
Mission Operations with an
Autonomous Agent

Barney Pell, Scott R. Sawyer, Nicola Muscettola,

Benjamin Smith, Douglas E. Bernard

The Research Institute for Advanced Computer Science is operated by Universities Space Research
Association, The American City Building, Suite 212, Columbia, MD 21044 (410) 730-2656

Work reported herein was supported by NASA via Cooperative Agreement NCC 2-1006 between NASA
and the Universities Space Research Association (USRA). Work performed at the Research Institute for
Advanced Computer Science (RIACS), NASA Ames Research Center, Moffett Field, CA 94035-1000

https://ntrs.nasa.gov/search.jsp?R=19990052840 2020-06-15T21:26:55+00:00Z

Mission Operations with an Autonomous Agent

Barney Pell _, Scott R. Sawyer 2, Nicola Muscettola 3, Benjamin Smith 4, Douglas E. Bernard 4

.5,1, 3NASA Ames Research Center,

Moffett Field, CA 94035
ICaelam Research @ Ames

3Recom Technologies @ Ames
650-604-4756

pell@ptolemy.arc.nasa.gov

5RIACS@Ames

Abstract--The Remote Agent (RA)
Intelligence (AI) system which automates some of the tasks
normally reserved for human mission operators and performs
these tasks autonomously on-board the spacecraft. These
tasks include activity generation, sequencing, spacecraft
analysis, and failure recovery. The RA will be
demonstrated as a flight experiment on Deep Space One
(DS1), the first deep space mission of the NASA's New
Millennium Program (NMP). As we moved from
prototyping into actual flight code development and teamed
with ground operators, we made several major extensions to
the RA architecture to address the broader operational
context in which RA would be used. These extensions

support ground operators and the RA sharing a long-range
mission profile with facilities for asynchronous ground
updates; support ground operators monitoring and
commanding the spacecraft at multiple levels of detail
simultaneously; and enable ground operators to provide
additional knowledge to the RA, such as parameter updates,
model updates, and diagnostic information, without
interfering with the activities of the RA or leaving the
system in an inconsistent state.

2Lockheed Martin Missiles & Space

Advanced Technology Center
3251 Hanover St.

Palo Alto, CA 94304-1191
650-424-2291

scott.r.sawyer@hnco.com

is an Artificial 12. CONCLUSION

The resulting architecture supports incremental autonomy,
in which a basic agent can be delivered early and then used
in an increasingly autonomous manner over the lifetime of
the mission. It also supports variable autonomy, as it
enables ground operators to benefit from autonomy when
they want it, but does not inhibit them from obtaining a
detailed understanding and exercising tighter control when
necessary. These issues are critical to the successful
development and operation of autonomous spacecraft.

TABLE OF CONTENTS

1.]NTRODUCHON

2. MISSION OPERATIONS OVERVIEW

3. Ftn_v ALrI'ONOMOUS AGENT PROTOTYPE

4. EXTENDED MISSION

5. MULTI-LEVEL COMMANDING

6. UPDATING INFORMATION

7. TRACKING STATUS

8. SUMMARY OF ARCHrI'F, CTURE REVISIONS

9. VARIABLE htrrONOMV
10. RO__TED WORK

1 1. Fire.WORK

4jet Propulsion Laboratory,
California Institute of Technology

4800 Oak Grove Drive

Pasadena, CA 91109
818-354-2597

douglas.e.bernard@jpl.nasa.gov

13. ACKNOWLE_rCmmS

1. INTRODUCTION

NASA's New Millennium Program (NMP) is a series of

technology validation missions designed to develop the
technologies necessary for the next millennium of space
exploration. Deep Space One (DS1) is the first NMP deep
space mission. One technology to be demonstrated on the

mission is the Remote Agent 0LA), an Artificial Intelligence
(AI) system which automates some of the tasks normally

reserved for human mission operators and performs these
tasks autonomously onboard the spacecraft. These tasks
include activity generation, sequencing, spacecraft analysis,
and failure reco very.

When we initially developed the RA prototype, we focused
on automating as much as possible, so as to minimize the
required effortof ground operators and enable the spacecraft
to achieve mission-critical goals in situations in which
human intervention was impossible.

However, as we moved from prototype into actual flight
code and teamed with ground operators, we had to, address
the broader operational context in which RA w'_uld be used.

This resulted in several major extensions to the RA
architecture. First, we developed a method by which
ground operators and the RA could share a long-range

mission profile, which could be updated periodically _om..
ground as new information becomes available. Second, we
added support for commanding at multiple levels of detail,

from goal-oriented commanding down to low-level time-
tagged sequencing, or even commanding in both styles at
the same time. Third, we added mechanisms for ground
operators to provide additional knowledge to the RA, to
augment or correct its interpretations of the current situation
(for example, telling it that a sensor is faulty or that an
actuator should not be used). This included addressing the
problem of updating parameters without interfering with the
activities of the RA or leaving the system in an inconsistent
state. Fourth, we added support for monitoring spacecraft
behavior at multiple levels of detail, from a high-level alert
message when the spacecraftneeds help down to low-level
streams of debugging data, or even monitoring in both
styles at the same time for different aspects of spacecraft
behavior.

The resultingarchitectureenables ground operators to
benefit from autonomy when they want it, but does not
inhibit them from obtaining a detailed understanding and
exercising tighter control when necessary. These issues are

critical to the successful development and operation of
autonomousspacecraft.

This paper describes our approach to mission operations
with an autonomous agent. First, Section 2 provides an
overview of traditional mission operations. Section 3 then
describes the prototype agent we developed to address
scenarios requiring completely autonomous operations. It
also summarizes the new requirements we encountered as we
began to address the use of this autonomous agent within
the context of an entire mission. The next four sections

describe how we addressed these requirements by
architectural extensions. Section 4 shows how we extended

the architecture to support long missions rather than an
isolated scenario; Section 5 shows how we provided multi-
level commanding rather than all-or-nothing autonomy;
Section 6 describes the extensions to enable mission

operators to provide the agent or the underlying flight
software system with new knowledge and goals without
having negative interactions; and Section 7 addresses our
support for monitoring the spacecraft at multiple levels of
detail. Section 8 summarizes the extensions, after which
Section 9 discusses the more general themes in operating a

mission with an autonomous agent at different levels of
autonomy. Section 10 reviews related work and Section 11
discusses future work. Section 12 concludes the paper.

sequence. If the predicted behavior is unacceptable or
undesirable, the sequence may be revised.

Flight/groundcommunications--Sequences ready for use are
delivered to the deep space network (DSN) for uplink to the

spacecraft. The DSN also collects telemetry from the
spacecraft for distribution to scientists and spacecraft
engineers. Typically, communications passes are scheduled
to occur at specific times. During these times, the
spacecraft's high gain antenna and a DSN antenna are aimed

at each other and configured for communication. Sequences
are uplinked, while spacecraft and science data are

downlinked. Outside of the scheduled passes, the spacecraft
typically keeps its transponder powered and listens for low
rate uplink from the ground with its omnidirectional
antenna. The spacecraft may also broadcast low rate
telemetry during these periods, but it has no assurance that
anything has been received on the ground. Consequently,
the spacecraft does not generally have the ability to request
prompt help from the ground in the case of anomalies.

