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Mirror Symmetry For Zeta Functions

Daqing Wan

Abstract. In this paper, we study the relation between the zeta function

of a Calabi-Yau hypersurface and the zeta function of its mirror. Two types
of arithmetic relations are discovered. This motivates us to formulate two
general arithmetic mirror conjectures for the zeta functions of a mirror pair of
Calabi-Yau manifolds.
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1. Introduction

In this section, we describe two mirror relations between the zeta function of
a Calabi-Yau hypersurface in a projective space and the zeta function of its mirror
manifold. Along the way, we make comments and conjectures about what to expect
in the general case.

Let d be a positive integer. Let X and Y be two d-dimensional smooth pro-
jective Calabi-Yau varieties over C. A necessary condition (the topological mirror
test) for X and Y to be a mirror pair is that their Hodge numbers satisfy the Hodge
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symmetry:

(1) hi,j(X) = hd−i,j(Y ), 0 ≤ i, j ≤ d.

In particular, their Euler characteristics are related by

(2) e(X) = (−1)de(Y ).

In general, there is no known rigorous algebraic geometric definition for a mirror
pair, although many examples of mirror pairs are known at least conjecturally.
Furthermore, it does not make sense to speak of “the mirror” of X as the mirror
variety usually comes in a family. In some cases, the mirror does not exist. This is
the case for rigid Calabi-Yau 3-folds X, since the rigid condition h2,1(X) = 0 would
imply that h1,1(Y ) = 0 which is impossible.

We shall assume that X and Y are a given mirror pair in some sense and are
defined over a number field or a finite field. We are interested in how the zeta func-
tion of X is related to the zeta function of Y . Since there is no algebraic geometric
definition for X and Y to be a mirror pair, it is difficult to study the possible sym-
metry between their zeta functions in full generality. On the other hand, there are
many explicit examples and constructions which at least conjecturally give a mirror
pair, most notably in the toric hypersurface setting as constructed by Batyrev [1].
Thus, we shall first examine an explicit example and see what kind of relations can
be proved for their zeta functions in this case. This would then suggest what to
expect in general.

Let n ≥ 2 be a positive integer. We consider the universal family of Calabi-Yau
complex hypersurfaces of degree n+1 in the projective space P

n
. Its mirror family

is a one parameter family of toric hypersurfaces. To construct the mirror family,
we consider the one parameter subfamily Xλ of complex projective hypersurfaces
of degree n + 1 in P

n
defined by

f(x1, · · · , xn+1) = xn+1
1 + · · · + xn+1

n+1 + λx1 · · ·xn+1 = 0,

where λ ∈ C is the parameter. The variety Xλ is a Calabi-Yau manifold when Xλ

is smooth. Let µn+1 denote the group of (n + 1)-th roots of unity. Let

G = {(ζ1, · · · , ζn+1)|ζn+1
i = 1, ζ1 · · · ζn+1 = 1}/µn+1

∼= (Z/(n + 1)Z)n−1,

where µn+1 is embedded in G via the diagonal embedding. The finite group G acts
on Xλ by

(ζ1, · · · , ζn+1)(x1, · · · , xn+1) = (ζ1x1, · · · , ζn+1xn+1).

The quotient Xλ/G is a projective toric hypersurface Yλ in the toric variety P∆,
where P∆ is the simplex in R

n
with vertices {e1, · · · , en,−(e1 + · · ·+ en)} and the

ei’s are the standard coordinate vectors in R
n
. Explicitly, the variety Yλ is the

projective closure in P∆ of the affine toric hypersurface in G
n
m defined by

g(x1, · · · , xn) = x1 + · · · + xn +
1

x1 · · ·xn
+ λ = 0.

Assume that Xλ is smooth. Then, Yλ is a (singular) mirror of Xλ. It is an
orbifold. If Wλ is a smooth crepant resolution of Yλ, then the pair (Xλ,Wλ) is
called a mirror pair of Calabi-Yau manifolds. Such a resolution exists for this
example but not unique if n ≥ 3. The number of rational points and the zeta
function are independent of the choice of the crepant resolution. We are interested
in understanding how the arithmetic of Xλ is related to the arithmetic of Wλ, in
particular how the zeta function of Xλ is related to the zeta function of Wλ. Our
main concern in this paper is to consider Calabi-Yau manifolds over finite fields,
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although we shall mention some conjectural implications for Calabi-Yau manifolds
defined over number fields.

In this example, we see two types of mirror pairs. The first one is the generic
mirror pair {XΛ,Wλ}, where XΛ is the generic member in the moduli space of
smooth projective Calabi-Yau hypersurfaces of degree (n + 1) in P

n
and Wλ is

the generic member in the above one parameter family of Calabi-Yau manifolds.
Note that XΛ and Yλ are parameterized by different parameter spaces (of different
dimensions). The possible zeta symmetry in this case would then have to be a
relation between certain generic property of their zeta functions.

The second type of mirror pairs is the one parameter family of mirror pairs
{Xλ,Wλ} parameterized by the same parameter λ. This is a stronger type of
mirror pair than the first type. For λ ∈ C, we say that Wλ is a strong mirror
of Xλ. For such a strong mirror pair {Xλ,Wλ}, we can really ask for the relation
between the zeta function of Xλ and the zeta function of Wλ. If λ1 6= λ2, Wλ1

would not be called a strong mirror for Xλ2
, although they would be an usual

weak mirror pair. Apparently, we do not have a definition for a strong mirror
pair in general, as there is not even a definition for a generic or weak mirror pair
in general.

Let Fq be a finite field of q elements, where q = pr and p is a prime. For a
scheme X of finite type of dimension d over Fq, let #X(Fq) denote the number of
Fq-rational points on X. Let

Z(X,T ) = exp(

∞
∑

k=1

T k

k
#X(Fqk)) ∈ 1 + TZ[[T ]]

be the zeta function of X. It is well known that Z(X,T ) is a rational function in
T whose reciprocal zeros and reciprocal poles are Weil q-integers. Factor Z(X,T )
over the p-adic numbers Cp and write

Z(X,T ) =
∏

i

(1 − αiT )±1

in reduced form, where the algebraic integers αi ∈ Cp. One knows that the slope
ordq(αi) is a rational number in the interval [0, d]. For two real numbers s1 ≤ s2,
we define the slope [s1, s2] part of Z(X,T ) to be the partial product

(3) Z[s1,s2](X,T ) =
∏

s1≤ordq(αi)≤s2

(1 − αiT )±1.

For a half open and half closed interval [s1, s2), the slope [s1, s2) part Z[s1,s2)(X,T )
of Z(X,T ) is defined in a similar way. These are rational functions with coeffi-
cients in Zp by the p-adic Weierstrass factorization. It is clear that we have the
decomposition

Z(X,T ) =
d

∏

i=0

Z[i,i+1)(X,T ).

Our main result of this paper is the following arithmetic mirror theorem.

Theorem 1.1. Assume that λ ∈ Fq such that (Xλ,Wλ) is a strong mirror
pair of Calabi-Yau manifolds over Fq. For every positive integer k, we have the
congruence formula

#Xλ(Fqk) ≡ #Yλ(Fqk) ≡ #Wλ(Fqk) (mod qk).
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Equivalently, the slope [0, 1) part of the zeta function is the same for the mirror
varieties {Xλ, Yλ,Wλ}:

Z[0,1)(Xλ, T ) = Z[0,1)(Yλ, T ) = Z[0,1)(Wλ, T ).

We now discuss a few applications of this theorem. In terms of cohomology
theory, this suggests that the semi-simplification of the DeRham-Witt cohomology
( in particular, the p-adic etàle cohomology) for {Xλ, Yλ,Wλ} are all the same. A
corollary of the above theorem is that the unit root parts (slope zero parts) of their
zeta functions are the same:

Z[0,0](Xλ, T ) = Z[0,0](Yλ, T ) = Z[0,0](Wλ, T ).

The p-adic variation of the rational function Z[0,0](Xλ, T ) as λ varies is closely
related to the mirror map which we do not discuss it here, but see [4] for the case
n ≤ 3. From arithmetic point of view, the p-adic variation of the rational function
Z[0,0](Xλ, T ) as λ varies is explained by Dwork’s unit root zeta function [5]. We
briefly explain the connection here.

Let B be the parameter variety of λ such that (Xλ,Wλ) form a strong mirror
pair. Let Φ : Xλ → B (resp. Ψ : Wλ → B) be the projection to the base by
sending Xλ (resp. Wλ) to λ. The pair (Φ,Ψ) of morphisms to B is called a strong
mirror pair of morphisms to B. Each of its fibres gives a strong mirror pair of
Calabi-Yau manifolds. Recall that Dwork’s unit root zeta function attached to the
morphism Φ is defined to be the formal infinite product

Zunit(Φ, T ) =
∏

λ∈|B|

Z[0,0](Xλ, T deg(λ)) ∈ 1 + TZp[[T ]],

where |B| denotes the set of closed points of B over Fq. This unit root zeta function
is no longer a rational function, but conjectured by Dwork in [5] and proved by
the author in [11][12][13] to be a p-adic meromorphic function in T . The above
theorem immediately implies

Corollary 1.2. Let (Φ,Ψ) be the above strong mirror pair of morphisms to
the base B. Then, their unit root zeta functions are the same:

Zunit(Φ, T ) = Zunit(Ψ, T ).

