
MIPS	Assembly:		
Practice	Questions	for	Midterm	1	

Saving	to	and	Loading	from	Memory	

CS	64:	Computer	Organization	and	Design	Logic	
Lecture	#6	

	
Ziad	Matni	

Dept.	of	Computer	Science,	UCSB	

•  Tuesday,	4/24	in	this	classroom	
•  Starts	at	11:00	AM	**SHARP**	

–  Please	start	arriving	5-10	minutes	before	class	

•  I	may	ask	you	to	change	seats	
•  Please	bring	your	UCSB	IDs	with	you	

•  Closed	book:	no	calculators,	no	phones,	no	computers	
•  Only	the	MIPS	Reference	Card	is	allowed	
•  You	will	write	your	answers	on	the	exam	sheet	itself.	

4/19/18	 Matni,	CS64,	Wi18	 2	

What’s	on	the	Midterm??				1/2	
•  Data	Representation	

–  Convert	bin	ßà	hex	ßà	decimal	ßà	bin	
–  Signed	and	unsigned	binaries	

•  Logic	and	Arithmetic	
–  Binary	addition,	subtraction	

•  Carry	and	Overflow	
–  Bitwise	AND,	OR,	NOT,	XOR	
–  General	rules	of	AND,	OR,	XOR,	using	NOR	as	NOT	

•  All	demos	done	in	class	
•  Lab	assignments	1	and	2	

4/19/18	 Matni,	CS64,	Wi18	 3	

What’s	on	the	Midterm??				2/2	
Assembly	
•  Core	components	of	a	CPU	

–  How	instructions	work	
•  Registers	($t,	$s,	$a,	$v)	
•  Arithmetic	in	assembly	(add,	subtract,	multiply,	divide)	

–  What’s	the	difference	between	add,	addi,	addu,	addui,	etc…	
•  Conditionals	and	loops	in	assembly	
•  Conversion	to	and	from	Assembly	and	C/C++	
•  syscall	and	its	various	uses	(printing	output,	taking	input,	ending	

program)	
•  .data	and	.text	declarations	
•  Memory	in	MIPS	
•  Big	Endian	vs	Little	Endian	
4/19/18	 Matni,	CS64,	Wi18	 4	

Review	Questions	

•  I	will	put	up	review	questions	for	Midterm	#1	
up	on	the	class	website		
– Later	on	today…	

4/19/18	 Matni,	CS64,	Sp18	 5	

About	the	Midterm	Exam	
•  Made	up	of	Multiple	Choice	&	Short	Answers/Coding.	
EXAMPLES:	

4/19/18	 Matni,	CS64,	Sp18	 6	

Complete	the	following	MIPS	assembly	
code	that	is	supposed	to	add	the	number	
in	register	$t0	to	15:	

li	$t0,	12	

A.  add	$t2,	$t1,	$t2	
B.  addu	$t2,	$t1,	$t2	
C.  addi	$t2,	$t0,	F	
D.  addi	$t2,	$t0,	0xF	
E.  addui	$t2,	$t0,	0xF	

What	is	the	2’s	complement	of	0x5EC?	

A.  1x5EC	
B.  0x5EC	
C.  0xA13	
D.  0xA14	
E.  0xA15	

Sample	Questions	

Translate	this	C-style	code	
into	4	lines	of	MIPS	
assembly	code:	
	
int	t1=10,	t2=3;	
int	t3=t1+2*t2	

What	is	the	result	of	these	
operations?	
	
0xF2	&	~(0x55)	
0x102A99D8	^	0xABA11CAB	

4/19/18	 Matni,	CS64,	Sp18	 7	

li	$t1,	10	
li	$t2,	3	
sll	$t2,	$t2,	1	
add	$t3,	$t2,	$t1	

0xA2	

		0001	0000	0010	1010	1001	1001	1101	1000	
^	1010	1011	1010	0001	0001	1100	1010	1011	
=	1011	1011	1000	1011	1000	0101	0111	0011	
=	0xBB8B8573	

Sample	Questions	
Translate	this	MIPS	
assembly	code	into	pseudo-
code	(C	or	C++	accepted):	
	
li	$s0,	2	
li	$s1,	6	
li	$t0,	2	
add	$s2,	$s1,	$s0	
sll	$s2,	$s2,	3	
mult	$s2,	$t0	
mflo	$s3	
	
4/19/18	 Matni,	CS64,	Sp18	 8	

int	s0=2,	s1=6,	t0=2;	
int	s2	=	s1	+	s0;	
s2	*=	8;	
int	s3	=	s2	*	t0;	
	

Sample	Questions	

4/19/18	 Matni,	CS64,	Sp18	 9	

.text	
main:	
	li	$t0,	3	
	li	$t2,	7	
	slt	$t3,	$t0,	$t2	
	beq	$t3,	$zero,	else	
	add	$t1,	t0,	$t2;	
	j	end	

else:	
	add	$t1,	$t0,	$t0	

end:	
	li	$v0,	10	
	syscall 		

Translate	this	C++	code	into	
MIPS	(just	the	.text	part)	
	
int	t0	=	3;	
if	(t0	<	7)		
	t1	=	7	+	t0;	

else		
		t1	=	t0	+	t0;	

Any	Questions	From	Last	Lecture?	

4/19/18	 Matni,	CS64,	Sp18	 10	

Larger	Data	Structures	

•  Recall:	registers	vs.	memory	
– Where	would	data	structures,	arrays,	etc.	go?	
– Which	is	faster	to	access?	Why?	