Spacecraji behavior monitoring and analysis--Engineering
telemetry is monitored as it comes in for any alarm
conditions indicating unexpected or serious conditions
aboard the spacecraft. In addition, more extensive
engineering telemetry is stored and analyzed by spacecraft
engineering subsystem experts to monitor the health of their
subsystems and spot any important trends in the data. The
telemetry data is compared with the earlier predictions of
sequence behavior and any significant differences are
analyzed.

2. MISSION OPERATIONS OVERVIEW

In order to understand the advances offeredby the remote
agent, first consider the traditional approach to mission
operations for deep space missions. The following set of

activities are typically part of successful mission operations:

Anomaly investigation and recovery actions--In the event of
an anomaly on the spacecraft, operations personnel
investigate the situation, bringing in subsystem experts as
needed. Action may be needed to assure that the spacecraft
is kept safe until the anomaly can be fully understood and
recovery actions developed and implemented.

Mission planning--Mission planning is the development of
a high level mission plan. Since science missions are few
and far between, the opportunity to collect data at various
stages of the mission is a scarce resource and tradeoffsneed
to be made among competing science opportunities. The
mission plan collects the conclusions of the many tradeoffs
and indicates which investigations are to be accomplished at
what time.

Sequence development and spacecra_ behavior prediction--
Given an accepted mission plan, sequence development is
the process of determining exactly how the (higher level)
mission plan will be carried out. The product of sequence
development is a time-ordered sequence of commands for the
spacecraft. These commands may be at a low level, such as
powering on a specified device, changing a parameter in the
flight software, or opening a valve, or at a higher level such
as instructing the spacecraft to turn its high gain antenna
(HGA) to the Earth. As part of the sequence development
task, the sequences are often tested on a simulation testbed

to generate predictions of the spacecraft response to the

Software upgrades--For long missions, software upgrades
are a planned part of flight operations. Even for shorter
missions, the capability to upgrade the flight software is an
important insurance policy should correctable problems
surface. Quantities that are expected to need adjustment
periodically are managed through parameter updates, a much
simpler process which traditionally involves writing new
values directly into known memory addresses. Ground
operators must also manage the storage of critical parameters
and flight software in non-volatile memory (NVM), in order
to recover from hardware/softwareresets. Therefore, there

may be separate procedures for updating parameters and
software in dynamic memory (DRAM) versus updating reset
and recovery data in NVM.

Science data storage and retrieval--The purpose of the
deep space missions is science. Part of the operations job is
assuring that the scientists have timely and easy access to
the returned data.

Sequence execution---Typically, a sequence containing
dozens or hundreds of individual commands is uplinked to

thespacecraftasanentityandthenanon-boardprocessis
responsiblefor meteringout thecommandseachat its
scheduledtime. This is known as sequence execution. In
addition, most spacecraft have the ability to accept real-time
commands.

Safe Modes--Deep-space spacecraft design typically includes
one or more safe modes. These are low capability operating
modes requiring a minimum of hardware components and
capable of maintaining spacecrafthealth for periods of days

or weeks until ground operators can determine what actions
are needed to return the spacecraft to full operation.

On-board fault protection---Given the long minimum
response time for deep space missions, there are some
possible component failures that require an on-board

response in order to prevent loss of mission. Fault
protection systems have been designed to handle these
situations. In some situations, the on-board system will be
able to reliably diagnose the situation, take reparative
action, and return the spacecratt to operation. In other
situations, the fault protection is designed to fail-safeand
will put the spacecraft in one of its safe modes until operator
intervention is possible. This requires first aborting any
current sequence and results in loss of mission activities
while the spacecraft is in this safe mode.

The mission operations approach described above makes use
of many highly trained and capable individuals in order to
pack as much science data gathering as possible into each
unit of time and to establish a high level of certainty that the
system is always working as intended.

3. REMOTE AGENT PROTOTYPE

In mid-1995, we developed a prototype of an autonomous
agent for spacecraftcontrol, called the Remote Agent (RA).
The RA prototyping effortfocusedon automating as much
of ground operations as possible, so as to minimize the
required effortof ground operators and enable the spacecraft
to achieve mission-critical goals in situations in which
human intervention was impossible. If we could achieve
full autonomy in a general and reusable manner, we could
then proceed to extend this technology to support broader
ranges of operational missions.

Cassini and SO1

Our development effort built on the work done for the
Cassini mission, the most autonomous spacecraftdesign to
date. The Cassini spacecraft launched in October, 1997, on
a mission to study Saturn, Titan, and the rest of the
Saturnian system. The spacecraft is designed to be in
contact with the Earth for only 8 hours, once a week, except

during high activity periods. Planning is done almost
entirely on the ground leading to tightly packed commanded

sequences of events that are uplinked to the spacecraft.

As a sequence is executed on-board, the commands are
expanded into actions by the on-board executive. Activities

of the objects comprising the flight software are coordinated
by use of a central mode commander. If the resources

required for a newly commanded mode are not available, the
mode commander makes them available. An advanced

configuration manager algorithm controls the power, health,
and operating mode of all hardware assemblies. A

geometric constraint monitor algorithm enforces sun-
pointing and other constraints and readjusts pointing
profiles that would violate those constraints [1].

Replanning is not generally available, but a primitive
version of replanning has been created to handle plan-
breaking failures during critical sequences. Consider any
failure leading to main engine shutdown during Saturn orbit
insertion (SOl). Here the prime engine is swapped to the
backup, the (original) sequence is restarted, and the flight
software uses stored information to know that this is a

restarted sequence. The flight software also recomputes how

much additional velocity change is required from the new
bum given that some velocity change is already accumulated
and that the new burn will occur in a differentlocation than

that originally planned.

The Cassini design included just enough autonomy to solve
the SOl problem, but the approach was a special, rather than
general purpose one. The main limitation is that the
Cassini software had no capability for mission planning or
for generating its own command sequence. Hence, the
Cassini software developers designed a special sequence for
just the SOl scenario. They then designed the flight
software (FSW) so that it could retry the same sequence
several times if it failed. To do this, the FSW had to

interpret commands differently depending on context.
Hence, the flight software and the special SOl sequence were
all designed carefully and specifically for this one phase of
full autonomy on this one spacecraft. In order to extend the
approach to support full autonomy in different phases, and to
make the approach applicable to other spacecraft with less
up-front design effort, it was necessary to endow the
spacecraft with an ability to generate sequences on-board.
With this ability, the spacecraft could respond to failure of a
sequence by generating a new sequence based on the current
situation.

