

Page 1

MIS 150, Exam 2 Possible Definition Questions:
THE ULTIMATE COMPREHENSIVE GUIDE PART I

Name the database design that performs the table normalization for the database. Logical design.

Name the approach for the information systems requirement analysis that includes the entity
relationship diagram. Data Centered

Name the database design that defines the access method for the database application. Physical

Name the testing method that intends to find the bottleneck of the entire database application. Stress
test

Name the tool or process that builds a working model to define the end user’s requirement for a
database application. Prototype

Name the constraint that describes the total and partial relationship between two relations in the
entity-relationship model. Participation

What is the attribute type for an attribute named student_ID that only allows one value in the entity
relationship model. Single

Name the number of non primary key attribute in a relation that will not violate second normal form.
ZERO

Name the referential integrity that is the best one for the end user to delete and update the database
records. Cascade

Name the minimum number of attribute in a relation that might violate the third normal form. Three

Name the word that is used to indicate the non-overlapping relationship between subclasses in an
enhanced entity relationship model. OR

Name the command in the SQL that allows a user to change the primary or foreign key. Alter

Name the syntax that can be used to change the domain of any attribute in an existing table of the
Structured Query Language. Alter

Name the command in the SQL that allows an user to add data into a base table of the database. INSERT

Name the method that will eliminate the data insertion and deletion problems in the data centered
approach. Normalization

Name the method that is used to document the database in the data centered approach. ER diagram

Name the storage structure that should be used for sequential and direct accesses in the physical
database design. B+ tree

Page 2

Name the CASE tool that is used to support the implementation, testing, and maintenance stages in the
database application lifecycle. Computer aided engineering

Name the prototyping type for defining the user’s needs of the large application system. Requirement
prototyping

Name the process that builds working model of the database application. Prototype

Name the tool or process that builds a working model to define the end user’s requirements for a
database application. Prototype

Name the attribute type that is the calculated value in the entity relationship model. Derived attribute

Name the constraint that deals with mandatory and optional in the entity relationship model.
Participation

Name the word that is used to indicate the overlapping relationship between subclasses in an enhanced
relationship model. AND

Name the constraint that restricts the end user to enter he predefined values for an attribute of a table
in the SQL. Domain

Name the syntax that will delete the structure of a table in the SQL. Drop

Name the constraint that determines the membership inclusion between subclasses and its superclass.
Participation

Name the approach for the information systems requirement analysis that includes the table
normalization technique. Data centered

Name the constraint that describes one to many or many to many relationship between two relations in
the entity-relationship mode. Cardinality

What is the attribute type for an attribute named TELEPHONE that can have one or more values in the
entity relationship model? Mutlivalue composite

Name the referential integrity that is the best one for the data administrator to manage deleting and
updating the database records. No action.

Name the data conversion method that using software to translate the data of the old applications to
meet the input requirements of a new application. Bridge

Name the most important database selection criterion of an end user. Easy to use.

Name the language for creating the table in a database. DDL data definition language

Name the theoretical syntax, keyword, to remove the record from a table. DELETE

Page 3

Name the syntax, keyword to give the database access right from a user. GRANT

Name the most suitable referential integrity of updating the database from the database administrator’s
point of view. No action

Name one disadvantage of creating a view in a database. Structure restriction or performance
restriction.

Name the constraint that restricts the null value for the primary key of a table. Entity Integrity

Name the improper relationship of entity relationship diagram that has missed a pathway. Chasm Trap

Name the improper relationship with an ambiguous pathway in the enhanced entity relationship model.
Fantrap

What is the attribute type for an attribute named phoneNo that can have two or more values in the
entity-relationship model? Multi-value
Name the privilege regarding the selecting records from a student table. Object

State the entire syntax for a Select statement in the Structure Query Language.

SELECT *DISTINCT | ALL+ *columnExpression *AS newName++ *,…+-

FROM TableName *alias+ *,…+

[WHERE condition]

GROUP BY columnList] [HAVING condition]

HAVING columnList]

Characteristics of E-R Model:
 Semantic Data Model

Express the logical properties of an enterprise DB
Design tools and documentation
No physical DBMS
Unified Modeling Language (UML)
Proposed by Dr. Peter Chen

Components of E-R Model:
 Entity, Attribute, Key, Relationship, Structural constraints on the relationship
Entity Type: a group of objects with the same properties, which are identified by the enterprise as
having an independent existence. An entity occurrence is a uniquely identifiable object of an entity
type. Diagram = Rectangle.
Relationship Type: a set of meaningful associates among entity types. A relationship occurrence is a
uniquely identifiable association, which includes one occurrence from each participating entity type.
Diagram = line.
Degree of a relationship type: the number of participating entity types in a relationship. (Unary, Binary,
Ternary, etc)
Recursive Relationship: relationship where the same entity type participates more than once in
different roles.
Attribute: a property of an entity or relationship type.

Page 4

Attribute Domain: the set of allowablevalues for one or more attributes.
Attribute Types:

Composite Attribute: Composed of a single component each with an independent existence.
Single-value Attribute: holds a single value for each occurrence of an entity type.
Multi-value Attribute: holds multiple values for each occurrence of an entity type.
Derived Attribute: represents a value that is derivable from the value of a related attribute or
set of attributes, not necessarily in the same entity.

Candidate Key: the minimal set of attributes that uniquely identifies each occurrence of an entity type
that may relate to a single occurrence of an associated entity type through a particular relationship.
Primary Key: the candidate key that consists of two or more attributes.
Composite Key: is a candidate key that consists of one or more attributes.
Strong Entity Type: (parent, owner, dominant) is not existence-dependent on some other entity type
whereas Weak Entity Type (child, dependent, subordinate) is existence dependent on some other
entity.
Multiplicity: is the number (or range) of possible occurrences of an entity type that may relate to a
single occurrence of an associated entity type through a particular relationship.
Cardinality: the maximum number of possible relationships. One to One or One to Many preferred.
Participation Constraints: determines whether all or only some entity occurrences participate in a given
relationship. Ex) (m,or), (m,and), (o,or),(o,and)
Fan Trap: exists where a model represents a relationship between entity types, but the pathway
between certain entity occurrences is ambiguous.
Chasm Trap: exists where a model suggests the existence of a relationship between entity types, but the

pathway does not exist between certain entity occurrences.

SELECT statement: most important statement in the language and is used to express a query. Combines

Selection, Projection and Join.

DOMAIN: is the set of allowable values for one or more attributes.

SUBSELECT: is a complete SELECT statement embedded in another query. A subselect may appear

within the WHERE or HAVING clause of an outer SELECT statement, where it is called a subquery or

nested query.

3 TYPES OF SUBQUERY

 (scalar – returns a single column and a single row; row, table-returns one or more columns and multiple

rows)

Order of operations: NOT, AND, OR

UNION: table containing all rows that are either the first table, second or both.

INTERSECTION: containing all rows that are common to both.

DIFFERENCE: table containing rows that are in first table but are not in second table.

