the field “chem.name”.

(MISSING NAME!)
 MOE2004 3D

 6 3 0 0 0 0 0 0 0 0999 V2000
 -0.6900 -0.6620 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
 0.5850 -1.9590 0.8240 H 0 0 0 0 0 0 0 0 0 0 0 0
 0.5350 1.5040 0.0000 N 0 0 0 0 0 0 0 0 0 0 0 0
 0.6060 2.0500 0.8460 H 0 0 0 0 0 0 0 0 0 0 0 0
 1.3040 0.8520 -0.0460 H 0 0 0 0 0 0 0 0 0 0 0 0
 1 2 1 0 0 0 0
 1 3 1 0 0 0 0
 1 4 1 0 0 0 0
M END
> <chem.name>
1,2-Diaminoethane

> <molecular.weight>
60.0995

$$$$

Problem 2

from sdparser import SDFile

inputfile = "mddr_complete.sd"
outputfile = "mddr_withnames.sd"

for molecule in SDFile(inputfile):
 molecule.name = molecule.fields['chemical.name']
 outputfile.write(molecule)

inputfile.close()
outputfile.close()

print "We are the knights who say....SD!!!"

Solution

from sdparser import SDFile

inputfile = "mddr_complete.sd"
outputfile = "mddr_withnames.sd"

for molecule in SDFile(inputfile):
 molecule.name = molecule.fields['chemical.name']
 outputfile.write(molecule)

inputfile.close()
outputfile.close()

print "We are the knights who say....SD!!!"

Solution

Python and Java
● It's easy to use Java libraries from Python

– using either Jython or JPype
– see http://www.redbrick.dcu.ie/~noel/CDKJython.html

from jpype import *
startJVM("jdk1.5.0_03/jre/lib/i386/server/libjvm.so")
cdk = JPackage("org").openscience.cdk
SSSRFinder = cdk.ringsearch.SSSRFinder
CMLReader = cdk.io.CMLReader

def getNumRings(molecule):
 # Convert to a CDK molecule
 reader = CMLReader(java.io.StringReader(molXmlValue))
 chemFile = reader.read(cdk.ChemFile())
 cdkMol = chemFile.getChemSequence(0).getChemModel(0).getSetOfMolecules().getMolecule(0)
 # Calculate the number of rings
 sssrFinder = SSSRFinder(cdkMol)
 sssr = sssrFinder.findSSSR().size()
 return sssr

Example: using the CDK to calculate the number of rings in a molecule
(given a string variable containing CML)

3D visualisation

● VTK (Visualisation Toolkit) from Kitware

– open source, freely available

– scalar, tensor, vector and volumetric methods

– advanced modeling techniques such as implicit modelling,
polygon reduction, mesh smoothing, cutting, contouring, and
Delaunay triangulation

● MayaVi

– easy to use GUI interface to VTK, written in Python

– can create input files and visualise them using Python scripts

Demo

Python Resources

● http://www.python.org

● Guido's Tutorial

– http://www.python.org/doc/current/tut/tut.html
● O'Reilly's “Learning Python” or Visual Quickstart Guide

to Python

– Make sure it's Python 2.3 or 2.4 though
● For Windows, consider the Enthought edition

– http://www.enthought.com/