Remote Agent Prototype

The RA Prototype [2] extends the foundations of the
Cassini autonomy approach by replacing some of the
functions with technologies developed from Artificial

Intelligence (AI). The RA architecture, shown in Figure 1,
contains three components, with responsibilities as follows.

The Planner/Scheduler (PS) trades offgoals, breaks down
high-level goals into mid-level activities, orders activities to
resolve interactions, and ensures the plan is consistent with
resource constraints.

The Smart Executive (EXEC) invokes planning when
necessary and then issues a sequence of commands to FSW
to implement the high-level plan, making detailed
sequencing choices in a context-sensitive fashion, and

tracking resources and configuration as does Cassini's
Executive.

I_ Real- [
-L Time]

I_xecution [

Planning Experts Fault [
(incl. Navigation) Monitors I

Figure 1. RA Prototype Architecture

The Mode Identification and Reconfiguration (MIR)

component tracks execution activity. Based on the
commands from EXEC and the outputs of the monitors,
MIR infers the most likely current state of the hardware and
passes its conclusions to EXEC. MIR also assists EXEC
in repairing devices by suggesting actions based on the
global context. All capabilities are performed using models
of the spacecraft, rather than a set of hard-coded rules like

those used in the Cassini approach.

The top-level operational cycle, including the planning
loop, is described as follows. EXEC requests a plan, when
necessary, by formulating a plan-request describing the
current plan execution context, and then executes and

monitors the generated plan. EXEC executes a plan by
decomposing high-level activities in the plan into primitive
activities, which it then executes by sending out commands,
usually to the real-time flight-software control system
(FSW). EXEC determines whether its commanded
activities succeeded based either on direct feedback from the

recipients of the commands or on inferences drawn by the
Mode Identification (MI) component of MIR. When some
method to achieve a task fails, EXEC attempts to
accomplish the task using an alternate method in that task's
definition or by invoking the Mode Reconfiguration (MR)
component of MIR as a "recovery expert." If MR finds
steps to repair the failing activity without interfering with
other concurrent executing activities, EXEC performs those
steps and then continues on with the original definition of
the activity. If the EXEC is unable to execute or repair the
current plan, it aborts the plan, cleans up all executing
activities, and puts the controlled system into a stable safe
state (called a "standby mode"). Since the prototype was
designed for complete autonomy, EXEC then requests a new
plan while maintaining this standby mode until the plan is
received, and finally executes the new plan.

We now briefly describe the plan representation and plan
execution capability in more detail. The planner represents
spacecraft activities as a set of concurrent subsystems. Each
independent component of a subsystem is conceptualized as
a state variable, which can take on a series of different
behaviors over time. A plan consists of one timeline for
each state variable. Each timeline contains a sequence of
constraints on the behavior of the state-variable. A token is

a data structure which represents one part of a sequence on a
timeline. A token has information about the desired

behavior throughout the duration of the token, and also
flexible constraints on when the token can start and finish.

Each token has a unique name that unambiguously
identifies it in the mission profile, and a type, an assertion
that describes the activity and its parameters. Lastly, the
plan contains constraints, called compatibility constraints,
to coordinate behavior across tokens on different timelines.

An example of a compatibility constraint is one which says
that a "take-picture" token must be executed within the
window during which the corresponding "keep-pointing-at-
target" token is activated.

The EXEC is a multi-tlWeaded process that is capable of
asynchronously executing activities in parallel. EXEC has

one thread for each timeline in a plan, and a procedure,
called the token definition, for each type of token contained
in the plan. A token def'mition procedure contains a

precondition that must be met before the activity can start, a
postcondition that must be met before the activity can
finish, and a body which describes how the procedure is

actually executed. To execute a plan, EXEC activates on
the corresponding thread for each timeline the procedure
corresponding to the first token on that timeline. When a
new token is able to start (because the previous token has
finished and all other constraints are satisfied), EXEC
terminates the previous token procedure and transitions to
the next one. For example, once the token for turning to a
target has completed, the token for constantly pointing at
the target can then be activated. This enables the "take-
picture" token on the camera timeline to be activated. Only
when the picture activity has finished will the EXEC
terminate the "keep pointing at target" token and transition
to the token for turning to the next target attitude.

Table I provides a summary showing how the RA supports
some of the mission operations functions for a particular
scenario of fully autonomous operation.

DSI and Mission Operations

In October 1995, the Remote Agent prototype was
successfully demonstrated on a simulated version of the SOl

scenario. The agent autonomously generated and executed a
plan based on the scenario goals and constraints and was
able to replan in the face of a wide variety of failures
(including unintended errors in the simulator) and still
achieve the orbit insertion within the constrained time
window. This success resulted in the inclusion of the RA

as an autonomy experiment on the first NMP mission, Deep
Space 1 (DSI), which is scheduled to launch in mid-1998.
A successful demonstration on DS1 would make RA the

first AI system to autonomously control an actual spacecraft.

Although the RA will only fly DS! as a one-week
experiment [3], we designed it to support DSi as a full
operational mission, including a usable flight/ground
interface. Because the RA Prototype only dealt with full
autonomy for one scenario, our prototype did not address
issues to do with ground operation or the need to function
beyond one short scenario.

Mission operations function

Mission planninl_

Sequence development

Spacecraft behaviorprediction

Table 1. RA prototype's role in mission operations

RA protot_'pe approach in full_, autonomous scenario

Humans supply goals for the scenario to EXEC

EXEC passes current state and any unachieved goals to the PS as part of a
plan request. PS generates plan on-board; final level of sequence generation
is performed by EXEC as part ofexecutin$ the plan.

PS generates high-level predictions as part of planning process; they are
stored in plan. MIR generates detailed predictions on-board based on
commands from EXEC and current state information.

Flight/ground communications Content of uplink and downlink were not addressed in the full-autonomy
scenario.

Spacecraflbehavior Monitored on-board by MIR and monitors; support for ground monitoring
was not addressed.

Anomaly investigation and recovery actions

Soffwareupgrades

Science data storal_e and retrieval
Sequence execution

Safemodes

On-board fault protection

MIR assists EXEC in diagnosing and recovering from anomalies; ground is
notified of anomaly and actions taken; RA will put spacecral_in standby

mode if necessary 7and replan when possible.
Not addressed.

Data was stored in traditional manner; retrieval was not addressed.

Executive expands planner tokens into low level commands and manages
execution.

RA standby modes are equivalent to safe modes.
Executive has reflex actions for critical failures; MIR assists in diagnosis
and recovery if possible; if no recovery is possible within the current

sequence r the sequence is aborted and EXEC asks PS for a replan.

To extend the RA prototype into an autonomous agent for
mission operations, we had to address the following issues.

First, the agent would no longer function solely in an
isolated scenario, and would need to be part of the overall
mission design and operations philosophy. The agent
would be required to execute a long-range mission plan.
Issues to be addressed include: (a) When do we plan, and
how far in advance, (b) Which goals do we give to the
planner, and (c) How to make sure each short-term plan
leaves sufficient resources for rest of mission?