If λ is in a number field K, then Theorem 1.1 implies that the Hasse-Weil zeta
functions of Xλ and Yλ differ essentially by the L-function of a pure motive Mn(λ)
of weight n − 3. That is,

ζ(Xλ, s) = ζ(Yλ, s)L(Mn(λ), s − 1).

In the quintic case n = 4, the pure weight 1 motive M4(λ) would come from a
curve. This curve has been constructed explicitly by Candelas, de la Ossa and F.
Rodriguez-Villegas [3]. The relation between the Hasse-Weil zeta functions of Xλ

and Wλ are similar, differing by a few more factors consisting of Tate twists of the
Dedekind zeta function of K.

Theorem 1.1 motivates the following more general conjecture.

Conjecture 1.3 (Congruence mirror conjecture). Suppose that we are given
a strong mirror pair {X,Y } of Calabi-Yau manifolds defined over Fq. Then, for
every positive integer k, we have

#X(Fqk) ≡ #Y (Fqk) (mod qk).

Equivalently,

Z[0,1)(X,T ) = Z[0,1)(Y, T ).
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Equivalently (by functional equation),

Z(d−1,d](X,T ) = Z(d−1,d](Y, T ).

The condition in the congruence mirror conjecture is vague since one does not
know at present an algebraic geometric definition of a strong mirror pair of Calabi-
Yau manifolds, although one does know many examples such as the one given
above. Thus, a major part of the problem is to make the definition of a strong
mirror pair mathematically precise. For an additional evidence of the congruence
mirror conjecture, see Theorem 6.2 which can be viewed as a generalization of
Theorem 1.1. As indicated before, this conjecture implies that Dwork’s unit root
zeta functions for the two families forming a strong mirror pair are the same p-adic
meromorphic functions. This means that under the strong mirror family involution,
Dwork’s unit root zeta function stays the same.

Just like the zeta function itself, its slope [0, 1) part Z[0,1)(Xλ, T ) depends
heavily on the algebraic parameter λ, not just on the topological properties of Xλ.
This means that the congruence mirror conjecture is really a continuous type of
arithmetic mirror symmetry. This continuous nature requires the use of a strong
mirror pair, not just a generic mirror pair.

Assume that {X,Y } forms a mirror pair, not necessarily a strong mirror pair.
A different type of arithmetic mirror symmetry reflecting the Hodge symmetry,
which is discrete and hence generic in nature, is to look for a suitable quantum
version ZQ(X,T ) of the zeta function such that

ZQ(X,T ) = ZQ(Y, T )(−1)d

,

where {X,Y } is a mirror pair of Calabi-Yau manifolds over Fq of dimension d. This
relation cannot hold for the usual zeta function Z(X,T ) for obvious reasons, even
for a strong mirror pair as it contradicts with the congruence mirror conjecture for
odd d. No non-trivial candidate for ZQ(X,T ) has been found. Here we propose a
p-adic quantum version which would have the conjectural properties for most (and
hence generic) mirror pairs. We will call our new zeta function to be the slope zeta
function as it is based on the slopes of the zeros and poles.

Definition 1.4. For a scheme X of finite type over Fq, write as before

Z(X,T ) =
∏

i

(1 − αiT )±1

in reduced form, where αi ∈ Cp. Define the slope zeta function of X to be the two
variable function

(4) Sp(X,u, T ) =
∏

i

(1 − uordq(αi)T )±1.

Note that

αi = qordq(αi)βi,

where βi is a p-adic unit. Thus, the slope zeta function Sp(X,u, T ) is obtained from
the p-adic factorization of Z(X,T ) by dropping the p-adic unit parts of the roots
and replacing q by the variable u. This is not always a rational function in u and
T . It is rational if all slopes are integers. Note that the definition of the slope zeta
function is independent of the choice of the ground field Fq where X is defined.

It depends only on X ⊗ F̄q and thus is also a geometric invariant. It would be
interesting to see if there is a diophantine interpretation of the slope zeta function.
If we have a smooth proper family of varieties, the Grothendieck specialization
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theorem implies that the generic Newton polygon on each cohomology exists and
hence the generic slope zeta function exists as well.

If X is a scheme of finite type over Z, then for each prime number p, the
reduction X ⊗ Fp has the p-adic slope zeta function Sp(X ⊗ Fp, u, T ). At the
first glance, one might think that this gives infinitely many discrete invariants for
X as the set of prime numbers is infinite. However, it can be shown that the
set {Sp(X ⊗ Fp, u, T )|p prime} contains only finitely many distinct elements. In
general, it is a very interesting but difficult problem to determine this set {Sp(X ⊗
Fp, u, T )|p prime}.

Suppose that X and Y form a mirror pair of d-dimensional Calabi-Yau mani-
folds over Fq. For simplicity and for comparison with the Hodge theory, we always
assume in this paper that X and Y can be lifted to characteristic zero (to the
Witt ring of Fq). In this good reduction case, the modulo p Hodge numbers equal
the characteristic zero Hodge numbers. Taking u = 1 in the definition of the slope
zeta function, we see that the specialization Sp(X, 1, T ) already satisfies the desired
relation

Sp(X, 1, T ) = (1 − T )−e(X) = (1 − T )−(−1)de(Y ) = Sp(Y, 1, T )(−1)d

.

This suggests that there is a chance that the slope zeta function might satisfy the
desired slope mirror symmetry

(5) Sp(X,u, T ) = Sp(Y, u, T )(−1)d

.

In section 7, we shall show that the slope zeta function satisfies a functional equa-
tion. Furthermore, the expected slope mirror symmetry does hold if both X and Y
are ordinary. If either X or Y is not ordinary, the expected slope mirror symmetry
is unlikely to hold in general.

If d ≤ 2, the congruence mirror conjecture implies that the slope zeta function
does satisfy the expected slope mirror symmetry for a strong mirror pair {X,Y },
whether X and Y are ordinary or not. For d ≥ 3, we believe that the slope zeta
function is still a little bit too strong for the expected symmetry to hold in general,
even if {X,Y } forms a strong mirror pair. And it should not be too hard to find
a counter-example although we have not done so. However, we believe that the
expected slope mirror symmetry holds for a generic mirror pair of 3-dimensional
Calabi-Yau manifolds.

Conjecture 1.5 (Slope mirror conjecture). Suppose that we are given a generic
mirror pair {X,Y } of 3-dimensional Calabi-Yau manifolds defined over Fq. Then,
we have the slope mirror symmetry for their generic slope zeta functions:

(6) Sp(X,u, T ) =
1

Sp(Y, u, T )
.

A main point of this conjecture is that it holds for all prime numbers p. For
arbitrary d ≥ 4, the corresponding slope mirror conjecture might be false for some
prime numbers p, but it should be true for all primes p ≡ 1 (mod D) for some
positive integer D depending on the mirror family, if the family comes from the
reduction modulo p of a family defined over a number field. In the case d ≤ 3, one
could take D = 1 and hence get the above conjecture.

Again the condition in the slope mirror conjecture is vague as it is not presently
known an algebraic geometric definition of a mirror family, although many examples
are known in the toric setting. In a future paper, using the results in [10][14], we
shall prove that the slope mirror conjecture holds in the toric hypersurface case if
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d ≤ 3. For example, if X is a generic quintic hypersurface, then X is ordinary by
the results in [8][10] for every p and thus one finds

Sp(X ⊗ Fp, u, T ) =
(1 − T )(1 − uT )101(1 − u2T )101(1 − u3T )

(1 − T )(1 − uT )(1 − u2T )(1 − u3T )
.

This is independent of p. Note that we do not know if the one parameter subfamily
Xλ is generically ordinary for every p. The ordinary property for every p was
established only for the universal family of hypersurfaces, not for a one parameter
subfamily of hypersurfaces such as Xλ. If Y denotes the generic mirror of X, then
by the results in [10] [14], Y is ordinary for every p and thus we obtain

Sp(Y ⊗ Fp, u, T ) =
(1 − T )(1 − uT )(1 − u2T )(1 − u3T )

(1 − T )(1 − uT )101(1 − u2T )101(1 − u3T )
.

Again, it is independent of p. The slope mirror conjecture holds in this example.
Remark: The slope zeta function is completely determined by the Newton

polygon of the Frobenius acting on cohomologies of the variety in question. The
converse is not true, as there may be cancellations coming from different cohomology
dimensions in the slope zeta function.

For a mirror pair over a number field, we have the following harder conjecture.