Page 5

Enhanced Entity Relationship Model
SuperClass: An entity type that includes one or more distinct subgroupings of its occurrences, which
require to be represented in a data model. Tsai says: including one or more distinct subgroups in the
data model.
SubClass: A distinct subgrouping of occurrences of an entity type, which require to be represented in a
data model. Tsai says: a distinct subgroup of an entity type in the data model.
Attribute Inheritance: The process of maximizing the differences between members of an entity by
identifying their distinguishing characteristics. Tsai calls it: Specialization Hierarchy.
Generalization: The process of minimizing the differences between entities by identifying their common
characteristics. Tsai calls it: Generalization Hierarchy.
Constraints on specialization / generalization
 Participation (mandatory / optional)
 Disjoint (OR), Non-Disjoint (AND)
Aggregation (has a or is part of)
Composition (Strong ownership of aggregation)

Design Steps for an Enhanced Entity Relationship Model
Identify:
 Entity Types, relationship types
 Perform Cardinality and participation constraints (put in your one to manies and (m,or) / (o,or)
stuff
 Specify Attributes
 Specify Keys
 Perform Specialization /Generalization
 Create your EER Diagram
Ex) Create an enhanced ER Diagram for a rental management using following entities:
 -Rental Agency
 -Staff (Part time, Full Time)
 -Owner
 -Renter
 -Property (Business, Home)

Page 6

MIS 150, Exam 2 Possible SQL Questions:
THE ULTIMATE COMPREHENSIVE GUIDE PART II

(DML) Data Manipulation Language: for retrieving and updating data.

SELECT *DISTINCT | ALL+ ,* | *columnExpression *AS newName++ *,…+-

FROM TableName *alias+ *,…+

[WHERE condition(s)]

[GROUP BY columnList] [HAVING condition]

[ORDER BY columnList] [ASC (default in Oracle) | DESC]

Additional:
Data Manipulation Language (DML): SELECT, UPDATE, INSERT, DELETE
Aggregate Functions: COUNT, SUM, AVG, MIN, MAX, Aggregate Functions using Group By need other
attribute in Group By clause, it is illegal to mix aggregate functions with column names in a select
clause unless GROUP BY is used
Union Compatible Operations: UNION, MINUS or EXCEPT, INTERSECT

Page 7

(DDL) Data Definition Language: Defines the database structure and controls access to the data.

Integrity Enhancement Feature
Required Data: NOT NULL
Domain Constraint: CREATE DOMAIN DomainName [AS] dataType
 [DEFAULT defaultOption]
 [CHECK (searchCondition)]
Ex) sex CHAR(1) NOT NULL CHECK (VALUE IN (‘m’, ‘f’))
 credit AS NUMBER(3) CHECK (VALUE BETWEEN 0 AND 999)
Ex) CREATE DOMAIN sexType AS CHAR(1) DEFAULT ‘m’ CHECK(VALUE IN(‘m’,’f’));
 sex sexType NOT NULL;
Ex) DROP DOMAIN domainName [RESTRICT | CASCADE]
 DROP DOMAIN sexType;
Entity Integrity PRIMARY KEY keyName(s) NOT NULL
Ex) PRIMARY KEY studentNo NOT NULL or studentNo INTEGER NOT NULL UNIQUE
 Multiple primary keys: PRIMARY KEY (sNo, classNo, sDate) NOT NULL
Referential Integrity
Actions for ON UPDATE and ON DELETE: CASCADE, SET NULL, SET DEFAULT, NO ACTION
Ex) FOREIGN KEY hotelName REFERENCES hotel(hotelNo)
 FOREIGN KEY hotelNo REFERENCES hotel(hotelNo) ON DELETE SET NULL
 FOREIGN KEY hotelNo REFERENCES hotel(hotelNo) ON UPDATE CASCADE
Enterprise Constraint (ASSERTIONS)
CHECK clause, UNIQUE clause, CREATE ASSERTION statement
CREATE ASSERTION assertionName CHECK (assertion condition) is used to defined attribute constraint
Ex) CREATE ASSERTION tooMuch
CHECK (NOT EXIST (SELECT sno FROM enroll GROUP BY sno HAVING COUNT(*) >10));
SQL Data Definition Language (DDL): CREATE, ALTER, DROP
CREATE SCHEMA | DOMAIN | TABLE | INDEX | VIEW
ALTER TABLE | DOMAIN
DROP SCHEMA | DOMAIN | TABLE | INDEX | VIEW
 CREATE SCHEMA [name | AUTHORIZATION creater-ID]
Ex) CREATE SCHEMA mis150
 AUTHORIZATION Tsai;
 DROP SCHEMA name [RESTRICT | CASCADE]
 DROP SCHEMA mis150;
 CREATE TABLE tableName (col dataType [NOT NULL, UNIQUE, DEFAULT option] [CHECK search
condition+*,…,+,*PRIMARY KEY (col *,col,…+),*FOREIGN KEY (col *,col+) REFERENCES (parentTable *cols+)
Ex) CREATE TABLE Student
 (stuID NUMBER(5) NOT NULL CHECK (VALUE BETWEEN 00001 AND 99999),
 facID NUMBER(5),
 sched CHAR(10),
 room CHAR(10),
 CONSTRAINT pkClass PRIMARY KEY (course#),
 CONSTRAINT fkClass FOREIGN KEY (facID) REFERENCES Faculty(FacID);
Ex) CREATE DOMAIN propertyNo AS SMALLINT;
 CREATE DOMAIN staffNo AS CHAR(5) CHECK (VALUE IN (SELECT Sno FROM STAFF));
 CREATE DOMAIN pRent AS DECIMAL(6,2) CHECK (VALUE BETWEEN 0 and 9999.99);
 CREATE TABLE propertyForRent

Page 8

 (pNo propertyNo NOT NULL,
 sNo staffNo CONSTRAINT StaffNotTooMuch CHECK (NOT EXIST (SELECT sNo FROM
propertyForRent GROUP BY sNo HAVING COUNT(*) > 10)) NOT NULL,
 rent pRent NOT NULL,
 CONSTRAINT pkPropertyForRent PRIMARY KEY (pNo),
 CONSTRAINT fkPropertyForRent FOREIGN KEY (sNo) REFERENCES Staff(sNo));
SQL DDL for Table
DROP TABLE tableName [RESTRICT | CASCADE];
ALTER TABLE tableName
[ADD [COLUMN] columnName dataType [NOT NULL] [UNIQUE]
[DEFAULT defaultOption] [CHECK (search condition)]]
[DROP [COLUMN] columnName [RESTRICT | CASCADE]]
[ADD [CONSTRAINT [constraintName]] tableConstraintDefinition]]
[DROP CONSTRAINT constraintName [RESTRICT | CASCADE]]
[ALTER [COLUMN] SET DEFAULT defaultOption]
[ALTER [COLUMN] DROP DEFAULT];
Ex) ALTER TABLE Enrollment
 MODIFY (grade Number(3));
 ALTER TABLE Enrollment
 ADD (dateTaken DATE NOT NULL);
 DROP TABLE Enrollment;
SQL DDL for INDEX
Index: structure that provides accelerated access to the rows of a table based on the values of one or
more cols.
CREATE *UNIQUE+ INDEX indexName ON baseTableName(col *ASC | DESC+ *,…+);
DROP INDEX indexName;
Ex) CREATE INDEX studentName ON Student(stuName DESC);
CREATE INDEX majorCredit ON Student(major,credit);
 DROP INDEX majorCredit;