Second, ground operators want to be able to interact with
the spacecraft at various levels of detail, rather than accepting
full-autonomy at all times. The following capabilities were
determined to be important to mission operators concerning
the use of an agent:

• Sequence the spacecraft as in traditional operations in
some situations, use the on-board planner in other
situations, or do both at the same time.

• Use the planning capability either from the ground or
on-board the spacecraft, and change planning modes
dynamically. It was also important to specify policies
for when the agent should replan autonomously, and
when it should wait for help from ground.

• Force the system into a stable, predictable state from
which operators could perform analysis.

• Disable various fault protection responses in order to
send low-level commands to repair the spacecraft.

• Provide additional knowledge to the agent, to augment
or correct its interpretations of the current situation.

• Change any parameters in a consistent fashion: so that
agent's plans and beliefs are consistent with the current
state at_er parameter modification, and so that the
parameter change is executed at a point where it does
not interfere with the processes of the agent.

• Track spacecraft health and status.

As the spacecraft initiates activity at higher levels, it
becomes harder for ground operators to predict which low-
level state it will be in at any time. This makes it very
difficult to coordinate the actions initiated by ground with
those initiated by the spacecraft, to make sure they do not
interfere with each other. There are four ways to address this
synchronization problem:

• Forcethe spacecraft into a certain state before issuing a
command.

• Set up an explicit mechanism to ensure that the
command is executed in the appropriate situation.

• Provide information to the agent as advice, rather than
commands, which the agent can address if and when it
needs the information.

• Only change low-level details which the agent does not
care about.

Each of these approaches has strengths and weaknesses. The
forced-state approach causes the spacecraft to interrupt
everything, which may cause loss of important mission
activities. The synchronization mechanisms are potentially
risky as well, as they rely on the correct situation coming
about, but it is hard to guarantee situations in the presence
of potential faults. The other two approaches are less
problematic, but they also give operators less control.

TOKI_ WaypointI _____ = .TOK3f Waypoint TOK4 =/Waypoint
Waypoints I

1 week 10 hours

II

Navigation J
Goals TOK5 = Navigate (i0,2,3) _ TOK6 = Navigate

/
10/23/97 10:00:00 GMT

TOK7 = Act (cmd_filel)

/

Activi ties

(20,1,5)

S/C

Pointina

MICAS UV

mode

Figure 2. An example of a mission profile

The following sections describe how we addressed the top-
level categories of extended missions, multi-level
commanding, multi-level monitoring, and updating
information. As we discuss each capability, we also point

out which approach we took to the relevant synchronization
problems.

Note that for the remainder of this paper, we will be

describing the full RA architecture. The RAX architecture
implemented for DS1 represents only a subset of the
capabilities defined for the full RA architecture.

4. EXTENDED MISSION

To operate without any intervention over months at a time,
an autonomous spacecraft needs a persistent memory of the
goals to be achieved. For example, in a pure "fire and
forget" mission, the goals would be loaded on the spacecraft
at launch. The spacecraftwould then achieve them at the
appropriate times by generating on-board sequences of
commands that take into account the current spacecraft
operational conditions. In practice, goals will be modified
or updated during the course of a mission, with the
frequency of these updates decreasing as the level of
autonomy of the spacecraft increases.

Mission Manager and Mission Profiles

In the RA, the sottware module responsible for storing and

manipulating the mission goals is the Mission Manager

(MM). Goals are stored in a temporal database called the
mission profile. Figure 2 shows an example of a mission
profile with the goals and types oftimelines relevant to the
RA experiment on DSI.

The mission profile is partitioned into a series of parallel
timelines. Later in the paper we will discuss in detail the
Waypoints, S/C Pointing and MICAS UV mode

timelines. The Navigation goals goal timeline

specifies the frequency, duration and placement slack of the
"optical navigation windows", the times during which the
spacecraft is requested to take a set of asteroid pictures to be
used for orbit determination by the on-board Navigator.
The EXEC activities timeline contains goals that
specify a request for execution of a "mini-sequence", i.e., a
set of lower-level commands that the executive will issue to

the real-time software. The mini-sequence must be activated
with certain synchronization constraints with respect to
other planned activities.

The organization of the profile into parallel timelines is
similar to that of a plan generated by the planner. Each
mission profile timeline spans a long time horizon
(potentially the entire mission) and can be (totally or
partially) filled with tokens. Each token corresponds to a
goal that needs to be achieved over an appropriate time
interval.

Goals can be temporally constrained either relative to other
tokens (e.g., in Figure 2 'TOK3 must start 1 week afterthe
end of TOKl') or with respect to absolute time (e.g., again

inFigure2 'TOK6muststartat 10:00:00GMTon October
23, 1997'). Temporal constraints can include slack (e.g.,
'TOKI must start between l0 and 20 minutes afierthe end

of TOK2'). This temporal flexibility in the mission profile
is important. In fact the planner has more latitude in
achieving a set of independently specified goals with flexible
time than one with rigid achievement time. This increases

the probability that the planner will be able to produce a
consistent plan and therefore overall mission robustness.

The goal editing interfaceprovides commands that ground
operators can use to add, modify or delete goals from the
mission profile. For example, in a mission in which the
spacecraft communicates to Earth through the DSN, the final
communication schedule allocated to the mission will

become available only a few weeks in advance and it is
possible that a schedule may change with a short notice
(e.g., within a week). Ground will need to communicate
both of these situations to the spacecraft by issuing
appropriate edit commands to modify the mission profile.

By managing goals over very long time horizons, the
mission manager achieves two functionalities that are
important for autonomous spacecraft operations. First, a
mission profile can contain goals that require
synchronization that spans longer than a single plan
scheduling horizon. For example, it is possible that a
scientific experiment may require an instrument cool-down
activity to start several weeks before the experiment is
actually performed. By coveting several of (and potentially
all of) the scheduling horizons of a mission, MM will
correctly dispatch the two goals to be performed at the
appropriate time. Second, a long-term mission profile
allows the minimization of up-link communication with
Earth, potentially enabling "no uplink" missions if the
profile covers the entire mission duration.

Waypoints in the mission profile

The mission profile is structurally homogeneous with a
partially specified plan. For example, in Figure 2, the
S/C Pointing and MICAS UV mode timelines

correspond to low level activities that the planner will fill
up. In fact, the mission profile must comply with the same
domain model used by the PS. For example, the
vocabulary used to def'me goal token type is restricted by the
PS model, as are the timelines on which tokens of specific

typcs Can Occur.

In principle, it would be possible for the PS to directly
operate on the mission profile and generate a plan for the
entire mission. In practice, this is undesirable. Generating
a plan is computationally expensive and the cost typically
grows exponentially with the number of goals to be
achieved. Moreover, spacecraftsubsystems are not always
available or operating nominally (e.g., an on-board camera
is temporarily unavailable due to a recoverable fault or the
efficiency ofon-boardpower generation degrades over time).
An exact prediction of when system degradation and

recovery will occur is clearly impossible.