Conjecture 1.6 (Slope mirror conjecture over Z). Let {X,Y } be two schemes
of finite type over Z such that their generic fibres {X ⊗ Q, Y ⊗ Q} form a usual
(weak) mirror pair of d-dimensional Calabi-Yau manifolds defined over Q. Then
there are infinitely many prime numbers p (with positive density) such that

Sp(X ⊗ Fp, u, T ) = Sp(Y ⊗ Fp, u, T )(−1)d

.

Remarks. If one uses the weight 2 logq |αi| instead of the slope ordqαi, where
| · | denotes the complex absolute value, one can define a two variable weight zeta
function in a similar way. It is easy to see that the resulting weight zeta function
does not satisfy the desired symmetry as the weight has nothing to do with the
Hodge symmetry, while the slopes are related to the Hodge numbers as the Newton
polygon (slope polygon) lies above the Hodge polygon.

In practice, one is often given a mirror pair of singular Calabi-Yau orbifolds,
where there may not exist a smooth crepant resolution. In such a case, one could
define an orbifold zeta function, which would be equal to the zeta function of the
smooth crepant resolution whenever such a resolution exists. Similar results and
conjectures should carry over to such orbifold zeta functions.

In the appendix, D. Haessig (my student at UC Irvine) proves some additional
congruence results for the strong mirror pair (Xλ, Yλ), some of which is used in
Section 7.

2. A counting formula via Gauss sums

Let V1, · · · , Vm be m distinct lattice points in Z
n
. For Vj = (V1j , · · · , Vnj),

write
xVj = x

V1j

1 · · ·xVnj
n .

Let f be the Laurent polynomial in n variables written in the form:

f(x1, · · · , xn) =
m

∑

j=1

ajx
Vj , aj ∈ Fq,

where not all aj are zero. Let M be the n × m matrix

M = (V1, · · · , Vm),
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where each Vj is written as a column vector. Let N∗
f denote the number of Fq-

rational points on the affine toric hypersurface f = 0 in G
n
m. If each Vj ∈ Z

n
≥0, we

let Nf denote the number of Fq-rational points on the affine hypersurface f = 0 in

A
n
. We first derive a well known formula for both N∗

f and Nf in terms of Gauss
sums.

For this purpose, we now recall the definition of Gauss sums. Let Fq be the
finite field of q elements, where q = pr and p is the characteristic of Fq. Let χ be

the Teichmüller character of the multiplicative group F
∗
q . For a ∈ F

∗
q , the value

χ(a) is just the (q−1)-th root of unity in the p-adic field Cp such that χ(a) modulo
p reduces to a. Define the (q − 2) Gauss sums over Fq by

G(k) =
∑

a∈F
∗

q

χ(a)−kζTr(a)
p (1 ≤ k ≤ q − 2),

where ζp is a primitive p-th root of unity in Cp and Tr denotes the trace map from
Fq to the prime field Fp.

Lemma 2.1. For all a ∈ Fq, the Gauss sums satisfy the following interpolation
relation

ζTr(a)
p =

q−1
∑

k=0

G(k)

q − 1
χ(a)k,

where

G(0) = q − 1, G(q − 1) = −q.

Proof. By the Vandermonde determinant, there are numbers C(k) (0 ≤ k ≤
q − 1) such that for all a ∈ Fq, one has

ζTr(a)
p =

q−1
∑

k=0

C(k)

q − 1
χ(a)k.

It suffices to prove that C(k) = G(k) for all k. Take a = 0, one finds that C(0)/(q−
1) = 1. This proves that C(0) = q − 1 = G(0). For 1 ≤ k ≤ q − 2, one computes
that

G(k) =
∑

a∈F
∗

q

χ(a)−kζTr(a)
p =

C(k)

q − 1
(q − 1) = C(k).

Finally,

0 =
∑

a∈Fq

ζTr(a)
p =

C(0)

q − 1
q +

C(q − 1)

q − 1
(q − 1).

This gives C(q − 1) = −q = G(q − 1). The lemma is proved.

We also need to use the following classical theorem of Stickelberger.

Lemma 2.2. Let 0 ≤ k ≤ q − 1. Write

k = k0 + k1p + · · · + kr−1p
r−1

in p-adic expansion, where 0 ≤ ki ≤ p − 1. Let σ(k) = k0 + · · · + kr−1 be the sum
of the p-digits of k. Then,

ordpG(k) =
σ(k)

p − 1
.
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Now we turn to deriving a counting formula for Nf in terms of Gauss sums.

Write Wj = (1, Vj) ∈ Z
n+1

. Then,

x0f =

m
∑

j=1

ajx
Wj =

m
∑

j=1

ajx0x
V1j

1 · · ·xVnj
n ,

where x now has n + 1 variables {x0, · · · , xn}. Using the formula

∑

t∈Fq

tk =











0, if (q − 1) 6 |k,

q − 1, if (q − 1)|k and k > 0,

q, if k = 0,

one then calculates that

qNf =
∑

x0,··· ,xn∈Fq

ζTr(x0f(x))
p

=
∑

x0,··· ,xn∈Fq

m
∏

j=1

ζTr(ajxWj )
p

=
∑

x0,··· ,xn∈Fq

m
∏

j=1

q−1
∑

kj=0

G(kj)

q − 1
χ(aj)

kj χ(xWj )kj

=

q−1
∑

k1=0

· · ·
q−1
∑

km=0

(

m
∏

j=1

G(kj)

q − 1
χ(aj)

kj )
∑

x0,··· ,xn∈Fq

χ(xk1W1+···+kmWm)

=
∑

∑

m
j=1 kjWj≡0(mod q−1)

(q − 1)s(k)qn+1−s(k)

(q − 1)m

m
∏

j=1

χ(aj)
kj G(kj),(7)

where s(k) denotes the number of non-zero entries in k1W1 + · · · + kmWm.
Similarly, one calculates that

qN∗
f =

∑

x0∈Fq,x1,··· ,xn∈F
∗

q

ζTr(x0f(x))
p

= (q − 1)n +
∑

x0,··· ,xn∈F
∗

q

m
∏

j=1

ζTr(ajxWj )
p

= (q − 1)n +
∑

∑

m
j=1 kjWj≡0(mod q−1)

(q − 1)n+1

(q − 1)m

m
∏

j=1

χ(aj)
kj G(kj).(8)

We shall use these two formulas to study the number of Fq-rational points on
certain hypersurfaces in next two sections.

3. Rational points on Calabi-Yau hypersurfaces

In this section, we apply formula (7) to compute the number of Fq-rational

points on the projective hypersurface Xλ in P
n

defined by

f(x1, · · · , xn+1) = xn+1
1 + · · · + xn+1

n+1 + λx1 · · ·xn+1 = 0,
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where λ is an element of F
∗
q . We shall handle the easier case λ = 0 separately. Let

M be the (n + 2) × (n + 2) matrix

(9) M =















1 1 1 · · · 1 1
n + 1 0 0 · · · 0 1

0 n + 1 0 · · · 0 1
...

...
... · · ·

...
...

0 0 0 · · · n + 1 1















Let k = (k1, · · · , kn+2) written as a column vector. Let Nf denote the number of

Fq-rational points on the affine hypersurface f = 0 in A
n+1

. By formula (7), we
deduce that

qNf =
∑

Mk≡0(mod q−1)

(q − 1)s(k)qn+2−s(k)

(q − 1)n+2
(
n+2
∏

j=1

G(kj))χ(λ)kn+2 ,

where s(k) denotes the number of non-zero entries in Mk ∈ Z
n+2

. The number of
Fq-rational points on the projective hypersurface Xλ is then given by the formula

Nf − 1

q − 1
=

−1

q − 1
+

∑

Mk≡0(mod q−1)

qn+1−s(k)

(q − 1)n+3−s(k)
(
n+2
∏

j=1

G(kj))χ(λ)kn+2 .

If k = (0, · · · , 0, q − 1), then Mk = (q − 1, · · · , q − 1) and s(k) = n + 2. In this
case, the corresponding term in the above expression is −(q−1)n which is (−1)n−1

modulo q. If k = (0, ..., 0), then s(k) = 0 and the corresponding term is qn+1/(q−1)
which is zero modulo q.

Thus, we obtain the congruence formula modulo q:

Nf − 1

q − 1
≡ 1 + (−1)n−1 +

∑∗

Mk≡0(mod q−1)

qn+1−s(k)

(q − 1)n+3−s(k)
(
n+2
∏

j=1

G(kj))χ(λ)kn+2 ,

where
∑∗

means summing over all those solutions k = (k1, · · · , kn+2) with 0 ≤
ki ≤ q − 1, k 6= (0, · · · , 0), and k 6= (0, · · · , 0, q − 1).

Lemma 3.1. If k 6= (0, · · · , 0), then
∏n+2

j=1 G(kj) is divisible by q.