Access Control
GRANT systemPrivilege [ALL PRIVILEGES] TO roleName [WITH GRANT OPTION];
GRANT objectPrivilege [ALL PRIVILEGES] ON [owner] objectName TO roleName [WITH GRANT OPTION];
GRANT roleName TO userName;
REVOKE privilege FROM roleName;
REVOKE roleName FROM userName;
System Privileges
CREATE TABLE, CREATE VIEW, CREATE USER, ALTER INDEX
Object Privileges
SELECT, INSERT, UPDATE, DELETE
 GRANT CREATE TABLE, CREATE VIEW, CREATE USER TO manager; (manager is role name)
 GRANT SELECT, INSERT, UPDATE, DELETE ON Student TO manager;
Ex) GRANT manager TO Tsai;
 REVOKE DELETE ON Student FROM manager;
 REVOKE manager FROM Tsai;

Page 9

SAMPLE SQL (DML) QUESTIONS

Patient (patientNo, patName, patAddr, DOB, ssNo, driLicNo)

Building (buildingNo, buildingName, buildingType, noOfBeds)

Admitting (patientNo, buildingNo, admissionDate, doctorNo)

Drug (drugNo, drugName, costPerUnit)

Prescribing (patientNo, drugNo, unitsPerDay, startDate, doctorNo)

Doctor (doctorNo, docName, ssNo)

a. (8 points) Use the SQL to retrieve all patients who took drug named “vitamine” starting on

11/11/06. The report contains patientNo, patName, patAddress, and drugNo.

SELECT patientNo, patName, patAddress, drugNo

FROM Patient pa, Drug d, Prescribing pr

WHERE pa.patientNo = pr.patientNo

AND pr.drugNo = d.drugNo

AND drugName = ‘Vitamine’

AND startDate => ‘11/11/06’;

b. (8 points) Use SQL to list the doctors that have not been admitted any patient. The report contains

doctorNo and docName.

First way:

SELECT doctorNo, doctName

FROM doctor d, admitting a

WHERE d.doctorNo = a.doctorNo

AND a.doctorNo IS NULL;

Second way:

SELECT doctorNo, doctName

FROM doctor d

WHERE d.doctorNo NOT IN

(SELECT a.doctorNo

FROM admitting a);

Page
10

c. (8 points) Use SQL to find the building name that has housed the most patient.

SELECT buildingName, MAX(patientCount)

FROM

 (SELECT buildingName, COUNT(a.patientNo) AS patientCount

 FROM Building b, Admitting a

WHERE b.buildingNo = a.buildingNo

GROUP BY buildingName)

GROUP BY buildingname;

d. (8 points) Use SQL to retrieve all patients who have been staying in the building named either

“Recovery” or “Intensive-Care”. The report contains patientNo and patName.

SELECT patientNo, patName

FROM Patient p, Admitting a, Building b

WHERE p.patientNo = a.patientNo

AND a.buildingNo = b.buildingNo

AND b.buildingName IN (‘Recovery’, ‘Intensive-Care’);

e. (12 points) Use SQL to create a view named Uselessbuilding. The Uselessbuilding contains those

buildings that have not been used to house any patient. The Uselessbuilding contains buildingNo and

buildingName.

First way:

CREATE VIEW Uselessbuilding (buildingNo, buildingName) AS

SELECT buildingNo, buildingName

FROM Building b, Admitting a

WHERE b.buildingNo = a.buildingNo

AND a.patientNo IS NULL;

Second way:

CREATE VIEW Uselessbuilding (b.buildingNo, b.buildingName) AS

SELECT b.buildingNo, b.buildingName

FROM Building b

WHERE b.buildingNo NOT IN

 (SELECT a.buildingNo

 FROM Admitting a);

Page
11

SAMPLE SQL (DDL) QUESTIONS

f. (18 points) Assume that Patient, Building, and Doctor tables have properly been created. Use SQL to

create the Admitting table using the following requirements and define primary key and every foreign

key.

Admitting (patientNo, buildingNo, admissionDate, doctorNo)

patientNo: 6 integers and existed in the Patient table

buildingNo: 6 integers and existed in the Building table

admissionDate: a date field and equal to today

doctorNo: 6 integers, existed in Doctor table, and cannot admit more than 3 patients for the same day.

CREATE TABLE Admitting (

patientNo INT(6) NOT NULL,

buildingNo INT(6) NOT NULL,

admissionDate DATE DEFAULT ‘SYS_DATE’ NOT NULL,

doctorNo INT(6) CHECK(COUNT(patientNo) <=3) NOT NULL,

CONSTRAINT pkadmitting PRIMARY KEY (patientNo, buildingNo, admissionDate),

CONSTRAINT fkpatient FOREIGN KEY (patientNo) REFERENCES Patient(patientNo),

CONSTRAINT fkbuilding FOREIGN KEY (buildingNo) REFERENCES Building(buildingNo),

CONSTRAINT fkadmitting FOREIGN KEY (doctorNo) REFERENCES Doctor(doctorNo)

);

g. (8 points) Use SQL to remove the structure of table Admitting from the database. (Assume that

Admitting has twenty thousand records.)

DROP TABLE Admitting;

Page
12

Create a separate table with the same structure as the Booking table to hold archive records. Using

the INSERT statement, copy the records from Booking table to the archive table relating to bookings

before 1 January 2000. Delete all bookings before 1 January 2000 from the Booking table.

CREATE TABLE BookingHistory (

hotelNo number(3) NOT NULL,

 guestNo number (3) NOT NULL,

 dateFrom date NOT NULL check (dateFrom > systemDate),

 dateTo date NOT NULL check, (dateTo > systemDate),

 roomNo number(3) NOT NULL check roomNo between 1 and 100),

 CONSTRAINT pkguest PRIMARY KEY (hotelNo, guestNo, dateFrom, roomNo)

 CONSTRAINT fkbk FOREIGN KEY (roomNo, hotelNo)

REFERENCES Room (roomNo, hotelNo);

INSERT INTO BookingHistory

 (SELECT *

 FROM Booking

 WHERE dateTo > ‘01/01/2000’

DELETE FROM BookingHistory

 WHERE dateTo < ‘01/01/2000’;

Find identification number and anme of all students taking any course taught by the faculty member

f110. Arrange in order by student identification number.

SELECT stuname, stuid

FROM student

WHERE stuid IN

(SELECT stuid

FROM enrollment

WHERE course#

IN (select course# from class where facid = ‘F110))

Page
13

ORDER BY stuID;

Find the name of all students who are not enrolled in csc201a.

SELECT stuname

FROM student

WHERE NOT EXISTS

(SELECT *

FROM enrollment

WHERE student.stuid = enrollment.stuid

AND course# = ‘CSC201A’);

Find the identification number and name of all students with the largest number of credits.

SELECT stuid, stuname

FROM student

WHERE credits =

(SELECT MAX(credits)

FROM student);

Find all course numbers in which fewer than three students are enrolled.

SELECT course#

FROM enrollment

GROUP BY course#

HAVING COUNT(*) <3;

Find all course numbers in which fewer than three students are enrolled.

SELECT course#

FROM enrollment

GROUP BY course#

HAVING COUNT(*) <3;

Page
14

2. Given the following 5 relations:

EMPLOYEE (ENO, ENAME, ESSNO, BDATE, ADDRESS, SEX, SALARY, DEPTNO)
DEPARTMENT (DNAME, DEPTNO, MGRENO, DLOCATION)
PROJECT (PNAME, PRONO, DEPTNO)
ASSIGNMENT (ENO, PRONO, PDATE, HOURS)
DEPENDENT (ENO, DEPENDENT_NAME, SEX, BDATE, RELATIONSHIP)

Use SQL to list names of all employees with two or more dependents. The report should have the

following information: ENAME.