For these two reasons, the mission profile includes a
Waypoints timeline. This timeline is typically filled
with tokens of two kinds; Waypoint and No_Waypoint.

The first kind of token represents a synchronization event
which marks the nominal start and end of each scheduling
horizon. When asked to produce a new plan, the MM
identifies the next applicable waypoint in the mission
profile, selects all goals that can possibly fall between the
requested horizon start and the waypoint, and then merges
them with the initial state provided by the executive.

Waypoint tokens can appear in the mission profile with any
frequency that is convenient for a particular mission phase.
As mentioned before, the frequency is a function of the
expected number of goals per profile and expected plan
brittleness. For example, during an encounter phase several
activities relating to scientific experiments need to be
planned over a few hours. However, during cruise, only a
few regular activities per week may be needed. Accordingly,
waypoints should be separated by a few hours during
encounter and by a few days during cruise.

Waypoints need not be fixed with respect to specific times
of occurrence. This is because the technology used to
implement the mission profile allows posting relative
temporal constraints between waypoints (e.g., 'Waypoint
token TOK3 starts one week afterwaypoint token TOKI ').
This has important consequences on the robustness of the
mission profile to variations of the temporal occurrence of
significant mission events.

For example, it is not unusual for a mission to have its
launch delayed. If waypoints in the mission profile were
scheduled at fixed times, quite a bit of last minute editing of
the profile could be needed. With relatively constrained
waypoints, the actual time of occurrence of launch would be
communicated to the MM immediately after launch. The
"MM would need only to post an absolute temporal
constraint on the database that fixed the time of occurrence of

a token representing the launch event. Temporal constraint
propagation in the database will then infer for each waypoint
the actual time of occurrence. This process occurs
automatically, with no operator intervention. The
elimination of manual intervention increases the precision of
the timing of critical mission activities and removes a
possible sources of human error, therefore increasing
reliability. Besides marking the start and end of nominal
scheduling horizons, waypoints also provide an important
periodic checkpoint function.

For example, the consumption of non-renewable resources
(such as fuel) needs to be appropriately distributed over the

different mission phases. This avoids having excessive
early use endanger important goals to be achieved later.
The PS must take into account such budget constraints to
determine which goals should be achieved during each
scheduling horizon.

Budget constraints are translated into specific checkpoint
conditions (e.g., the fuel level at the end of the scheduling
horizon must be no more than 10 kg less than that at the

beginning)whicharesynchronizedwith the waypoints.
Suchsynchronizationcanbeachievedin twoways. For
specialconditionsthatoccuronlyoncein a mission,each
checkpointconditioncanbe representedin the mission
profileasanexplicittokenthatis thenrelativelytemporally
constrainedwith respectto a waypoint. For routine
checkpointconditions,the domainmodelcan include
explicit compatibilityconstraintsassociatedwith the
definitionofawaypointtokentype. WhenPSiscalledto
generateaplan,it automaticallygeneratestokensto satisfy
thecompatibility.

Uninterrupted operation across waypoints

It is important to note that waypoint tokens are completely
transparent to the rest of the RA beyond MM and PS. In
other words, execution of plans proceeds seam lessly without
interruptions across waypoints. There is no need to put the
spacecraft in a special state at a waypoint while the executive
terminates the execution of the current plan and starts the
next one.

Each timeline of the plan from the previous scheduling
horizon ends with a token that straddles the waypoint token,
i.e., a token whose start time is constrained to occur before

the waypoint and whose end time is constrained to occur
after the waypoint. When the executive requests a plan for
the next scheduling horizon, it sends to the MM the last
token of each timeline for the current plan and the
constraints between each token and the end waypoint.

Since the end waypoint of the previous scheduling horizon
is the start waypoint of the new scheduling horizon, the
inclusion of the information passed by the executive in the
plan request guarantees that the end of the old plan and the
start of the new one always have tokens that completely
agree (in name and type).

When installing the new plan, the executive possibly needs
to update information on the duration of the ending tokens.
Since the end of a straddling token is constrained to occur
afterthe waypoint, these adjustments do not interfere with
the execution of the current plan. Since the installation of a
new plan occurs before the end waypoint of the current
scheduling horizon, plan execution can be handed over from
one horizon to the next without any interruption.

Types of mission profile timelines

As mentioned before, a mission profile has exactly the same
timelines that a plan has. We can distinguish between four
distinct kinds of timelines.

A goal timeline will contain the sequence of high-level
goals that the spacecraftcan satisfy (e.g., the Navigate goal
described before). Goal timelines can be filled either by

ground operators or by on-board planning experts seen by
the PS as goal generators.

for the scheduling horizon and the thrusting profile to be
followed. These two types of information are laid down on
separate goal timelines.

Expected device health information over time is tracked by
health timelines. The expected profile is communicated by
the EXEC to the MM in the initial spacecraftstate. EXEC
can communicate that the health of a device has changed
even if no fault has occurred.

For example, in a previous faulty situation, ground may
have decided that the IPS engine is not trustworthy and

therefore should not be considered operational until further
tests have been run. PS will therefore generate plans that do
not involve thrusting the engine. Ground may decide to run
some tests by posting appropriate goals in the mission
profile and thereforenot break the nominal plan execution.
After the tests, ground may decide that the IPS engine is
trustworthy after all and send a message to EXEC that it is
again OK to thrust. EXEC communicates this to the PS
through the health timeline in the next scheduling horizon,
without needing to interrupt regular plan execution and put
the spacecraft in standby mode.

Another kind of state variable is an internal timeline.

These are only used by the PS to internally organize goal
dependencies and subgoaling.

Finally, an executable state variable corresponds to tasks
that will be actually tracked and executed by EXEC.

The distinctions between types of state variables are
important for software engineering and project organization
purposes (e.g., the mission design team needs only to know
about the structure of the goal timelines to command the
spacecraft, but does not need to know the details of the
executable timelines which are interesting to the EXEC
team, and vice versa). However, notice that the mission
profile treats all timelines homogeneously within the same
data structures. The same editing and constraint propagation
algorithms apply homogeneously to all timelines.

From the perspective of ground operations, this has a major
advantage. If necessary (e.g., if once-a-mission special
maneuvers are needed in special circumstances), it is quite
possible to override the "organizational" boundaries. For
example, the ground team could force certain behaviors out
of the spacecraft by including in the mission profile explicit
tokens on an executable timeline. Notice, however, that in
this case. ground does not need to uplink a complete plan.
The additional tokens will be treated by the PS as goals,
will be checked against the internal PS model and missing
supporting tasks will be automatically expanded to create an
overall consistent plan. This will greatly facilitate the work
of the ground team.