Proof. Let k be a solution of Mk ≡ 0(mod q − 1) such that k 6= (0, · · · , 0).
Then, there are positive integers ℓ0, · · · , ℓr−1 such that

k1 + · · · + kn+2 = (q − 1)ℓ0,

< pk1 > + · · ·+ < pkn+2 >= (q − 1)ℓ1,

· · ·
< pr−1k1 > + · · ·+ < pr−1kn+2 >= (q − 1)ℓr−1,

where < pk1 > denotes the unique integer in [0, q − 1] congruent to pk1 modulo
(q − 1) and which is 0 (resp. q − 1) if pk1 = 0 (resp., if pk1 is a positive multiple of
q − 1). By the Stickelberger theorem, we deduce that

ordp

n+2
∏

j=1

G(kj) =

∑

j σ(kj)

p − 1
=

1

q − 1

r−1
∑

i=0

(q − 1)ℓi =

r−1
∑

i=0

ℓi.

Since ℓi ≥ 1, it follows that

ordq

n+2
∏

j=1

G(kj) =
1

r

r−1
∑

i=0

ℓi ≥ 1



MIRROR SYMMETRY FOR ZETA FUNCTIONS 11

with equality holding if and only if all ℓi = 1. The lemma is proved.
Using this lemma and the previous congruence formula, we deduce

Lemma 3.2. Let λ ∈ F
∗
q . We have the congruence formula modulo q:

#Xλ(Fq) ≡ 1 + (−1)n−1 +
∑∗

Mk≡0(mod q−1)
s(k)=n+2

1

q(q − 1)
(

n+2
∏

j=1

G(kj))χ(λ)kn+2 .

4. Rational points on the mirror hypersurfaces

In this section, we apply formula (8) to compute the number of Fq-rational

points on the affine toric hypersurface in G
n
m defined by the Laurent polynomial

equation

g(x1, · · · , xn) = x1 + · · · + xn +
1

x1 · · ·xn
+ λ = 0,

where λ is an element of F
∗
q . Let N be the (n + 1) × (n + 2) matrix

(10) N =















1 1 · · · 1 1 1
1 0 · · · 0 −1 0
0 1 · · · 0 −1 0
...

... · · ·
...

...
...

0 0 · · · 1 −1 0















Let k = (k1, · · · , kn+2) written as a column vector. By formula (8), we deduce that

qN∗
g = (q − 1)n +

∑

Nk≡0(mod q−1)

1

(q − 1)
(
n+2
∏

j=1

G(kj))χ(λ)kn+2 ,

where k = (k1, · · · , kn+2) with 0 ≤ ki ≤ q − 1.
The contribution of those trivial terms k (where each ki is either 0 or q − 1) is

given by

1

q − 1

n+2
∑

s=0

(−q)s(q − 1)n+2−s

(

n + 2

s

)

=
(−1)n

q − 1
.

Since

(q − 1)n +
(−1)n

q − 1
=

(q − 1)n+1 + (−1)n

q − 1
≡ q(n + 1)(−1)n−1(modq2),

we deduce

Lemma 4.1. For λ ∈ F
∗
q , we have the following congruence formula modulo q:

N∗
g ≡ (n + 1)(−1)n−1 +

∑′

Nk≡0(mod q−1)

1

q(q − 1)
(
n+2
∏

j=1

G(kj))χ(λ)kn+2 ,

where
∑′

means summing over all those non-trivial solutions k.

5. The mirror congruence formula

Theorem 5.1. For λ ∈ F
∗
q , we have the congruence formula

#Xλ(Fq) ≡ N∗
g + 1 − n(−1)n−1 (mod q).
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Proof. If k is a non-trivial solution of Nk ≡ 0(modq − 1), then we have

k1 ≡ k2 ≡ · · · ≡ kn ≡ kn+1(modq − 1)

and

k1 + · · · + kn+1 + kn+2 ≡ 0(modq − 1).

Since k is non-trivial, we must have

0 < k1 = k2 = · · · = kn+1 < q − 1,

k1 + · · · + kn+2 = (n + 1)k1 + kn+2 = (n + 1)k2 + kn+2 = · · · ≡ 0(modq − 1).

This gives all solutions of the equation Mk ≡ 0(modq − 1) with k1 = · · · = kn+1,
0 < k1 < q − 1 and s(k) = n + 2. The corresponding terms for these k’s in
(Nf − 1)/(q − 1) and N∗

g are exactly the same.
A solution of Mk ≡ 0(mod q − 1) is called admissible if s(k) = n + 2 and its

first k + 1 coordinates {k1, · · · , kn+1} contain at least two distinct elements. The
above results show that we have

Nf − 1

q − 1
− 1 − (−1)n−1 − (N∗

g − (n + 1)(−1)n−1)

≡
∑

admissible k

1

q(q − 1)
(

n+2
∏

j=1

G(kj))χ(λ)kn+2 (mod q).

This congruence together with the following lemma completes the proof of the
theorem.

Lemma 5.2. If k is an admissible solution of Mk ≡ 0(mod q − 1), then

ordq(

n+2
∏

j=1

G(kj)) ≥ 2.

Proof. If k is an admissible solution, then < pk >, · · · , < pr−1k > are also
admissible solutions. For each 1 ≤ i ≤ n + 1, write

(n + 1)ki + kn+2 = (q − 1)ℓi,

where ℓi is a positive integer. Adding these equations together, we get

(n + 1)(k1 + · · · + kn+1) + (n + 1)kn+2 = (q − 1)(ℓ1 + · · · + ℓn+1).

Thus, the integer

k1 + · · · + kn+2

q − 1
=

ℓ1 + · · · + ℓn+1

n + 1
= ℓ ∈ Z>0.

It is clear that ℓ = 1 if and only if each ℓi = 1 which would imply that k1 = · · · =
kn+1 contradicting with the admissibility of k. Thus, we must have that ℓ ≥ 2.

Similarly, for each 0 ≤ i ≤ r − 1, we have

< pik1 > + · · ·+ < pikn+2 >= (q − 1)ji,

where ji ≥ 2 is a positive integer. We conclude that

ordq(

n+2
∏

j=1

G(kj)) =
j0 + · · · + jr−1

r
≥ 2.

The lemma is proved.
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6. Rational points on the projective mirror

Let ∆ be the convex integral polytope associated with the Laurent polynomial
g. It is the n-dimensional simplex in R

n
with the following vertices:

{e1, · · · , en,−(e1 + · · · + en)},
where the ei’s are the standard unit vectors in R

n
.

Let P∆ be the projective toric variety associated with the polytope ∆, which
contains G

n
m as an open dense subset. Let Yλ be the projective closure in P∆ of

the affine toric hypersurface g = 0 in G
n
m. The variety Yλ is then a projective toric

hypersurface in P∆. We are interested in the number of Fq-rational points on Yλ.
The toric variety P∆ has the following disjoint decomposition:

P∆ =
⋃

τ∈∆

P∆,τ ,

where τ runs over all non-empty faces of ∆ and each P∆,τ is isomorphic to the torus

G
dimτ
m . Accordingly, the projective toric hypersurface Yλ has the corresponding

disjoint decomposition

Yλ =
⋃

τ∈∆

Yλ,τ , Yλ,τ = Yλ ∩ P∆,τ .

For τ = ∆, the subvariety Yλ,∆ is simply the affine toric hypersurface defined by

g = 0 in G
n
m. For zero-dimensional τ , Yλ,τ is empty. For a face τ with 1 ≤ dimτ ≤

n − 1, one checks that Yλ,τ is isomorphic to the affine toric hypersurface in G
dimτ
m

defined by
1 + x1 + · · · + xdimτ = 0.

For such a τ , the inclusion-exclusion principle shows that

#Yλ,τ (Fq) = qdimτ−1 −
(

dimτ

1

)

qdimτ−2 + · · · + (−1)dimτ−1

(

dimτ

dimτ − 1

)

.

Thus,

#Yλ,τ (Fq) =
1

q
((q − 1)dimτ + (−1)dimτ+1).

This formula holds even for zero-dimensional τ as both sides would then be zero.
Putting these calculations together, we deduce that

#Yλ(Fq) = N∗
g − (q − 1)n + (−1)n+1

q
+

∑

τ∈∆

1

q
((q − 1)dimτ + (−1)dimτ+1),

where τ runs over all non-empty faces of ∆ including ∆ itself. Since ∆ is a simplex,
one computes that

∑

τ∈∆

((q − 1)dimτ + (−1)dimτ+1) =
qn+1 − 1

q − 1
+ (−1) =

q(qn − 1)

q − 1
.

This implies that

(11) #Yλ(Fq) = N∗
g − (q − 1)n + (−1)n+1

q
+

qn − 1

q − 1
.

This equality holds for all λ ∈ Fq, including the case λ = 0. Reducing modulo q,
we get

(12) #Yλ(Fq) ≡ N∗
g + 1 − n(−1)n−1 (mod q).