•  Some	data	structures	have	to	be	stored	in	
memory	
– So	we	need	instructions	that	“shuttle”	data	to/
from	the	CPU	and	computer	memory	(RAM)	

4/19/18	 Matni,	CS64,	Sp18	 11	

Accessing	Memory	
•  Two	base	instructions:		
–  load-word	(lw)	from	memory	to	registers	
–  store-word	(sw)	from	registers	to	memory	

•  MIPS	lacks	instructions	that	do	more	with	memory	
than	access	it	(e.g.,	retrieve	something	from	memory	
and	then	add)	
–  Operations	are	done	step-by-step	
– Mark	of	RISC	architecture	

4/19/18	 Matni,	CS64,	Sp18	 12	

Memory	
Rs	

lw	

sw	

4/19/18	 Matni,	CS64,	Sp18	 13	

.data	
num1:	.word	42	
num2:	.word	7	
num3:	.space	1	
	
.text	
main:	

	lw	$t0,	num1	
	lw	$t1,	num2	
	add	$t2,	$t0,	$t1	
	sw	$t2,	num3	
		
	li	$v0,	1	
	lw	$a0,	num3	
	syscall	

	
	li	$v0,	10	
	syscall	

Example	4	
What	does	this	do?	

Memory	
Rs	

lw	

sw	

Addressing	Memory	
•  If	you’re	not	using	the	.data	declarations,	then	you	need	starting	

addresses	of	the	data	in	memory	with	lw	and	sw	instructions	
Example:	 	lw	$t0,	0x0000400A				 	(ß	not	a	real	address)	
Example:	 	lw	$t0,	0x0000400A($s0)		(ß	not	a	real	address)	

•  1	word	=	32	bits	(in	MIPS)	
–  So,	in	a	32-bit	unit	of	memory,	that’s	4	bytes	
–  Represented	with	8	hexadecimals 	 		8	x	4	bits	=	32	bits…	checks	out…	

•  MIPS	addresses	sequential	memory	addresses,	but	not	in	“words”	
–  Addresses	are	in	Bytes	instead	
–  MIPS	words	must	start	at	addresses	that	are	multiples	of	4	
–  Called	an	alignment	restriction		

4/19/18	 Matni,	CS64,	Sp18	 14	

4/19/18	 Matni,	CS64,	Sp18	 15	

This	is	found	on	your	
MIPS	Reference	Card	

NOTE:	
Not	all	memory	addresses	
can	be	accessed	by	the	
programmer.	
	
Although	the	address	
space	is	32	bits,	the	top	
addresses	from	
0x80000000	to	0xFFFFFFFF	
are	not	available	to	user	
programs.	They	are	used	
mostly	by	the	OS.	

How	much	memory	does	a	
programmer	get	to	directly	

use	in	MIPS?	

Memory	Allocation	Map	

Mapping	MIPS	Memory	
(say	that	10	times	fast!)	

•  Imagine	computer	memory	like	a	big	array	of	words	
•  Size	of	computer	memory	is:	

	 	 	 	 	 	232	=	4	Gbits,	or	512	MBytes	(MB)	
–  We	only	get	to	use	2	Gbits,	or	256	MB	
–  That’s	(256	MB/	groups	of	4	B)	=	64	million	words	

4/19/18	 Matni,	CS64,	Sp18	 16	

8	bits	 8	bits	 8	bits	 8	bits	
word	

MIPS	Computer	Memory		
Addressing	Conventions	

4/19/18	 Matni,	CS64,	Sp18	 17	

1A	 80	 C5	 29	

52	 00	 37	 EE	

B1	 11	 1A	 A5	

0x0000			0x0001			0x0002		0x0003			
	
0x0004			0x0005			0x0006		0x0007	
	
0x0008		0x0009			0x000A		0x000B	

A	
àà	

MIPS	Computer	Memory		
Addressing	Conventions	

4/19/18	 Matni,	CS64,	Sp18	 18	

1A	 80	 C5	 29	

52	 00	 37	 EE	

B1	 11	 1A	 A5	

0x0003			0x0002			0x0001		0x0000			
	
0x0007			0x0006			0x0005		0x0004	
	
0x000B		0x000A			0x0009		0x0008	

B	
ßß	

or...	

A	Tale	of	2	Conventions…	

4/19/18	 Matni,	CS64,	Sp18	 19	

BIG	END	(MSByte)		
gets	addressed	first	

LITTLE	END	(LSByte)		
gets	addressed	first	

The	Use	of	Big	Endian	vs.	Little	Endian	

Origin:	Jonathan	Swift	(author)	in	“Gulliver's	Travels”.	
Some	people	preferred	to	eat	their	hard	boiled	eggs	from	the	“little	

end”	first	(thus,	little	endians),	while	others	prefer	to	eat	from		
the	“big	end”	(i.e.	big	endians).		

•  MIPS	users	typically	go	with	Big	Endian	convention	
–  MIPS	allows	you	to	program	“endian-ness”	

•  Most	Intel	processors	go	with	Little	Endian…	

•  It’s	just	a	convention	–	it	makes	no	difference	to	a	CPU!	

4/19/18	 Matni,	CS64,	Sp18	 20	

YOUR	TO-DOs	

•  Finish	assignment/Lab	#2	
– Assignment	due	on	FRIDAY	

•  Study	for	your	midterm!!	J	

•  Relax	a	little	

4/19/18	 Matni,	CS64,	Sp18	 21	

4/19/18	 Matni,	CS64,	Sp18	 22	