5. MULTI-LEVEL COMMANDING

For example, in order to generate the portion of the plan that
commands the IPS engine, the PS interrogates NAV which

returns two types of goals: the total accumulated thrust time

A key requirement of the ground operators is the ability to

control the level of autonomy granted to the spacecraft at any
point in the mission. This allows the ground operators to

Thrust

Goals

Power

Attitude [Point(a) urn(a b)[Point(b)

Engine

Figure 3. A plan fragment

build confidence in the RA by starting with very little
autonomy and gradually increasing to higher levels. The
ground team can vary the level of autonomy to match their
risk/cost assessment. For a particularly critical and risky
maneuver, they may want to pay the higher cost of total
ground control. They may also want total control when
diagnosing and repairing a particularly troublesome failure,
such as a partially deployed solar panel or antenna. For
other maneuvers, they may want to save money by granting
the RA full autonomy. Of course, there will be some cases
where autonomy is a necessity regardless of the cost/risk
trade off. The Cassini SOl scenario is an excellent example
of such a case.

The level of autonomy can be changed by the ground
operators as needed throughout the mission, and even on an
activity by activity basis. It is determined by how the
spacecraft is commanded, rather than by changing the
operating mode of the RA. If the ground provides only high
level goals, the RA has maximal autonomy in determining
how to achieve those goals. As the ground specifies how
to achieve the goal in more detail, the RA has less
autonomy. The various possible autonomy levels are
described in more detail in the subsections below. The

mechanisms used by ground operators to uplink the
necessary information for commanding are discussed in the
next section.

Full Autonomy

At one extreme, RA is granted maximal autonomy. The
ground operators provide the RA with a set of high-level
goals and the RA decides how to achieve them. The
ground operators decide what the spacecraft should be doing,

and the RA decides how to do it based on the current

spacecraft state and the operation knowledge and policies
encoded in the RA models. The spacecraftis most robust
to faults at this level of autonomy. When a fault or
contingency arises, the RA has the authority to choose
alternate ways of achieving the goals that avoid or resolve
the problem.

The RA is commanded at this level of autonomy as follows.
Over the duration of the mission, the EXEC iteratively
requests the PS to generate a plan for each scheduling
horizon. The EXEC projects what the spacecraftstate will
be at the start of the next horizon, based on the plan it is
currently executing, and passes this to the PS as the initial
state for the new plan. The MM extracts the goals for that
planning horizon from the mission profile. The PS then
generates a plan that achieves those goals from the initial
spacecraft state provided by the executive. Ground still has
full access to the mission profile editing capabilities so it
can modify goals as desired.

Figure 3 shows a fragment of a plan generated by the PS.
The Delta_V goal is satisfied by the Thrust token on
the Engine timeline. The latter token requires the

spacecraftkttitude timeline to hold the attitude b

throughout the engine burn by executing token Point (b).
The other tokens on the Attitude and Engine

timelines make sure that the spacecraft executes the
appropriate auxiliary activities. The Power timeline

guarantees that the power requested by the plan's activities
does not exceed the total power available.

For most goals, the PS has flexibility in deciding how to
achieve the goals. If the initial spacecraft state indicates a
problem, the PS will generate a plan that achieves the goals
in a way that avoids the problem. For example, if the
initial state indicates that the camera is stuck on (it cannot
be turned off), the PS will generate a plan that does not try
to turn the camera off and makes accommodations for the

additional power drain by rescheduling activities, turning off
low-priority devices, etc.

The EXEC installs the generated plan at the end of its
current plan. When the fhst plan finishes, it begins
executing the second as if it were executing one continuous
plan. The EXEC has autonomy in deciding how to execute
the tokens in the plan. If a problem occurs, the EXEC has

authority to try alternative command sequences to achieve
the "main engine is on" state. For example, if a valve is
stuck shut on the primary feed line, it can try to open the
secondary feed line instead.

These recovery actions take time. The tokens in the plan
have flexible start and end times. Recovery actions simply
push back the end time of a token, and the EXEC adjusts
the start times of downstream tokens accordingly. If the
recovery actions take so much time that the EXEC cannot
finish executing the token by its latest end time, then the
token has failed. The rest of the plan is invalid at this
point, so the EXEC aborts the plan and achieves standby

state. This is a safe state that the spacecrattcan remain in
indef'mitely. The EXEC then asks the PS for a new plan. If
the token that failed could not be executed because of a

failure diagnosed by MIlL then the appropriate timeline in
the initial state passed to the PS is set to reflect the failure.

Partial Autonomy

At the next level of autonomy, the ground operators have
more control over how the PS achieves its goals, but the
EXEC still has full autonomy in deciding how to execute
each token in the plan. This level of autonomy is achieved
by specifying more details in the mission profile. As the
partial plan in the mission profile becomes more detailed
(closer to a complete plan), the PS has less autonomy in
deciding how to expand the profile into a complete plan.

The profile can be detailed in some places, and less detailed
in others. This allows the ground to determine just how

much autonomy they want to grant the PS at any part of the
mission, or even for particular activities. For example, the
profile may specify the post-launch checkout and some
critical science activities in great detail, but leave the cruise
activities vaguely specified (e.g., cruise for three months
stopping every third day for four hours to take optical
navigation images).

At some parts of the mission, the ground operators may
want to execute some activity that had not been considered
before launch. Perhaps the solar panel is only partially
deployed and they want to jar it loose with a high-speed
turn that would normally be disallowed. Or perhaps they
want to run a particular sequence of activities to diagnose a
failure in more detail than the RA can provide. If the

activities cannot be specified with a partial plan in the
mission profile, then the ground can use a special token
called Exec-Activity. This token executes a file of

arbitrary commands in the executive sequencing language
(ESL) [4]. This allows the ground to execute any sequence
it wants. The token is added to the mission profile. It can
be forced to execute at a specific time by specifying an
absolute start time for the token. It can also be

synchronized with other tokens in the mission profile by
adding a temporal constraint (e.g., start 30 seconds afterthe
next optical navigation window). Since the PS does not
know what commands are in the file, the ground must
ensure that the Exec-Activity token will not conflict
with other activities in the plan. For example, a high-speed
turn to jar loose the solar array should not be scheduled at
the same time as an optical navigation image that requires
the spacecraft to be in a fixed attitude.

Ground-based Planning

At the next level of autonomy, the plan is fully specified by
the ground operators. The plan is generated on the ground,
either by hand or with the help of a ground-based copy of
the on-board planner. The plan is then uplinked to the
spacecraft and the executive is placed in SCRIPTED
planning mode. The transition to operations using a
ground-based plan must be made from a standby mode in
order to ensure that the ground generated plan has the correct
initial state. The spacecraftmay be explicitly placed into
standby mode by commanding the executive to terminate
the current plan and achieve standby mode. Otherwise, the
spacecraft will enter standby mode automatically ifa Plan-
Next-Horizon token is encountered on the Planner

Processing timeline when the spacecraft is in
SCRIPTED planning mode.