This and Theorem 5.1 prove the case λ 6= 0 of the following theorem.
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Theorem 6.1. For every finite field Fq with λ ∈ Fq, we have the congruence
formula

#Xλ(Fq) ≡ #Yλ(Fq) (mod q).

If furthermore, λ ∈ Fq such that g is ∆-regular and Wλ is a mirror manifold of
Xλ, then

#Yλ(Fq) ≡ #Wλ(Fq) (mod q).

Proof. For the first part, it remains to check the case λ = 0. The proof is
similar and in fact somewhat simpler than the case λ 6= 0. We give an outline.
Since λ = 0, we can take kn+2 = 0 in the calculations of Nf and N∗

g . One finds
then

#X0(Fq) ≡ 1 +
∑∗

Mk≡0(mod q−1)
s(k)=n+2

1

q(q − 1)
(

n+2
∏

j=1

G(kj)),

where
∑∗

means summing over all those solutions k = (k1, · · · , kn+1, 0) with 0 ≤
ki ≤ q − 1 and k 6= (0, · · · , 0).

Similarly, one computes that

N∗
g ≡ n(−1)n−1 +

∑′

Nk≡0(mod q−1)

1

q(q − 1)
(

n+2
∏

j=1

G(kj)),

where
∑′

means summing over all those non-trivial solutions k with kn+2 = 0. By
(12), we deduce

#Y0(Fq) ≡ 1 +
∑′

Nk≡0(mod q−1)

1

q(q − 1)
(
n+2
∏

j=1

G(kj)).

As before, one checks that

∑∗

Mk≡0(mod q−1)
s(k)=n+2

(

n+2
∏

j=1

G(kj)) ≡
∑′

Nk≡0(mod q−1)

(

n+2
∏

j=1

G(kj))(mod q2).

The first part of the theorem follows.
To prove the second part of the theorem, let ∆∗ be the dual polytope of ∆.

One checks that ∆∗ is the simplex in R
n

with the vertices

(n + 1)ei −
n

∑

j=1

ej (i = 1, ..., n), −
n

∑

j=1

ej .

This is the (n + 1)-multiple of a basic (regular) simplex in R
n
. In particular, the

codimension 1 faces of ∆∗ are (n + 1)-multiples of a basic simplex in R
n−1

. By
the parrallel hyperplane decomposition in [7], one deduces that the codimension
1 faces of ∆∗ have a triangulation into basic simplices. Fix such a triangulation
which produces a smooth crepant resolution φ : Wλ → Yλ. One checks [2] that for
each point y ∈ Yλ(Fq), the fibre φ−1(λ) is stratified by affine spaces over Fq. Since
the fibres are connected, it follows that the number of Fq-rational points on φ−1(λ)
is congruent to 1 modulo q. Thus, modulo q, we have the congruence

#Wλ(Fq) ≡
∑

y∈Yλ(Fq)

φ−1(λ)(Fq) ≡
∑

y∈Yλ(Fq)

1 = #Yλ(Fq).

The proof is complete.
In terms of zeta functions, the above theorem says that the slope [0, 1) part of

the zeta function for Xλ equals the slope [0, 1) part of the zeta function for Yλ.
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The above elementary calculations can be used to treat some other examples
of toric hypersurfaces and complete intersections. In a joint work [6] with Lei Fu,
we have proved the following partial generalization.

Theorem 6.2. Let X be a smooth connected Calabi-Yau scheme defined over
the ring W (Fq) of Witt vectors of Fq. Let G be a finite group of W -morphisms
acting on X. Assume that G fixes the non-zero global section of the canonical
bundle of X. Then, for each positive integer k, we have the congruence formula

#(X ⊗ Fq)(Fqk) ≡ #(X/G ⊗ Fq)(Fqk)(mod qk).

7. Applications to zeta functions

In this section, we compare the two zeta functions Z(Xλ, T ) and Z(Yλ, T ),
where {Xλ, Yλ} is our strong mirror pair.

First, we recall what is known about Z(Xλ, T ). Let λ ∈ Fq such that Xλ is
smooth projective. By the Weil conjectures, the zeta function of Xλ over Fq has
the following form

(13) Z(Xλ, T ) =
P (λ, T )(−1)n

(1 − T )(1 − qT ) · · · (1 − qn−1T )
,

where P (λ, T ) ∈ 1 + TZ[T ] is a polynomial of degree n(nn − (−1)n)/(n + 1), pure
of weight n − 1. By the results in [8][10], the universal family of hypersurfaces of
degree n + 1 is generically ordinary for every p (Mazur’s conjecture). However, we
do not know if the one parameter family Xλ of hypersurfaces is generically ordinary
for every p. Thus, we raise

Question 7.1. Is the one parameter family Xλ of degree n + 1 hypersurfaces
in P

n
generically ordinary for every prime number p not dividing (n + 1)?

The answer is yes if p ≡ 1 (mod n + 1) since the fibre for λ = 0 is already
ordinary if p ≡ 1 (mod n + 1). It is also true if n ≤ 3. The first unknown case is
when n = 4, the quintic case.

Next, we recall what is known about Z(Yλ, T ). Let λ ∈ Fq such that g is
∆-regular. This is equivalent to assuming that (−λ)n+1 6= (n + 1)n+1. Then, the
zeta function of the affine toric hypersurface g = 0 over Fq in G

n
m has the following

form (see [15])

Z(g, T ) = Q(λ, T )(−1)n
n−1
∏

i=0

(1 − qiT )(−1)n−i( n

i+1),

where Q(λ, T ) ∈ 1 + TZ[T ] is a polynomial of degree n, pure of weight n − 1. The
product of the trivial factors in Z(g, T ) is simply the zeta function of this sequence

(qk − 1)n + (−1)n+1

qk
, k = 1, 2, · · · .

¿From this and (11), one deduces that the zeta function of the projective toric
hypersurface Yλ has the form

(14) Z(Yλ, T ) =
Q(λ, T )(−1)n

(1 − T )(1 − qT ) · · · (1 − qn−1T )
.

By the results in [10][14], this one parameter family Yλ of toric hypersurfaces is
generically ordinary for every n and every prime number p.
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Now, we are ready to compare the two zeta functions Z(Xλ, T ) and Z(Yλ, T ).
Let now λ ∈ Fq such that Xλ is smooth and g is ∆-regular. The above description
shows that

Z(Xλ, T )

Z(Yλ, T )
= (

P (λ, T )

Q(λ, T )
)(−1)n

.

To understand this quotient of zeta functions, it suffices to understand the quotient
P (λ, T )/Q(λ, T ).

Lemma 7.2. Assume that (n+1)|(q− 1). Then the polynomial Q(λ, T ) divides
P (λ, T ).

Proof. Since (n + 1)|(q − 1), the finite map Xλ → Yλ is a Galois covering
with Galois group G, where G = (Z/(n + 1)Z)n−1 is an abelian group. For an
ℓ-adic representation ρ : G → GL(Vρ), let L(Xλ, ρ, T ) denote the corresponding
L-function of ρ associated to this Galois covering. Then, we have the standard
factorization

Z(Xλ, T ) =
∏

ρ

L(Xλ, ρ, T ),

where ρ runs over all irreducible (necessarily one-dimensional) ℓ-adic representa-
tions of G. If ρ = 1 is the trivial representation, then

L(Xλ, 1, T ) = Z(Yλ, T ).

For a prime number ℓ 6= p, the ℓ-adic trace formula for Z(Xλ, T ) is

Z(Xλ, T ) =

2(n−1)
∏

i=0

det(I − TFrobq|Hi(Xλ ⊗ F̄q,Qℓ))
(−1)i−1

,

where Frobq denotes the geometric Frobenius element over Fq. Since Xλ is a smooth
projective hypersurface of dimension n − 1, one has the more precise form of the
zeta function:

(15) Z(Xλ, T ) =
det(I − TFrobq|Hn−1(Xλ ⊗ F̄q,Qℓ))

(−1)n

(1 − T )(1 − qT ) · · · (1 − qn−1T )
.

Similarly, the ℓ-adic trace formula for the L-function is

L(Xλ, ρ, T ) =

2(n−1)
∏

i=0

det(I − T (Frobq ⊗ 1)|(Hi(Xλ ⊗ F̄q,Qℓ) ⊗ Vρ)
G)(−1)i−1

.

For odd i 6= n − 1,

Hi(Xλ ⊗ F̄q,Qℓ) = 0, (Hi(Xλ ⊗ F̄q,Qℓ) ⊗ Vρ)
G = 0.

For even i = 2k 6= n − 1 with 0 ≤ k ≤ n − 1,

H2k(Xλ ⊗ F̄q,Qℓ) = Qℓ(−k), (H2k(Xλ ⊗ F̄q,Qℓ) ⊗ Vρ)
G = 0

for non-trivial irreducible ρ. This proves that for irreducible ρ 6= 1, we have

L(Xλ, ρ, T ) = det(I − T (Frobq ⊗ 1)|(Hn−1(Xλ ⊗ F̄q,Qℓ) ⊗ Vρ)
G)(−1)n

.

