
MIPS Input / Output
MIPS Instructions

CS 64: Computer Organization and Design Logic
Lecture #5

Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

1/22/20 Matni, CS64, Wi20 2

1/22/20 Matni, CS64, Wi20 3

This Week
on

“Didja
Know

Dat?!”

Lecture Outline

•Talking to the OS
• Std I/O
• Exiting

•General view of instructions in MIPS

•Operand Use

• .data Directives and Basic Memory Use

1/22/20 Matni, CS64, Wi20 4

Administrative Stuff

•How did Lab# 2 go?
• Challenge level:

HARD vs. OK vs. EASY-PEASY

•Remember, our office hours! J

1/22/20 Matni, CS64, Wi20 5

MIPS Reference Card

1/22/20 Matni, CS64, Wi20 6

Please have this with you in lectures!

Any Questions From Last Lecture?

1/22/20 Matni, CS64, Wi20 7

Printing an Integer using syscall

Main program
li $t0, 5
li $t1, 7
add $t3, $t0, $t1

Print the integer that’s in $t3
to std.output, so make $v0 = 1
li $v0, 1
move $a0, $t3
syscall

1/22/20 Matni, CS64, Wi20 8

What About Getting an Input (via Std In)?

1/22/20 Matni, CS64, Wi20 9

Get an integer value from user
Make $v0 = 5
li $v0, 5
syscall

Your new input int is now in $v0
You can move it around and compute with it
move $t0, $v0
sll $t0, $t0, 2 # Multiply it by 4
add $t0, $t0, $t0 # Add it to itself... etc...

Augmenting with Exiting
.text # We always have to have this starting line

Main program

main:

li $t0, 5

li $t1, 7

add $t3, $t0, $t1

Print an integer to std.output (so make $v0 = 1)

li $v0, 1

move $a0, $t3

syscall

End program

li $v0, 10

syscall
Matni, CS64, Wi20 10

The Proper Format of an Assembly Program

.data
…

.text
main:

…
…
…

li $v0, 10
syscall

1/22/20 Matni, CS64, Wi20 11

.data is where we declare variables
in memory (not in registers)

All that follows .text are the program instructions

main: is an “instruction label” – necessary for spim
to know that it should begin execution here.

These lines are always needed to tell the emulator
(spim) that the program has finished

Printing Strings using syscall
.data # This defines a value in memory (not in a register)
name: .asciiz "Porcupine Tree\n"

.text
main:
Print string (not an int!!) to std.output
Making $v0 = 4 tells syscall to expect a string to be printed...

li $v0, 4
Since a string is an array of characters,
we load the address of that array into $a0

la $a0, name
syscall

End program
li $v0, 10
syscall

Matni, CS64, Wi20 12

1/22/20 Matni, CS64, Wi20 13

Ok… So About Those Registers
MIPS has 32 registers, each is 32 bits

U
se

d
fo

r d
at

a

1/22/20 Matni, CS64, Wi20 14

MIPS System Services (Codes for $v0 when
syscall’ing)
Examples of
what we’ll be
using in CS64 stdout

stdin

File I/O

1/22/20 Matni, CS64, Wi20 15

Arithmetic

Branching

List of all Core Instructions in MIPS
“R”

R-Type Syntax

<op> <rd>, <rs>, <rt>
op : operation
rd : register destination
rs : register source
rt : register target

Examples:
add $s0, $t0, $t2

Add ($t0 + $t2) then store in reg. $s0
sub $t3, $t4, $t5

Subtract ($t4 – $t5) then store in reg. $t3

1/22/20 Matni, CS64, Wi20 16

1/22/20 Matni, CS64, Wi20 17

Arithmetic

Branching

Memory

Not for CS64

List of all Core Instructions in MIPS
“I”

I-Type Syntax

<op> <rt>, <rs>, immed
op : operation
rs : register source
rt : register target

Examples:
addi $s0, $t0, 33

Add ($t0 + 33) then store in reg. $s0
ori $t3, $t4, 0

Logic OR ($t4 with 0) then store in reg. $t3

Note: this last one has the effect of just moving $t4 value into $t3

1/22/20 Matni, CS64, Wi20 18

1/22/20 Matni, CS64, Wi20 19

List of the Arithmetic Core Instructions in MIPS

Mostly used in CS64

You are not responsible
for the rest of them

1/22/20 Matni, CS64, Wi20 20

Bring out your MIPS Reference Cards!

1/22/20 Matni, CS64, Wi20 21

NOTE THE FOLLOWING:

1. Instruction Format Types:
R vs I vs J

2. OPCODE/FUNCT (Hex)

3. Instruction formats:
Where the actual bits go
(more on that in a later lecture)

1/22/20 Matni, CS64, Wi20 22

NOTE THE FOLLOWING:

1. Pseudo-Instructions
• There are more of

these, but in CS64, you
are ONLY allowed to
use these + la

2. Registers and their
numbers

3. Registers and their
uses

4. Registers and their
calling convention
• A LOT more on that

later…

1/22/20 Matni, CS64, Wi20 23

NOTE THE FOLLOWING:

1. This is only part of
the 2nd page that you
need to know

Bring Out Your MIPS Reference Cards!

Look for the following instructions:

• nor
• addi
• beq
• move

Tell me everything you can about them, based on
what you see on the Ref Card!

1/22/20 Matni, CS64, Wi20 24

The move Instruction…
… is suspicious…

• The move instruction does not actually show up in SPIM!

• It is a pseudo-instruction
• It’s easy for us to use, but it’s actually a “macro” of another

actual instruction

ORIGINAL: move $a0, $t3
ACTUAL: addu $a0, $zero, $t3

what’s addu? what’s $zero?

1/22/20 Matni, CS64, Wi20 25

Pseudo-instructions

• Instructions that are NOT core to the CPU
• They’re “macros” of other actual instructions
• Often they are slower than core instructions
• But usually easier to use in a program than the alternative
• A little bit of High Level Language concept at play…

• Examples:

1/22/20 Matni, CS64, Wi20 26

li $t0, C
Is a macro for:

lui $t0, C_hi
ori $t0, $t0, C_lo move $t0, $t1

Is a macro for:
addu $t0, $zero, $t1

https://github.com/MIPT-ILab/mipt-mips/wiki/MIPS-pseudo-instructions has more examples

https://github.com/MIPT-ILab/mipt-mips/wiki/MIPS-pseudo-instructions

1/22/20 Matni, CS64, Wi20 27

List of all PsuedoInstructions in MIPS
That You Are Allowed to Use in CS64!!!

REMEMBER: USE YOUR “MIPS REFERENCE CARD” FOUND ON THE
CLASS WEBSITE!!!

plus this one à Load Address la

YOUR TO-DOs

•Do readings!
• Check syllabus for details!

•Review ALL the demo codes
• Available via the class website

•Work on Assignment #3

1/22/20 Matni, CS64, Wi20 28

1/22/20 Matni, CS64, Wi20 29