A number of ground-generated plans can be chained together
by including Script-Next-Horizon tokens on the
p'larmer Processing timeline in the ground generated
plans. This approach to chaining assumes that one script's
final state (as predicted on the ground) can be used as the
initial state for the next script. If there is any inconsistency,
the chaining will fail and the RA will place the spacecraftin
standby mode and seek assistance from ground. Typically,
the last ground-generated plan in the chain resets
AUTONOMOUS planning mode with an Exec-
Activity token. This allows the on-board planner to
resume plan generation for each new planning horizon.

The advantage of generating plans on the ground is that the
ground operators can specify exactly how each goal is
achieved, and they can verify the plan before it is executed.

This is useful for special operations, such as resolving a
particularly difficult failure (e.g., a stuck solar panel or
partially deployed antenna). It is also useful for building
confidence in the RA's plan execution capability before
switching to autonomous operations.

Sequencer

Finally, the ground can send command files to be executed
directly by the EXEC via the Exec-Activity token.

Thefileconsistsaftime-taggedcommandsinESL. In this
modeofoperation,thefilesareexecutedfromstandbystate
whileno planis running. This commandingmodeis
equivalenttothetime-taggedsequencingusedontraditional
missions.TheEXEChasnoautonomyindecidinghowto
executethecommands,andthePSis not involvedat all.
The ground has complete control over the spacecraft. If the
simplest ESL commands are used, the commands go
directly to the spacecraft subsystems with almost no
processing by the executive.

This mode will primarily be used during the early,
confidence-building phase of the mission. Thereafter, it will
remain as a fall-back mode. In case a problem develops
with the higher functions of the RA, the spacecraft can be
commanded directly at the "brain stem" level. It is also
useful for testing. The various subsystems and hardware can
be tested through low level command scripts without a fully
functional RA.

Real-time commanding

Commanding in real-time is achieved using an
implementation of the Exec-gctivity functionality as
an immediate function invocable by ground. The file
containing the messages is uplinked to the spacecraft, just as
it is for use with the Exec-Activity token. Then, the
message EXEC_EVAL(filename)is sent to the EXEC.
This causes immediate execution of the file contents without

the overhead of a mission profile update or a plan
generation. It has the disadvantage of running in parallel to
all other spacecraftactivities with no constraint checking.
The ground operators must be fully responsible for any
negative interactions resulting from the asynchronous
commands.

Summary of operations mode transitions

Another way of looking at multi-level commanding is as
follows. Both full autonomy and partial autonomy are
levels in which the planning mode is AUTONOMOUS.
The on-board PS is generating the plans. The difference
between the two is entirely in the level of detail specified in
the mission profile. Therefore, we can defme an operations
mode called 'autonomous operations.'

Next, consider the ground-based planning and sequencer
levels of autonomy. In both, script files are uplinked and
executed by the EXEC, entirely by-passing the PS. The
planning mode is SCRIPTED. The differencebetween the
two levels is only in whether any tokens other Exec-
Activity and Script-Next-Horizon are present in
the scripts. These levels can be collectively considered as
an operations mode called 'scripted operations.'

When the spacecraft is in standby mode, that can be
considered to be its operations mode. This mode can be
reached not only when the planning mode is STANDBY,
but also automatically in response to plan failures or
anomalies. Note that the real-time commanding level of
autonomy does not have its own operations mode, but can
be invoked by ground operators in any operations mode.

(a) (b)

Figure 4. Operations mode transitions for normal
operations

(A - autonomous, Sc - scripted, St - Standby)

Given the above defined operations modes, we can give a
straightforward summary of spacecraft operations.
Transitions between operations modes are typically
controlled by changing the planning mode.

Figure 4a shows the expected sequence of operations modes
during the early phases of a mission. Table 2 provides
further details on the transitions. Initially, the spacecraft

will be in standby operations. Transition (1) will take it to
scripted operations mode at the sequencer level. The
spacecraft may remain in scripted operations over several
planninghorizons(withScript-Next-Horizon tokens

in each script), as shown by transition (2). During this
period, timelines other than the Exec Activity timeline
become populated, resulting in ground-based planning.

Eventually, the mission profile will be updated and
transition (3) will move the spacecraft to autonomous
operations mode at the partial autonomy level. Over
successive planning horizons (transition (4)), the spacecraft
eventually achieves full autonomy.

At times during the mission, it may be desirable to
transition back to scripted operations mode. This can be
achieved as shown in Figure 4b and Table 2.

If necessary, ground operators can transition the spacecraft
into and out of standby mode when necessary, as shown in
Figure 5a and Table 3.

Finally, anomalies will result in the transitions shown in
Figure 5b and Table 3.

6. UPDATING INFORMATION

The means by which ground operators update information
on-board the spacecraftare discussed in this section. This
includes all of the uplink messages necessary to perform the
various levels of commanding discussed in the previous
section. These uplink messages are designed to have the
same form as the internal messages used by the various
flight software modules to communicate with each other.
The internal messages have explicitly defined contents, a
publisher and subscriber(s). The information update
messages are essentially identical, but with the publisher
being the ground segment.

#

I

2

3

4

5

Transition

From operations
mode

Standby

Scripted

Scripted

Autonomous

Autonomous

Table 2. Transition descriptions for normal operations

Requirements for
transition

To operations
mode

Scripted

Scripted

Autonomous

Autonomous

Standby

modes

Planning mode
condition

SCRIPTED

SCRIPTED

AUTONOMOUS

AUTONOMOUS

SCRIPTED

STANDBY

File/token requirements

Script file available

Script -Next-Hori zon

token & script file available
Plan-Next-Hori zon

token in current script
Plan-Next-Hori zon

token in plan

Comments

Normal entry to

scripted operations

Normal script chaining

Normal transition to

autonomous operations
Normal autonomous

operations

Begin transition to

scripted operations
Force indef'mite standby

period

In the following subsections, we describe the various
information updates in the RA architecture, the rationale for
them, and the uplink messages we have defined to
accomplish them. But before we begin, it is useful to
consider two important, related distinctions between
traditional and agent controlled missions.

Traditionally, command sequence uplinks occur regularly
throughout missions. The exact time that a particular
command or parameter update is uplinked and its exact
position in the sequence of spacecraft activities is known by
the ground operators. Its effect on the activities involved in
the command sequence has been accounted for in the
planning process. This is in contrast to the situation
encountered in an agent controlled mission. Since spacecraft
activities are planned and scheduled on-board and
potentially a variety of activities may be carried out in
parallel, ground operators do not know the exact spacecraft
state at any given time. Even if operators arrange to have
the current plan downlinked, the plan leaves a sufficient
amount of flexibility to the EXEC for run-time resolution
that the operators still cannot predict the precise state of the

spacecraft as a function of time. This represents a
fundamental cultural change in the way spacecraft will be
operated using agents.

(a) (b)

Figure 5. Operations mode transitions for (a) Standby and
Abort operations, and (b) Anomalies

(A - autonomous, Sc - scripted, St - Standby)

the example of a parameter update to change key attitude
control system (ACS) parameters such that the time required
to complete certain maneuvers would be increased. If an
asynchronous update of these parameters occurred during
execution of a plan including such maneuvers, the potential
would exist for plan failure.