Similarly, taking ρ = 1, one finds that

(16) Z(Yλ, T ) =
det(I − TFrobq|(Hn−1(Xλ ⊗ F̄q,Qℓ))

G)(−1)n

(1 − T )(1 − qT ) · · · (1 − qn−1T )
.

Comparing (13)-(16), we conclude that

P (λ, T ) = det(I − TFrobq|Hn−1(Xλ ⊗ F̄q,Qℓ)),

Q(λ, T ) = det(I − TFrobq|(Hn−1(Xλ ⊗ F̄q,Qℓ))
G).
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Furthermore, the quotient

P (λ, T )

Q(λ, T )
=

∏

ρ6=1

det(I − T (Frobq ⊗ 1)|(Hn−1(Xλ ⊗ F̄q,Qℓ) ⊗ Vρ)
G)

is a polynomial with integer coefficients of degree n(nn−(−1)n)
n+1 − n, pure of weight

n − 1. The lemma is proved.
This lemma together with Theorem 6.1 gives the following result.

Theorem 7.3. Assume that (n + 1)|(q − 1). There is a polynomial Rn(λ, T ) ∈
1 + TZ[T ] which is pure of weight n − 3 and of degree n(nn−(−1)n)

n+1 − n, such that

P (λ, T )

Q(λ, T )
= Rn(λ, qT ).

We conjecture that the condition (n + 1)|(q − 1) is not necessary in the above
lemma and theorem. In the appendix, D. Haessig proved this divisibility in the
case (n+1, q−1) = 1 and n+1 is a prime. In particular, the divisibility conjecture
is always true if (n + 1) is a prime.

The polynomial Rn(λ, T ) measures how far the zeta function of Yλ differs from
the zeta function of Xλ. Being of integral pure weight n−3, the polynomial Rn(λ, T )
should come from the zeta function of a variety (or motive Mn(λ)) of dimension
n − 3. It would be interesting to find this variety or motive Mn(λ) parameterized
by λ. In this direction, the following is known.

If n = 2, then n − 3 < 0, M2(λ) is empty and we have R2(λ, T ) = 1. If n = 3,
then n − 3 = 0 and

R3(λ, T ) =
18
∏

i=1

(1 − αi(λ)T )

is a polynomial of degree 18 with αi(λ) being roots of unity. In fact, Dwork [4]
proved that all αi(λ) = ±1 in this case. Thus, R3(λ, T ) comes from the the zeta
function of a zero-dimensional variety M3(λ) parameterized by λ. What is this
zero-dimensional variety M3(λ)? For every p and generic λ, the slope zeta function
has the form Sp(Yλ, u, T ) = 1 and

Sp(Xλ, u, T ) =
1

(1 − T )2(1 − uT )20(1 − u2T )2
.

Note that Yλ is singular and not a smooth mirror of Xλ yet. Thus, it is not
surprising that the two slope zeta functions Sp(Xλ, u, T ) and Sp(Yλ, u, T ) do not
satisfy the expected slope mirror symmetry.

If n = 4, then n − 3 = 1 and

R4(λ, T ) =

200
∏

i=1

(1 − αi(λ)T )

is a polynomial of degree 200 with αi(λ) =
√

q. Thus, M4(λ) should come from
some curve parameterized by λ. This curves has been constructed explicitly in a
recent paper by Candelas, de la Ossa and F. Rodriguez-Villegas [3]. For every p
and generic λ, we know that Sp(Yλ, u, T ) = 1, but as indicated at the beginning of
this section, we do not know if the slope zeta function of Xλ for a generic λ has the
form

Sp(Xλ, u, T ) =
(1 − T )(1 − uT )101(1 − u2T )101(1 − u3T )

(1 − T )(1 − uT )(1 − u2T )(1 − u3T )
.
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For general n and λ ∈ K for some field K, in terms of ℓ-adic Galois represen-
tations, the pure motive Mn(λ) is simply given by

Mn(λ) = (
⊕

ρ6=1

(Hn−1(Xλ ⊗ K̄,Qℓ) ⊗ Vρ)
G) ⊗ Qℓ(−1),

where Qℓ(−1) denotes the Tate twist. If λ is in a number field K, this implies that
the Hasse-Weil zeta functions of Xλ and Yλ are related by

ζ(Xλ, s) = ζ(Yλ, s)L(Mn(λ), s − 1).

8. Slope zeta functions

The slope zeta function satisfies a functional equation. This follows from the
usual functional equation which in turn is a consequence of the Poincare duality
for ℓ-adic cohomology.

Proposition 8.1. Let X be a connected smooth projective variety of dimension
d over Fq. Then the slope zeta function Sp(X,u, T ) satisfies the following functional
equation

(17) Sp(X,u,
1

udT
) = Sp(X,u, T )(−ud/2T )e(X),

where e(X) denotes the the ℓ-adic Euler characteristic of X.

Proof. Let Pi(T ) denote the characteristic polynomial of the geometric Frobe-

nius acting on the i-th ℓ-adic cohomology of X ⊗ F̄q. Then,

Z(X,T ) =

2d
∏

i=0

Pi(T )(−1)i+1

.

Let sij (j = 1, · · · , bi) denote the slopes of the polynomial Pi(T ), where bi is the
degree of Pi(T ) which is the i-th Betti number. Write

Qi(T ) =

bi
∏

j=1

(1 − usij T ).

Then, by the definition of the slope zeta function, we have

Sp(X,u, T ) =

2d
∏

i=0

Qi(T )(−1)i+1

.

For each 0 ≤ i ≤ 2d, the slopes of Pi(T ) satisfies the determinant relation

bi
∑

j=1

sij =
i

2
bi.

Using this, one computes that

Qi(
1

T
) = (−1/T )biuibi/2

bi
∏

j=1

(1 − u−sij T ).

Replacing T by udT , we get

Qi(
1

udT
) = (

−1

udT
)biuibi/2

bi
∏

j=1

(1 − ud−sij T ).
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The functional equation for the usual zeta function Z(X,T ) implies that d − sij

(j = 1, · · · , bi) are exactly the slopes for P2d−i(T ). Thus,

Qi(
1

udT
) = (

−1

udT
)biuibi/2Q2d−i(T ).

We deduce that

Sp(X,u,
1

udT
) =

2d
∏

i=0

(

Q2d−i(T )(
−1

udT
)biuibi/2

)(−1)i+1

.

Since bi = b2d−i, it is clear that

2d
∑

i=0

(−1)i i

2
bi =

d

2
e(X).

We conclude that

Sp(X,u,
1

udT
) = Sp(X,u, T )(−T )e(X)u

d
2 e(X).

The proposition is proved.
In the rest of this section, we assume that X is a smooth projective scheme

over W (Fq). Assume that the reduction X⊗Fq is ordinary, i.e., the p-adic Newton
polygon coincides with the Hodge polygon [9]. This means that the slopes of Pi(T )
are exactly j (0 ≤ j ≤ i) with multiplicity hj,i−j(X). In this case, one gets the
explicit formula

(18) Sp(X ⊗ Fq, u, T ) =

d
∏

j=0

(1 − ujT )ej(X),

where

(19) ej(X) = (−1)j
d

∑

i=0

(−1)i−1hj,i(X).

If X and Y form a mirror pair over the Witt ring W (Fq), the Hodge symmetry
hj,i(X) = hj,d−i(Y ) implies for each j,

ej(X) = (−1)j
d

∑

i=0

(−1)i−1hj,d−i(Y ) = (−1)dej(Y ).

We obtain the following result.

Proposition 8.2. Let X and Y be a mirror pair of d-dimensional smooth
projective Calabi-Yau schemes over W (Fq). Assume that both X ⊗Fq and Y ⊗Fq

are ordinary. Then, we have the following symmetry for the slope zeta function:

Sp(X ⊗ Fq, u, T ) = Sp(Y ⊗ Fq, u, T )(−1)d

.

The converse of this proposition may not be always true. The slope mirror
conjecture follows from the following slightly stronger

Conjecture 8.3 (Generically ordinary conjecture). Let d ≤ 3. Suppose that
{X,Y } form a generic mirror pair of d-dimensional smooth projective Calabi-Yau
schemes over W (Fq). Then, both X ⊗ Fq and Y ⊗ Fq are generically ordinary.

For d ≤ 3, it should be possible to prove this conjecture in the toric hypersurface
case using the results in [10][14]. For d ≥ 4, we expect that the same conjecture
holds if p ≡ 1 (mod D) for some positive integer D. This should again be provable
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in the toric hypersurface case using the results in [10]. But we do not know if we
can always take D = 1, even in the toric hypersurface case if d ≥ 4.

9. Appendix (by C. Douglas Haessig)

The purpose of this appendix is twofold. First, we demonstrate that under
certain conditions we may extend the Arithmetic Mirror Theorem (Theorems 1.1
and 6.1). Second, we apply this extension to the study of the quotient of the zeta
functions of Xλ and Yλ.