SELECT ename, eno

FROM employee

WHERE eno IN

(SELECT eno

FROM dependent

GROUP BY eno

HAVING COUNT(eno) >= 2);

List cust_id, f_name, l_name, and city of those customers who have never rented a video and live in

Sacramento.

SELECT cust_id, f_name, l_name, city

FROM customer c

WHERE cust_id NOT IN

(SELECT video_id

FROM rental r

WHERE r.cust_id = c.cust_id

AND city = ‘Sacramento’);

How many different customers have rented videotapes in October 2003?

SELECT COUNT(DISTINCT cust_id) AS NumOfCust

FROM rental

WHERE rent_date BETWEEN ‘10/01/03’ AND ‘10/31/03’;

Page
15

List the movie_id and the number of its video tape associated with each movie_id for the stores

located in Davis.

SELECT movie_id, COUNT(video_id) AS NumOfTapes

FROM videotape v, movie m

WHERE store_id IN

(SELECT store_id

 FROM store

 WHERE city = ‘Davis’)

GROUP BY movie_id;

What is the lost income from un-rented video tapes for all the stores today?

SELECT SUM(price) AS LostIncome

FROM videotape

WHERE video_id NOT IN

(SELECT video_id

FROM rental

WHERE rentaldate = ‘today’);

Create a view containing the video_id and its title for the rating that is equal to G.

CREATE VIEW ratings

AS SELECT video_id, title

FROM videotape v, movie m

WHERE v.movie_id = m.movie_id AND m.rating = ‘G’;

Page
16

Add every foreign key and proper primary key for the rental table. (Assume that the rental table has

been created without any primary key and foreign keys and the customer table, videotape table,

movie table and store table have been created with proper primary keys and foreign keys.)

ALTER TABLE rental

ADD (CONSTRAINT fkcustid FOREIGN KEY(cust_id) REFERENCES customer(cust_id)),

 (CONSTRAINT fkvideoid FOREIGN KEY(video_id) REFERENCES videotape(video_id)),

 (CONSTRAINT pkrental PRIMARY KEY(cust_id, video_id, rent_date));

Use Structure Query Language to list the number of course that could be offered by each department.

The list should include department# and the number of course.

SELECT department#, COUNT(course#)

FROM course

GROUP BY department# ;

(d) (14 Points) Use Structure Query Langue to list every booktitle where the book is currently adopted

by a course and published by a publisher located in the United States.

SELECT booktitle

FROM book

WHERE (book_isbn IN

(SELECT book_isbn

 FROM book_adoption

 WHERE semesterdate = ‘SPRING03’))

 AND (publisher# IN (

SELECT publisher#

FROM publisher

WHERE country = ‘United States’));

Page
17

FROM CHAPTER 5 (DML) HOMEWORK (HANDOUT)

Branch (Bno, Street, Area, City, Pcode, Tel_No, Fax_NO)
Staff (Sno, FName, LName, Address, Tel_No, Position, Sex, DOB, Salary, NIN, Bno)
Property_for_Rent (Pno, Street, Area, City, Pcode, Type, Rooms, Rent, Ono, Sno, Bno)
Renter (Rno, Fname, Lname, Address, Tel_NO, Pref_Type, Max_Rent)
Owner (Ono, Fname, LName, Address, Tel_No)
Viewing (Rno, Pno, Date, Comment)

A list (Bno, Street, Area, Tel_No, Fax_No) of branches located in Bay Area.

SELECT (Bno, Street, Tel_No, Fax_No)

FROM Branch

WHERE Area = ‘Bay’;

A list (Pno, Street, Area, City) of properties for rent with 4 bedrooms or less than $1,000 per month

rent.

SELECT (Pno, Street, Area, City)

FROM Property_for_rent

WHERE Rooms = 4 OR

Rent < 1000;

A list (Sno, FName, LName) of female mangers with salary between one to two million dollars.

SELECT (Sno, FName, LName)

FROM Staff

WHERE Position = ‘manager’ AND

Sex = ‘f’ AND

Salary BETWEEN 1000000 AND 2000000;

A list (Pno, Street, Area, City) of properties for rent located in SF, LA, NY, or DC.

SELECT (Pno, Street, Area, City)

FROM Property_for_rent

WHERE City IN (‘SF’, ‘LA’, ‘NY’, ‘DC’);

Page
18

A list (Pno, Street, Area, City) of properties for rent not located in SF, LA, NY, or DC.

SELECT (Pno, Street, Area, City)

FROM Property_for_rent

WHERE City NOT IN (‘SF’, ‘LA’, ‘NY’, ‘DC’);

A list (Ono, Fname, Lname) of owners without any telephone.

SELECT (Ono, Fname, Lname)

FROM Owner

WHERE Tel_No IS NULL;

The total salary of male managers

SELECT SUM(Salary)

FROM Staff

WHERE Sex = ‘m’ AND

Position = ‘manager’;

The minimum salary of the female manager

SELECT MIN(Salary)

FROM Staff

WHERE Sex = ‘f’ AND

Position = ‘manager’;

The maximum rent to rent a property

SELECT MAX(Rent)

FROM Property_for_rent;

The average salary of male staff members

SELECT AVG(Salary)

FROM Staff

WHERE Sex = ‘m’;

Page
19

The average number of rooms in the single house type.

SELECT AVG(Rooms)

FROM Property_for_rent

WHERE Type = ‘single house’;

The number of employee in each branch.
SELECT Bno, COUNT(Sno)
FROM Staff
GROUP BY Bno;

OR

SELECT Bno, COUNT(Sno)
FROM Branch b, Staff s
WHERE b.Bno=s.Bno
GROUP BY Bno;

The average salary of each branch

SELECT Bno, AVG(Salary)

FROM Staff

GROUP BY Bno;

The average salary in each branch with more than 10 staff members

SELECT Bno, AVG(Salary)

FROM Staff

GROUP BY Bno

HAVING COUNT(*) > 10;

The number of employee in each branch located in SF, NY, LA, and DC.

SELECT City, Bno, COUNT(Sno)

FROM Staff s, Branch b

Page
20

WHERE s.Bno = b.Bno AND

City IN (‘SF’, ‘LA’, ‘NY’, ‘DC’)

GROUP BY (City, Bno);

The number of employees in each branch with more than 10 employees and located in SF, NY, LA, and
DC.

SELECT City, Bno, COUNT(Sno)

FROM Branch b, Staff s

WHERE b.Bno = s.Bno

AND City IN (‘SF’, ‘NY’, ‘LA’, ‘DC’)

GROUP BY (City, Bno)

HAVING COUNT(*) > 10;

A list (Pno, Street, Area, City) of properties for rent managed by John Dow and owned by Sue Lee.

SELECT (Pno, Street, Area, City)

FROM Property_for_rent p, Owner o, Staff s

WHERE p.Ono = o.Ono

AND s.Sno = p.Sno

AND (s.FName = ‘John’ AND s.LName = ‘Dow’)

AND (o.FName = ‘Sue’ AND o.LName = ‘Lee’);

A list (Sno, FName, LName) of staff without managing any property for rent.

SELECT (Sno, FName, LName)

FROM Staff

WHERE Sno NOT IN

(SELECT Sno

FROM Property_for_rent);

Page
21

A list (Sno, FName, LName) of staffs without managing any property for rent.

SELECT (Sno, FName, LName)

FROM Staff s

WHERE NOT EXIST

(SELECT *

FROM Property_for_rent p

WHERE p.Sno = s.Sno);

A list (Sno, FName, LName) of staffs without managing any property for rent.

SELECT (Sno, FName, LName)

FROM Staff s LEFT JOIN Property_for_rent p

ON s.Sno = p.Sno

WHERE Pno IS NULL;

A list (Rno, Fname, Lname) of renters without looking any property for rent.

SELECT (Rno, FName, LName)

FROM Renter

WHERE Rno NOT IN

(SELECT Rno

FROM Viewing);

A list (Rno, Fname, Lname) of renters without looking any property for rent.

SELECT (Rno, FName, LName)

FROM Renter r

WHERE NOT EXIST

(SELECT *

FROM Viewing v

WHERE r.Rno = v.Rno);

Page
22

A list (Rno, Fname, Lname) of renters without looking any property for rent.

SELECT (Rno, FName, LName)

FROM Renter r LEFT JOIN Viewing v

ON r.Rno = v.Rno

WHERE Pno IS NULL;

A list (Pno, Street, Area, City) of property for rent without any viewing.

SELECT (Pno, Street, Area, City)

FROM Property_for_rent

WHERE Pno NOT IN

(SELECT Pno

FROM Viewing);

A list (Pno, Street, Area, City) of property for rent without any viewing.

SELECT (Pno, Street, Area, City)

FROM Property_for_rent p

WHERE NOT EXIST

(SELECT *

FROM Viewing v

WHERE p.Pno = v.Pno);

A list (Pno, Street, Area, City) of property for rent without any viewing.

SELECT (Pno, Street, Area, City)

FROM Property_for_rent p LEFT JOIN Viewing v

ON p.Pno = v.Pno

WHERE v.Pno IS NULL;

Page
23

A list (Sno, FName, LName) of staff managing a property for rent.

SELECT Distinct(Sno, FName, LName)

FROM Staff s, Property_for_rent p

WHERE s.Sno = p.Sno;

A list (Rno, Fname, Lname) of viewing renter.

SELECT (Rno, FName, LName)

FROM Renter r, Viewing v

WHERE r.Rno = v.Rno;

A list (Sno, FName, LName) of the highest salary staff.

SELECT (Sno, FName, LName)

FROM Staff s

WHERE Salary =

(SELECT MAX(Salary)

FROM Staff);

What is the most common property for rent type for all branches?

Select Type

(Select Type, Max(X)

(Select Type, Count(*) As X

From Property_For_Rent

Group by Type)

Group by Type);

Page
24

What is the type of property that has been viewed the most by renter?

Select Type

(Select Type, Max(X)

(Select Type, Count(*) As X

From Property_For_Rent p, Viewing v

Where p.Pno = v.Pno

Group by Type)

Group by Type);

Name the staff no and his/her branch no managing the most property.

Select Bno, Sno

From (Select Bno, Sno, Max(X)

(Select Bno, Sno, Count(*) As X

From Property_For_Rent

Group by Bno, Sno)

Group by Bno, Sno);

FROM CHAPTER 5 (DML) HOMEWORK (BOOK)

Hotel (hotelno, hotelname, city)

Room (roomno, hotelno, type, price)

Booking (hotelno, guestno, datefrom, dateto, roomno)

Guest (guestno, guestname, guestaddress)

List the names and addresses of all guests in London, alphabetically ordered by name.

SELECT guestname, guestaddress

FROM guest

WHERE guestaddress like ‘London’

ORDER BY guestname;

Page
25

List all double or family rooms with a price below $40. 00 per night, in ascending order of price.

SELECT *

 FROM room

WHERE price < 40

AND type IN ('Double', 'Family')

ORDER BY price;

List the bookings for which no dateto has been specified.

SELECT *

FROM booking

WHERE dateto IS NULL;

How many hotels are there?

SELECT COUNT(hotelno)

FROM hotel;

What is the average price of a room?

SELECT AVG(price)

FROM room;

What is the total revenue per night from all double rooms?

SELECT SUM(price)

FROM room

WHERE type = 'Double' ;

How many different guests have made bookings for August?

SELECT COUNT(DISTINCT guestno)

FROM booking

WHERE (datefrom <= ‘8/31/06’

AND dateto >= ‘8/1/06’);

Page
26

List the price and type of all rooms at the Grosvenor Hotel.

SELECT price, type

FROM room

WHERE hotelno =

(SELECT hotelno

FROM hotel

WHERE hotelname = 'Grosvenor');

OR

SELECT price, type

FROM room, hotel

WHERE hotel.hotelno = room.hotelno

AND hotelname = 'Grosvenor';

Page
27

List all guests currently staying at the Grosvenor Hotel.

SELECT (guestno, guestname, guestaddress)

 FROM guest, booking, hotel

WHERE guest.guestno =booking.guestno

AND hotel.hotelno = booking.hotelno

AND (datefrom <= ‘SYSTEM DATE’

AND dateto >= ‘SYSTEM DATE’)

AND hotelname = ‘Grosvenor’;

OR

SELECT *

FROM guest

WHERE guestno IN

(SELECT guestno

FROM booking

WHERE datefrom <= ‘SYSTEM DATE’

AND dateto >= ‘SYSTEM DATE’

AND hotelno =

(SELECT hotelno

FROM hotel

WHERE hotelname = ‘Grosvenor’)

);

Page
28

List the details of all rooms at the Grosvenor Hotel, including the name of the guest staying in the

room, if the room is occupied.

Create a view with every room having a guest (A).

CREATE VIEW roomocp (hotelno, roomno, type, price, guestname) AS

SELECT r.hotelno, r.roomno, r.type, r.price, g.guestname

FROM hotel h, room r, booking b, guest g

WHERE h.name = ‘Grosvenor’

AND (b.datefrom <= ‘SYSTEM DATE’

AND b.dateto >= ‘SYSTEM DATE’)

AND h.hotelno = r.hotelno

AND r.hotelno = b.hotelno

AND r.roomno = b.roomno

AND b.guestno = g.guestno;

Create a view of every room (B).

CREATE VIEW roomall (hotelno, roomno, type, price) AS

SELECT r.hotelno, r.roomno, r.type, r.price

FROM hotel h, room r

WHERE h.hotelname ='Grosvenor’

AND h.hotelno = r.hotelno;

Find the answer (C).

SELECT r.roomno, r.hotelno, r.type, r.price, p.guestname

FROM roomall r LEFT JOIN roomocp p

ON r.roomno = p.roomno;

Page
29

What is the total income from bookings for the Grosvenor Hotel today ?

SELECT SUM(price)

FROM booking b, room r, hotel h

WHERE (b.datefrom <= ‘SYSTEM DATE’

AND b.dateto >= ‘SYSTEM DATE’)

AND r.hotelno = h.hotelno

AND r.hotelno = b.hotelno

AND r.roomno = b.roomno

AND h.hotelname = ‘Grosvenor’;

List the rooms which are currently unoccupied at the Grosvenor Hotel.