As in the introduction, with λ ∈ C we may define a family of complex projective
hypersurfaces Xλ in P

n
C

by

xn+1
1 + · · · + xn+1

n+1 + λx1 · · ·xn+1 = 0.

With the group

G := {(ζ1, . . . , ζn+1)|ζi ∈ C, ζn+1
i = 1, ζ1 · · · ζn+1 = 1}

we may define the (singular) mirror variety Yλ as the quotient Xλ/G where G acts
by coordinate multiplication. It turns out that Yλ is a toric hypersurface and may
be explicitly described as the projective closure in P∆ of the affine toric hypersurface

g(x1, . . . , xn) := x1 + · · · + xn +
1

x1 · · ·xn
+ λ = 0.

Note, P∆ is the toric variety obtained from the polytope in R
n with vertices

{e1, . . . , en,−(e1 + · · · + en)}, where the ei are the standard basis vectors of R
n.

From this description of Yλ, if we let Fq denote the finite field with q elements of
characteristic p, it makes sense to discuss Fqk -rational points of Xλ and its mirror
Yλ when the parameter λ lies in Fq.

When the gcd(n+1, qk − 1) = 1, there are no (n+1)-roots of unity in the field
Fqk . Viewing G as a group scheme over Z, this means there are no Fqk -rational
points of G. This leads one to suspect a direct relation between the Fqk -rational
points of Xλ and Yλ:

Theorem 9.1. For every positive integer k such that gcd(n + 1, qk − 1) = 1,
we have the equality #Xλ(Fqk) = #Yλ(Fqk).

If Wλ is a smooth crepant resolution of Yλ, then there is a rational map from Wλ

to Yλ which is injective on rational smooth points. Thus, if none of the Fqk -rational
points on Yλ are singular points, we see that #Yλ(Fqk) = #Wλ(Fqk). Consequently,
we have:

Corollary 9.2. Suppose the singular locus of Yλ contains no Fqk -rational

points. If gcd(n+1, qk−1) = 1, then we have #Xλ(Fqk) = #Yλ(Fqk) = #Wλ(Fqk).

Next, when gcd(n + 1, qk − 1) > 1 we may prove:

Theorem 9.3. Let d := gcd(n + 1, qk − 1) > 1. Then

(1) #Xλ(Fqk) ≡ 0 mod d,
(2) if n + 1 is a power of a prime ℓ, then, writing λ = −(n + 1)ψ in the new

parameter ψ, we have

#Xλ(Fqk) ≡ 0 mod(ℓd) and #Yλ(Fqk) ≡
{

1 ψn+1 = 1

0 otherwise
mod(ℓ).

Thus, combining Theorems 1.1 and 9.3 with the Chinese Remainder Theorem yields:

Corollary 9.4. Suppose n + 1 is a power of a prime ℓ and gcd(n + 1, q) = 1.
Set λ = −(n + 1)ψ. If ψn+1 6= 1, then for every positive integer k, we have
#Xλ(Fqk) ≡ #Yλ(Fqk) modulo(ℓqk).
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Before discussing the proofs of Theorems 9.1 and 9.3, let us apply Theorem 9.1
to the quotient of the zeta functions of Xλ and Yλ.

9.1. Application to zeta functions. From Theorem 7.3, when (n+1)|q− 1
then the quotient of the zeta functions of Xλ and Yλ, when raised to the (−1)n

power, is a polynomial of specified degree. As mentioned in Section 7, we conjecture
that the divisibility (n + 1)|q − 1 is unnecessary and may be removed without
disturbing the conclusion. Evidence for this is the following:

Theorem 9.5. Let n + 1 be a prime such that gcd(n + 1, q) = 1. Let k be the
smallest positive integer such that qk ≡ 1 modulo n+1. Assume Xλ is non-singular
and λn+1 6= (−(n+1))n+1. Then there are positive integers ρ1, . . . , ρs, each divisible
by k, and polynomials Q1, . . . , Qs ∈ 1 + TZ[T ] which are pure of weight n − 3 and
irreducible over Z, such that

(

Z(Xλ/Fq, T )

Z(Yλ/Fq, T )

)(−1)n

= Q1(q
kT k)ρ1/k · · ·Qs(q

kT k)ρs/k

Furthermore, ρ1 + · · · + ρs = n(nn−(−1)n)
n+1 − n. (Note, the polynomials Qi depend

on n and λ.)

Proof. For every nonnegative integer s and j = 1, . . . , k− 1, we have gcd(n+
1, qsk+j − 1) = 1. So, by Theorem 9.1, we have #Xλ(Fqsk+j ) = #Yλ(Fqsk+j ) for
every s ≥ 0 and j = 1, . . . , k − 1. This implies

(20)
Z(Xλ/Fq, T )

Z(Yλ/Fq)
=

exp
∑

s≥1

#Xλ(F
qks )

ks T ks

exp
∑

s≥1

#Yλ(F
qks )

ks T ks
=

(

Z(Xλ/Fqk , T k)

Z(Yλ/Fqk , T k)

)1/k

where the first equality uses the previous sentence and the second equality is simply
definition. By Theorem 7.3, there exists a polynomial Rn(λ, T ) ∈ 1 + TZ[T ] of

degree n(nn−(−1)n)
n+1 − n, pure of weight n − 3, such that

(

Z(Xλ/Fqk , T )

Z(Yλ/Fqk , T )

)(−1)n

= Rn(λ, qkT ).

Combining this with (20) shows us that
(

Z(Xλ/Fq, T )

Z(Yλ/Fq, T )

)(−1)n

= Rn(λ, qkT k)1/k.

Therefore, factorizing Rn(λ, T ) = Q1(T )ρ1 · · ·Qs(T )ρs into irreducibles over Z

proves the theorem. ¤

As a side remark, for n + 1 = 5, Theorem 9.5 explains the form of the zeta
function of Z(Xλ/Fq, T ) found in [3].

We note that, for the quintic (n+1 = 5), it follows from [3, Equation 10.3] and
[3, Equation 10.7], in which they empirically compute the zeta functions of Xλ and
Wλ, that for Xλ smooth,

Z(Xλ/Fq, T )

Z(Wλ/Fq, T )
= RA(qkT k, λ)20/kRB(qkT k, λ)30/k

where k is the smallest positive integer such that qk ≡ 1 modulo 5 and the R’s are
quartic polynomials over Z which are not necessarily irreducible. Note, k = 1, 2
or 4. Furthermore, they have constructed auxiliary curves A and B, both of genus
4, whose zeta functions experimentally correspond to RA and RB, respectively. It
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would be interesting to find these “auxiliary varieties” for general n + 1 and see
how they fit into the framework of mirror symmetry (if at all).

9.2. The proof of Theorem 9.1. Without loss, we will write q instead of qk

in the following proof.
9.2.1. Formulas for Xλ(Fq) and Yλ(Fq) in terms of Gauss sums. Define the

Gauss sums G(k) as in Section 2. Also, let M be the (n + 2) × (n + 2)-matrix
defined in Section 3.

Define the set

E := {k ∈ Z
n+2|0 ≤ ki ≤ q − 1 and Mk ≡ 0 mod(q − 1)}.

For each k ∈ Z
n+2, define s(k) as the number of non-zero entries in Mk ∈ Z

n+2.
Next, define

E1 := {k ∈ E|not all k1, . . . , kn+1 are the same, but 0 ≤ kn+2 ≤ q − 1}
E2 := {k ∈ E|k1 = k2 = · · · = kn+1, 0 ≤ kn+2 ≤ q − 1}
E∗

2 := {k ∈ E2|0 < k1 < q − 1, s(k) = n + 2}

Sk :=
qn+1−s(k)

(q − 1)n+3−s(k)





n+2
∏

j=1

G(kj)



 χ(λ)kn+2 .

Now, Section 3 demonstrated that

#Xλ(Fq) =
−1

q − 1
+

∑

k∈E1

Sk +
∑

k∈E2

Sk.

Consider k ∈ E. Suppose k1 = · · · = kn+1 = 0. If kn+2 = 0, then Sk =
qn+1/(q − 1), else, if kn+2 = q − 1, then Sk = −(q − 1)n. Similarly, suppose
k1 = · · · = kn+1 = q − 1. If kn+2 = 0, then Sk = (−1)n+1qn, else, if kn+2 = q − 1,
then Sk = (−1)nqn+1/(q − 1).

Next, notice

(21) Mk =















k1 + · · · + kn+2

(n + 1)k1 + kn+2

(n + 1)k2 + kn+2

...
(n + 1)kn+1 + kn+2















∈ Z
n+2.