SELECT (r.hotelno, r.roomno, r.type, r.price)

FROM room r, hotel h

WHERE r.hotelno = h.hotelno

AND h.hotelname = 'Grosvenor’

AND roomno NOT IN

(SELECT roomno

FROM booking b, hotel h

WHERE (datefrom <= ‘SYSTEM DATE’

AND dateto >= ‘SYSTEM DATE’)

AND b.hotelno=h.hotelno

AND hotelname = 'Grosvenor');

Page
30

OR

SELECT (r.hotelno, r.roomno, r.type, r.price)

FROM room r, hotel h

WHERE r.hotelno = h.hotelno

AND h.hotelname = 'Grosvenor’

AND NOT EXIST

(SELECT *

FROM booking b, hotel h

 WHERE (datefrom <= ‘SYSTEM DATE’

AND dateto >= ‘SYSTEM DATE’)

AND r.hotelno=b.hotelno

AND r.roomno=b.roomno

AND r.hotelno=h.hotelno

AND hotelname = 'Grosvenor');

What is the lost income from unoccupied rooms at the Grosvenor Hotel?

SELECT SUM(price)

FROM room r, hotel h

WHERE r.hotelno = h.hotelno

AND h.hotelname = 'Grosvenor’

AND roomno NOT IN

(SELECT roomno FROM booking b, hotel h

WHERE (datefrom <= ‘SYSTEM DATE’

AND dateto >= ‘SYSTEM DATE’)

AND b.hotelno = h.hotelno

AND r.hotelno=b.hotelno

Page
31

AND r.roomno=b.roomno

AND h.hotelname = 'Grosvenor');

List the number of rooms in each hotel.

SELECT hotelno, COUNT(roomno)

FROM room

GROUP BY hotelno;

List the number of room in each hotel in London.

SELECT r.hotelno, COUNT(roomno)

FROM room r, hotel h

WHERE r.hotelno=h.hotelno

AND city = 'London'

GROUP BY r.hotelno;

What is the average number of bookings for each hotel in August?

SELECT hotelno, y/31

FROM

 (SELECT hotelno, COUNT(hotelno) AS y

FROM booking

WHERE (datefrom <= ‘8/31/06’

AND dateto >= ‘8/1/06’

GROUP BY hotelno);

Page
32

What is the most commonly booked room type for all hotels in London?

SELECT type, MAX(y)

FROM

(SELECT type, COUNT(type) AS y

FROM booking b, hotel h, room r

WHERE r.roomno = b.roomno

AND r.hotelno = b.hotelno

AND b.hotelno = h.hotelno

AND city = 'London'

GROUP BY type)

GROUP BY type;

OR

SELECT hotelno, type, MAX(y)

FROM

(SELECT hotelno, type, COUNT(type) AS y

FROM booking b, hotel h, room r

WHERE r.roomno = b.roomno

AND r.hotelno = b.hotelno

AND b.hotelno = h.hotelno

AND city = 'London'

GROUP BY hotelno, type)

GROUP BY hotelno, type;

Page
33

What is the lost income from unoccupied rooms at each hotel today?

SELECT r.hotelno, SUM(price)

FROM room r

WHERE NOT EXIST

(SELECT *

FROM booking b

WHERE r.roomno = b.roomno

AND r.hotelno = b.hotelno

AND (datefrom <= ‘SYSTEM DATE’

AND dateto >= ‘SYSTEM DATE’))

GROUP BY hotelno;

Insert rows into each of these tables.

INSERT INTO hotel

VALUES (‘h11’, ‘hilton’, ‘sacramento’);

INSERT INTO room

VALUES (‘hr1111’, ‘h11’, ‘single’, 120);

Update the price of all room by 5%.

UPDATE room

SET price = price*1.05;

Page
34

FROM CHAPTER 6 (DDL) HOMEWORK (BOOK)

List the details of all rooms at the Grosvenor Hotel, including the name of the guest staying in the

room, if the room is occupied.

Create a view with every room having a guest.

CREATE VIEW roomocp (hotelno, roomno, type, price, guestname) AS

SELECT r.hotelno, r.roomno, r.type, r.price, g.guestname

FROM hotel h, room r, booking b, guest g

WHERE h.name = ‘Grosvenor’

AND (b.datefrom <= ‘SYSTEM DATE’

AND b.dateto >= ‘SYSTEM DATE’)

AND h.hotelno = r.hotelno

AND r.hotelno = b.hotelno

ANDr.roomno = b. roomno

AND b.guestno = g.guestno;

Create a view of every room.

CREATE VIEW roomall (hotelno, roomno, type, price) AS

SELECT r.hotelno, r.roomno, r.type, r.price

FROM hotel h, room r

WHERE h.hotelname ='Grosvenor’

AND h.hotelno = r.hotelno;

Find the answer.

SELECT r.roomno, r.hotelno, r.type, r.price, p.guestname

FROM roomall r LEFT JOIN roomocp p

ON r.roomno = p.roomno;

Page
35

Create the Hotel, Room, Booking and Guest tables

Hotel (hotelno, hotelname, city)

Room (roomno, hotelno, Type, price)

Booking (hotelno, guestno, datefrom, dateto, roomno)

Guest (guestno, guestname, guestaddress)

CREATE TABLE hotel (hotelno NUMBER(5) NOT NULL,

hotelname CHAR(20) NOT NULL,

city CHAR(30) NOT NULL,

CONSTRAINT pkhotel PRIMARY KEY (hotelno));

CREATE TABLE room

•Type must be one of Single, Double, or Family

•Price must be between $10 and $100

•Roomno must be between 1 and 100

CREATE TABLE room (roomno NUMBER(3) NOT NULL CHECK (VALUE BETWEEN 1 AND 100),

hotelno NUMBER(5) NOT NULL,

type CHAR(8) CHECK (VALUE IN (‘Single’, ‘Double’, ‘Family’)),

price NUMBER(5,2) CHECK (VALUE BETWEEN 10 AND 100),

CONSTRAINT pkroom PRIMARY KEY (roomno, hotelno),

CONSTRAINT fkrh FOREIGN KEY (hotelno) REFERENCES hotel (hotelno));

CREATE TABLE guest (guestno NUMBER(10) NOT NULL,

guestname CHAR(20) NOT NULL,

guestaddress CHAR(30) NOT NULL,

CONSTRAINT pkguest PRIMARY KEY (guestno));

Page
36

CREATE TABLE booking

•Datafrom and dateto must be greater than today’s date

Create TABLE booking (hotelno NUMBER(5) NOT NULL,

guestno NUMBER(10) NOT NULL,

datefrom DATE CHECK (datefrom > ‘systemdate’),

dateto DATE CHECK (dateto > ‘systemdate’),

roomno NUMBER(3) NOT NULL,

CONSTRAINT pkbooking PRIMARY KEY (hotelno, guestno, roomno, datefrom),

CONTRAINT fkbh FOREIGN KEY (hotelno) REFERENCES hotel (hotelno),

CONTRAINT fkbg FOREIGN KEY (guestno) REFERENCES guest (guestno),

CONTRAINT fkbr FOREIGN KEY (roomno, hotelno) REFERENCES room (roomno, hotelno));

The same room cannot be double-booked

CONSTRAINT roombooked CHECK (NOT EXISTS

(SELECT *

FROM booking b

WHERE b.datefrom <= booking.dateto

AND b.dateto >= booking.datefrom

AND b.roomno = booking.roomno

AND b.hotelno = booking.hotelno))

The same guest cannot have overlapping booking

CONSTRAINT guestbooked CHECK (NOT EXISTS

(SELECT *

FROM booking b

WHERE b.datefrom <= booking.dateto

AND b.dateto >= booking.datefrom

Page
37

AND b.guestno = booking.guestno))

Create a separate table with the same structure as the Booking table to hold archive records. Using

the INSERT statement, copy the records from the Booking table to the archive table relating to

bookings before 1st January 2003. Delete all bookings before 1st January 2003 from the Booking

table.

Create table to hold archive records.

CREATE TABLE bookinghis (hotelno NUMBER(5) NOT NULL,

guestno NUMBER(10) NOT NULL,

datefrom DATE,

dateto DATE,

roomno NUMBER(3) NOT NULL,

CONSTRAINT pkbhh PRIMARY KEY (hotelno, guestno, datefrom),

CONSTRAINT fkbh FOREGN KEY (hotelno) REFERENCES hotel (hotelno),

CONSTRAINT fkbg FOREIGN KEY (guestno) REFERENCES guest (guestno),

CONSTRAINT fkbr FOREIGN KEY (roomno, hotelno) REFERENCES room (roomno, hotelno));

Using INSERT, copy the records from Booking table to Archive table.

INSERT INTO bookinghis (hotelno, guestno, datefrom, dateto, roomno) VALUES

(SELECT *

FROM booking

WHERE dateto < '1/1/2003');

Delete all bookings before 1st January 2003 from Booking table.

DELETE FROM booking

WHERE dateto < '1/1/2003';

Create a view containing the hotel name and the names of the guests staying at the hotel.

CREATE VIEW hotgst (hotelname, guestname)AS

SELECT hotelname, guestname

FROM hotel h, booking b, guest g

Page
38

WHERE h.hotelno = b.hotelno

AND b.guestno = g.guestno

AND (datefrom <= ‘systemdate’)

AND (dateto >=‘systemdate’);

Create a view containing the account for each guest at the Gorsvenor Hotel.

CREATE VIEW gact (guestno, guestname guestaddress)

AS SELECT guestno, guestname, guestaddress

FROM hotel h, booking b, guest g

WHERE h.hotelno = b.hotelno

AND b.guestno = g.guestno

AND h.hotelname=‘Grosvenor’;

Give the users Manager and Director full access to these views, with the privilege to pass the access

on to other users.

GRANT ALL PRIVILEGES

ON gact

TO Manger, Director WITH GRANT OPTIONS;

GRANT ALL PRIVILEGES

ON hotgst

TO Manger, Director WITH GRANT OPTIONS;

Give the users Accounts SELECT access to these views. Now revoke the access from user.

GRANT SELECT

ON gact, hotgst

TO Accounts;

REVOKE SELECT

ON gact, hotgst

 FROM Accounts;

Page
39

FROM CHAPTER 6 (DDL) HOMEWORK (HANDOUT)

Define City for Branch according to the following constraints:

–Has to have a two character string value

–Has to be equal to SF, NY, LA, or DC

–Set default value to SF

City AS CHAR(2) DEFAULT ‘SF’ CHECK (VALUE IN (‘SF’, ‘NY’, ‘LA’, ‘DC’))

Define Sno for Staff according to the following constraints:

–Has to have a three digits integer

–Has to be between 111 and 999

–Has to be unique

Sno AS SMALLINT NOT NULL UNIQUE CHECK (VALUE BETWEEN 111 AND 999)

Define a domain citylocation for City according to the following constraints:

–Has a two character string value

–Has to be equal to SF, NY, LA, or DC

–Set default value to SF

Define the City in the Branch or Property_for_Rent using the citylocation

CREATE DOMAIN citylocation AS CHAR(2) DEFAULT ‘SF’ CHECK (VALUE IN (‘SF’, ‘NY’, ‘LA’, ‘DC’));

City citylocation NOT NULL

Page
40

Define a domain noforsno according to the following constraints:

–Has to have a three digits integer

–Has to be equal to one of the Sno in the Staff

Define the sno in the Property_for_rent using the domain noforsno

CREATE DOMAIN noforsno AS NUMBER(3) CHECK (VALUE IN

(SELECT Sno FROM Staff));

Sno noforsno NOT NULL

Define an assertion that will limit 10 staff members in any branch.

CREATE ASSERTION bnolimit

CHECK (NOT EXIST

(SELECT bno

FROM staff GROUP BY bno

HAVING COUNT (*) >10));

Page
41

Create staff table using following constraints

–Sno is three digits integer, between 111 and 999, a primary key

–Name and position are 30 alphanumeric fields

–Sex has a default value (m) limits to m or f

–Salary is between 50,000 and & 100,000

–Bno is equal to one value of bno in branch with 10 or less staff member, set null for delete, set

cascade for update.

CREATE TABLE staff (Sno AS SMALLINT NOT NULL UNIQUE CHECK (VALUE BETWEEN 111 AND 999),

name CHAR(30) NOT NULL,

position CHAR(30) NOT NULL,

sex CHAR(1) NOT NULL DEFAULT ‘m’ CHECK (VALUE IN (‘m’, ‘f’)),

Salary NUMBER (8,2) NOT NULL CHECK (VALUE BETWEEN 50000 AND 100000),

Bno SMALLINT NOT NULL CONSTRAINT bnolimit CHECK (NOT EXIST

(SELECT bno FROM staff GROUP BY bno HAVING COUNT (*) >10),

CONSTRAINT pkstaff PRIMARY KEY (sno),

CONSTRAINT fkstaffbranch FOREIGN KEY (bno) REFERENCES branch (bno)

ON DELETE SET NULL ON UPDATE CASCADE);

Add a new attribute named HireDate to the existing table Staff.

ALTER TABLE Staff

ADD HireDate DATE;

Add a new attribute named ViewNo for the table Viewing

Assign ViewNo as the primary key of the table Viewing

ALTER TABLE Viewing
ADD ViewNo NUMBER(6);

ALTER TABLE Viewing
ADD CONSTRAINT pkviewing PRIMARY KEY (ViewNo);

Page
42

MIS 150, Exam 2 ER Diagram:
THE ULTIMATE COMPREHENSIVE GUIDE PART III

MIS150, Inc. is a local grocery store located in Sacramento City. The MIS150 has three divisions including
catering, restaurant, and grocery. The catering division provides party services. The restaurant division
offers lunch and dinner meals for takeout. The grocery division sells two types of merchandises including
perishable items and non-perishable items. The MIS150 hires employee to help its customer getting the
services. Develop an Enhanced Entity-Relationship diagram to document the database of the MIS150.

Employee

{Mandatory, Or}

Services

{Mandatory, Or}

{Mandatory, Or}

GroceryStore

Has

1

3

Customers

1

Meals

Assumptions:

* Grocery, Restaurant, and Catering are all

very different services, hence they are Or.

* Perishable items and non-perishable items

are also different, hence they are Or.

* Lunch take-out can’t be considered a dinner

take-out, hence it is an Or.

Transactions

*

Prepares

Offers

Has

1

*

1

*

Grocery Restaurant Catering

Perishable

Items

Non-

Perishable

Items

Lunch Dinner

Has

1

*

*

*

1

Has

1

Has

MIS 150, Inc.

Local Grocery Store

Enhanced ER Diagram

Items

1

*

Page
43

MIS Professional Agency is a non-profit organization. It has several full time and part time agents to help
MIS graduates finding information technology employment from business organizations. There are three
types of business organizations that are health, real estate, and airline. Develop an enhanced entity
relationship diagram for the database needed by the MIS Professional Agency.