If one of the rows equals zero, then we must have ki = 0 for some 1 ≤ i ≤ n + 1.
Thus, if k ∈ E2 such that 0 < k1 < q−1, then all the rows of Mk must be non-zero;
that is, s(k) = n + 2. Putting this together with the last paragraph, we find that
for λ 6= 0, then

(22) #Xλ(Fq) =
qn+1 + (−1)nqn − 1 − (q − 1)n+1

q − 1
+

∑

k∈E1

Sk +
∑

k∈E∗

2

Sk.

If λ = 0, then Section 2 tells us that kn+2 is forced to equal zero. Thus, in the
above calculations, we need to neglect all terms in which kn+2 6= 0. Doing this, we
obtain

#X0(Fq) =
∑

k∈E1

Sk + N∗
0 +

qn+1 − 1

q − 1
+ (−1)n+1qn +

(−1)n − (q − 1)n

q
.
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Let N∗
λ denote the number of Fq-rational points on the affine (toric) variety

defined by

g(x1, . . . , xn) := x1 + · · · + xn +
1

x1 · · ·xn
+ λ = 0.

In the proof of Theorem 5.1, we saw that for λ 6= 0

(23) N∗
λ =

(q − 1)n

q
+

(−1)n

q(q − 1)
+

∑

k∈E∗

2

Sk.

Also, if λ = 0, we may calculate that

N∗
0 =

(q − 1)n

q
+

(−1)n+1

q
+

∑

k∈E∗

2

Sk.

For ease of reference, recall from Section 2 that, for all λ ∈ Fq), we have

(24) #Yλ(Fq) = N∗
λ − (q − 1)n

q
+

(−1)n

q
+

qn − 1

q − 1
.

9.2.2. Finishing the proof of Theorem 9.1. For λ 6= 0, combining equations
(22), (23), and (24) yields

#Xλ(Fq) − #Yλ(Fq) =
∑

k∈E1

Sk − (q − 1)n +
qn+1 + (−1)nqn + (−1)n+1 − qn

q − 1
.

Similarly, if λ = 0, then

#X0(Fq) − #Y0(Fq) = qn[(−1)n+1 + 1] +
∑

k∈E1

Sk.

We may now prove Theorem 9.1 by demonstrating that the right-hand sides of the
above two formulas equal zero when gcd(n + 1, q − 1) = 1.

Lemma 9.6. If gcd(n + 1, q − 1) = 1, then the right-hand sides are zero.

Proof. Let k ∈ E. Suppose ki 6= 0 for 1 ≤ i ≤ q − 1. Then, by (21), we see
that (n + 1)ki ≡ (n + 1)kj modulo q − 1 for every 1 ≤ i, j ≤ q − 1. By hypothesis,
n + 1 is invertible in Z/(q − 1), and so ki = kj . This means that, if k ∈ E1 then at
least one of the first n + 1 coordinates must be zero.

Let 1 ≤ i ≤ n. Suppose k ∈ E1 and its first i coordinates are zero. Then (21)
tells us that kn+2 is either zero or q − 1. In the first case, we have ki+1 = · · · =
kn+1 = q − 1 and s(k) = n + 2. In the second case, again we have ki+1 = · · · =
kn+2 = q − 1, but s(k) = (n + 2) − i. This leads to the following formulas:

When kn+2 = 0 (first case): Sk = (−1)(n+1)−iqn

When kn+2 = q − 1 (second case): Sk = (−1)n−i(q − 1)i−1q(n+1)−i.

(Note, if λ = 0, then kn+2 must be zero, and so, the second case never occurs.)
Permuting these zeros around in

(

n+1
i

)

ways among the first n+1 coordinates gives
us all possible points in E1. That is, if we set

A :=
n

∑

i=1

(

n + 1

i

)

(−1)(n+1)−iqn (counts first case)

and

B :=
n

∑

i=1

(

n + 1

i

)

(−1)n−i(q − 1)i−1q(n+1)−i (counts second case),
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then we have
∑

k∈E1
Sk = A + B for λ 6= 0, else

∑

k∈E1
Sk = A for λ = 0. Now, by

the binomial theorem, we see that

A = qn[(1 − 1)n+1 − (−1)n+1 − 1] = qn[(−1)n − 1]

and

B = (q − 1)−1(−1)n[(−(q − 1) + q)n+1 − qn+1 − (−1)n+1(q − 1)n+1]

= (q − 1)−1[(−1)n + (−1)n+1qn+1 + (q − 1)n+1].

Thus, for λ 6= 0, we have

∑

k∈E1

Sk = qn[(−1)n − 1] +
(−1)n + (−1)n+1qn+1 + (q − 1)n+1

q − 1

which proves the lemma. ¤

9.3. The proof of Theorem 9.3. Let us recall what we will prove.

Theorem 9.3. Let d := gcd(n + 1, qk − 1) > 1. Then

(1) #Xλ(Fqk) ≡ 0 modulo d.
(2) Writing λ = −(n + 1)ψ in the new parameter ψ, if n + 1 is a power of a

prime ℓ, then

#Xλ(Fqk) ≡ 0 mod(ℓd) and #Yλ(Fqk) ≡
{

1 ψn+1 = 1

0 otherwise
mod(ℓ).

Proof. Without loss, we will write q instead of qk in the following proof. First,
let us prove the congruences on Xλ. We do this by gathering all the points of Xλ

that have the same number of coordinates zero. For each 1 ≤ i ≤ n− 1, define M∗
i

as the number of Fq-rational points in P
n−i
F∗

q
which lie on the diagonal hypersurface

xn+1
i+1 + · · · + xn+1

n+1 = 0.

Notice that the group

Gi(Fq) := {(ζi+1, . . . , ζn+1)|ζj ∈ Fq, ζ
n+1
j = 1}/{(ζ, . . . , ζ)|ζn+1 = 1}

acts freely on the set of points defining M∗
i . Since there are d := gcd(n + 1, q − 1)

many (n + 1)-roots of unity in Fq, we have #Gi(Fq) = dn+1−i/d = dn−i. Conse-
quently, dn−i divides M∗

i . Next, let M∗
0 be the number of Fq-rational points in P

n
F∗

q

which lie on Xλ. The group

G(Fq) := {(ζ1, . . . , ζn+1)|ζi ∈ Fq, ζ
n+1
i = 1, ζ1 · · · ζn+1 = 1}/{(ζ, . . . , ζ)|ζn+1 = 1}

acts freely on the points defining M∗
0 , and so #G(Fq) = dn divides M∗

0 . Putting
this together, we have

#Xλ(Fq) = M∗
0 +

n−1
∑

i=1

(

n + 1

i

)

M∗
i .

This proves the first part of the theorem since each M∗
i is divisible by d. If n + 1

is a power of a prime ℓ, then not only are the M∗
i divisible by d, but each of the

binomial factors are divisible by ℓ; this proves the congruence on Xλ in the second
part of the theorem.

We now assume n + 1 is a power of a prime ℓ. Let us prove the congruence on
Yλ. With λ = −(n + 1)ψ, recall from (24) that

#Yλ(Fq) = N∗
λ − (q − 1)n

q
+

(−1)n

q
+

qn − 1

q − 1
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where N∗
λ is the number of Fq-rational points in A

n+1
Fq

that satisfy

(25)

{

x1 + · · · + xn+1 − (n + 1)ψ = 0

x1 · · ·xn+1 = 1
.

We claim that #Yλ(Fq) ≡ N∗
λ modulo ℓ. Since gcd(n + 1, q − 1) > 1, q ≡ 1 modulo

ℓ. Using the fact that qn−1
q−1 = qn−1 + · · ·+ q + 1, we have: if ℓ is an odd prime (the

even case is similar), then

− (q − 1)n

q
+

(−1)n

q
+

qn − 1

q − 1
≡ −0 + 1 + n ≡ 0 modulo(ℓ).

This proves the claim.
Since we now have #Yλ(Fq) ≡ N∗

λ modulo ℓ, we will concentrate on com-
puting N∗

λ . Consider counting the points on (25) as follows: suppose a point

x := (x1, . . . , xn+1) ∈ A
n+1
Fq

has two coordinates equal. Then we may permute

these two around in
(

n+1
2

)

ways without changing the order of the other coordi-

nates. Thus, the orbit of the point x under this type of permutation contains
(

n+1
2

)

points contained in the affine toric variety defined by (25). Note that we are not
overcounting the points which have multiple pairs of coordinates being the same,
like (1, 1, 2, 2, 2). If all the coordinates of x are different then we may permute these
around in (n + 1)! ways.

Putting this together, we find, modulo ℓ:

N∗
λ(Fq) ≡ #{x ∈ A

n+1
Fq

| all coordinates are equal and x satisfies (25)}.

If all the coordinates are equal then we have the system (n + 1)x − (n + 1)ψ = 0
and xn+1 = 1. By hypothesis, n + 1 is invertible in Fq, thus, we have x = ψ for the
first equation, and so ψn+1 = 1 for the second. Therefore,

N∗
λ ≡

{

1 ψn+1 = 1

0 otherwise
modulo(ℓ).

¤
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