MIS Professional

Agency

Agent

Full-time Part-time

Business

Organization

MIS Graduate

Health Real Estate Airline

Employment

Hires

Industry

1 *

Provides

1

*

{Mandatory, Or}
Provides

Provides

Provides

Service

{Mandatory, Or}

Assumptions:

* Service contains MIS graduate records such as applications, names, addresses, etc.

* Service also contains employment records such as employmentNo, hireDate, which industry does that particular

employee goes.

FindsHelps

1*

1

*

Has

*

1
*

*

*

1 1 1

Page
44

MIS, Inc. is a medium size financial service company located in San Francisco. MIS offers selling/buying
stocks and/or bonds for its customers. The MIS hires competent brokers not only to perform the
selling/buying transactions for customers, but also to advice customers in terms of potential monetary
benefits that could be generated by different types of stocks and bonds. The MIS has two different types
of customers including institutions and individual.
Develop an Enhanced Entity-Relationship diagram to document the database of the MIS.

Customers

Stocks

TransactionBrokers

Employees

(Mandatory, Or)

(Mandatory, Or)

Performs

Has

1 *

*

1

FinancialService
1*

Has 0.. 1 – Zero or 1

0.. * OR *

Multiplicity

Constraints

1 ..1 OR 1

Investments Advice

Bonds

IndividualsInstitutions

Hires

*

1

{Mandatory, Or}

MIS, Inc. Financial Service

Enhanced ER Diagram

Assumptions:

* Investment and advice are different, hence it is an OR.

* Institutions is a public or private company and cannot be an individual.

* Stocks and bonds are different type of investments, hence it is an OR.

Page
45

You are required to create a conceptual data model of the data requirements for a company that
specialized in IT training. The company has 30 instructors and can handle up to 100 trainees per training
session. The company offers five advanced technology courses, each of which is taught by a teaching
team of two or more instructors. Each instructor is assigned to a maximum of two teaching teams or
may be assigned to do research. Each trainee undertakes one advanced technology course per training
session.

(a.) Identify the main entity types for the company.

Company

Course

Trainee

Assignment

Instructors

Research

Teaching

C1

C2

C3

C4

C5

(b.) Identify the main relationship types and specify the multiplicity for each relationship. State any
assumptions you make about the data.

 Company has Trainees (1..1, 0..*)

 Company offers Course (1..1, 1..*)

 Company has Instructor (1..1, 1..*)

 Course has Trainee (1..1, 0..*)

 Instructor – Teaching has Assignment (1..1, 0..*)

 Course has Assignment (1..1, 1..*)

 Instructor is Teaching or Researching (1..1, 1..*)

 Course C1, or, C2, or C3, or C4, or C5 (1..1, 0..*)

Assumptions:
* Trainers cannot be Instructors and vice-versa, hence it’s Or.
* TeachingTeam can also be in a research team, hence it’s And.
* Courses are different, hence it’s Or.

Page
46

(c.) Using your answers for (a) and (b), draw a single ER diagram to represent the data requirements
for the company.

Company

Instructors Trainees

Courses

Has

1

30

1

{Mandatory, And}

Person

{Mandatory,Or}

2

3

4

5

{Mandatory, Or}

Has

1 *

Has

1

1

1

1

Assumptions:

* Trainers cannot be Instructors and vice-versa, hence it’s Or.

* TeachingTeam can be also a research team, hence it’s And.

* Courses are unique, hence it’s Or.

Sections
*

*

ResearchTeaching

Team

Assignments

*

*

Specialized IT Training

Enhanced ER Diagram

Has

Page
47

The SAC Winery has 10 stores and two warehouses located in the California State. SAC buys top quality

California wines by issuing purchase orders to several famous California vineyards. The ordered wines

are delivered to SAC with invoices requesting for payments from vineyards. SAC has established

excellent credit with its wine suppliers. This allows SAC to accumulate vineyard’s invoices and pay them

every two months. On the other hand, SAC keeps a good size inventory either in the stores or in the

warehouses to meet the seasonal demand from its individual and business customers. Warehouse will

ship wines to individual store based on the store request. SAC has a sales policy that accepts cash,

check, or credit as its sales payments. (Minus two points for each mistake)

) Identify and list every class (super class and subclass) for designing a database for the SAC Winery.

 SAC

 Invoice

 Vendor

 Purchase

 Item

 Inventory

 Request

 Request Item

 Store

o Warehouse (subclass)

o Sales Outlet (subclass)

 Customer

o Business (subclass)

o Individual (subclass)

 Sales Item

 Sale

 Payment Item

 Payment

o Cash (subclass)

o Check (subclass)

o Credit(subclass)

Develop an enhanced entity-relationship diagram for the database for the SAC Winery.

SAC

InventoryItem

Purchase

Vendor

Invoice

Sales Outlet

Warehouse

Store

Customer

Individual

Business

Request

Request

Item

Sales Item Sale

Check CashCredit

Payment

Payment

Item

*
1

1

1

1

1

*

*

*

*

*

*

*

*

* 1

1

1

1

1

1

1

*

*

*

1

and

and

1

*

Page
48

Management Information Science (MIS) Department offers graduate and undergraduate degrees to its

graduate and undergraduate students. MIS Department hires two types of employees. The first type

includes qualified faculty members to teach its courses. The second type comprises competent staff

members for administration work. MIS Department offers five different types of courses that are

quantitative, system analysis and design, database, programming, and telecommunication. Students

have to enroll and complete all the required courses in order to earn their degrees.

(a) Identify and list every class (super class and subclass) for designing the database of MIS Department.

(Minus 1 point for each mistake.)

MIS

Student

Degree (Graduate, Undergraduate)

Employees

- Faculty  teach

- Staff  admin

Courses (System Analysis and Design, Database, Programming, Telecommunication)

MIS

Department

Prog.DBSADQuant.

Courses

Degree In

Progress
Degrees

Schedule

Student

Faculty

Staff

Employees

Enroll

Telecom.

Undergrad.

Graduate

1

1

1
1

1

1

1

1

1

*

*

*

*

*
*

*

*

*

(Mandatory, or)

(Mandatory, or)(Mandatory, or) hires

teach

has

offers

has

Page
49

Apogee Power Incorporation (API) is a medium size power source company. It purchases different and

high quality power packs from several suppliers to fill its customer’s orders. Its suppliers are either

located in the United States or in the other foreign countries. The customer base includes the private

business, government agency, and individuals. The power packs can be the high power battery,

capacitor, or both. API hires salesperson to handle the sales transactions for its customers. API also

hires purchasing agency to manage the orders for its suppliers. Develop an Enhanced Entity-

Relationship diagram for the database of API. (Minus 1 point for each mistake.)

Entity Types:

1. API

2. Power Packs – High Power, Capacitor, Both

3. Suppliers – United States, Other Country

4. Customers – Private, Government, Individuals

5. Salesperson

6. Sales Transactions

7. Purchasing Agency

8. Orders

API

Unites

States

Other

Country

Suppliers

Orders

Purchasing

Agency

Power

Packs

High

Power

Battery

Capacitor Both

Salesperson
Sales

Transaction

Customers

Government

Private

Individual

* Purchases 1

1

*

1

has

1 has *

(m, or)

(Optional, And)

(m, or)

hires

*

1

*

has

*

1

handles

1 handles *

1

* *

1

1

*

*

Page
50

Rental Agency

Property

Staff

Renter Owner

PT FT

H B

Agreement

has

contains

signs

prepares

(O, OR)

owns

1

*

1

*

*

1

1

*

1

*

*

1