For each type of information update below, we will address
how we dealt with these issues in the RA design.

It also leads directly to the second distinction. In agent
controlled missions, the spacecraft may be receiving two

sources of input intended to influence its actions. The
primary source is the on-board agent, which is generating
and executing plans to accomplish mission objectives. The
secondary source is command and parameter uplinks from
the ground. Due to the lack of detailed state knowledge on
the part of the ground operators, these uplinks are received
asynchronously with respect to other activities aboard the

spacecraft. For some types of updates, the new parameter
value may adversely impact the ability of the agent to
successfully complete previously generated plans. Consider

Mission profile updates

During the fully autonomous phase of a mission, the
principal method of interacting with the RA is expected to
be at the goal level. The majority of routine activities,
particularly during extended phases such as cruise, are
expected to be well understood and modeled. Ground
operators will specify mission activities at a high level of
abstraction and rely on the RA to achieve them by whatever
means it chooses. This allows them to focus on mission

science objectives rather than low-level details of how to
accomplish them.

Transition

From

operations
mode

1 Standby

Table 3. Transition descri

To Planning mode
operations condition
mode

Scripted SCRIPTED

5 Autonomous Standby

6 Standby Autonomous

7 Scripted Standby

8 Standby Standby

9 Autonomous Scripted

for aborts and anomalies

Requirements for transition

File/token requirements Comments

Script file available

AUTONOMOUS EXEC ABORT TO MODE
command

Return from standby or
abort

Recovery from failed plan
Abort current plan

AUTONOMOUS

AUTONOMOUS

SCRIPTED

AUTONOMOUS

SCRIPTED

No Plan-Next-Hori zon

token in current script

No Script-Next-Horizon

token in current script
Plan-Next-Horizon token

occurs in current script

No script file available via
EXEC SCRIPT UPDATE

EXEC ABORT TO MODE
command

Failed current plan, or
failure to generate a plan
for next horizon

Return from standby or
abort

Recovery from failed plan
Go to Standby when script
ends

Go to Standby when script
ends

Inconsistencybetween
planning mode and token

forcesStandby
Wait for script in Standby
mode

Abort current script

Failed current script
Failure to generate or

install plan

Failure to install script
Prohibited transition

Although the mission profile has the capability of storing
an entire mission's goal set prior to launch, there are two

principal reasons why the ability to modify the mission
profile is necessary. The first is that some activities cannot
be scheduled in advance of launch and the goals for these

activities must be uplinked during the mission. An example
of this is the scheduling of communications passes using the
spacecraft's high gain antenna. The spacecraft cannot
control the schedules of DSN dishes; it must be informed of

when to attempt communication with the ground. Since
DSN schedules are not known far enough in advance to

include the pass schedules for the entire mission in the
initial mission profile, it is necessary to periodically uplink
schedules for future passes. This is accomplished by
creating an instance of a communications goal for each

desired pass.

The second reason is that no matter how much effortis put

into defining mission objectives prior to launch, somebody
will always come up with a worthy modification during the
mission. Typically, these modifications result from
unexpected findings in downlinked mission data which
result in the desire to re-prioritize data acquisition strategies.

Requesting science observations of new targets, or of one
target under different constraints or with differentinstrument
settings, is accomplished by uplinking new goals to the

spacecraft and/or deleting old goals. Science data
acquisition goals are defined for each kind of instrument on-
board.

A goal definition includes certain parameters which must be
specified for each instance of the goal. For example, a
Communicate goal has earliest and latest start time,
earliest and latest end time, and a set of configuration

parameters for the telecommunications equipment. A
science observation goal might have earliest and latest start
time, earliest and latest end time, target identification and/or
coordinates, calibration settings such as filters and gains,
and so on. Of course, the start and end time parameters for

the communicate goal would be very tightly constrained to
meet the DSN schedule, while the same parameters for the

science goal might be much more flexible if there was no
particular time constraint for acquiring the data.

Parameters which are associated with goals, which do not
influence the state of the spacecraft outside of the goal
activity, and which have potentially different values for each

goal instance are included in the goal definition. When
planning occurs, these parameters are sent to the appropriate
planning experts, if necessary. The values are specified in
the tokens generated by the planner when required.

Goalupdatesto l.he on-board MM are achieved as follows.

A goal instance is created on the ground. Operators specify
the values of the goal parameters or choose default values

(when applicable). The resulting goal instance is placed in
a file in the language of the PS. Ground operators verify the
consistency of the new goal with the rest of the mission

profile by submitting it to a ground version of the MM.
Following the consistency check, the file is uplinked to the
on-board file system during a scheduled pass. After the file
uplink, the MM_GOAL UPDATE(filename) message is
sent to the on-board MM to notify it of the new update file
to be processed.

Verifying the consistency of the new goal with the mission
profile is not a complete guarantee that the PS will be able

to successfully generate a plan which includes the new goal.
The lack of complete spacecraftstate knowledge by ground
personnel may occasionally result in an inability to
successfully generate a plan. Therefore, the RA architecture

has included the concept of goal prioritization. If the PS
cannot achieve all the goals requested for a particular
horizon, it will reject or defer lower priority goals until it
can successfully generate a plan. It will then request
guidance from ground on how to achieve the goals which
were shed.

The mission profile update causes no synchronization
problems with the current plan since the update was to the
MM and the MM won't be invoked again until it is time to
plan the next horizon. If ground wants to add an additional

goal to the current plan horizon, it is necessary to force a
replan for the remainder of the current horizon after the goal
update. The strategy for accomplishing this is to send an
EXEC_ABORT TO MODE(mode) message atier the
mission profile update messages. That forces the spacecraft
to abandon the current plan, achieve the specified (or default)
standby mode, and replan. There is always a small chance
that the MM_GOAL_UPDATE message with a new goal
for a particular planning horizon will arrive prior to the start
of that horizon, but after the plan request for that horizon has
gone from the mission manager to the planner. This does
not result in any inconsistencies in the RA's behavior. In
this case, the result is simply that any update information
for the upcoming horizon will not be included in the new

plan. We have adopted the policy that ground operators
must take responsibility for forcing a replan when updating
information in close temporal proximity to the waypoint
where it becomes relevant.

The process is identical for mission profile updates in
partially autonomous operations.

Ground-based plan uplinks

For ground-based planning, one or more fully specified
plans must have been generated, validated and placed in files

on the ground. One or more plan files must then be
uplinked to the spacecraft, followed by an EXEC_SCRIPT
UPDATEO message. The argument of this message is a file

list. If the EXEC is in SCRIPTED planning mode, it then
searches through the files on this list whenever it needs a

new plan to execute. It selects the first file within the list
which has a start time consistent with the current time.

The EXEC_SET PLANNING_MODE(mode)command is
used to change pTanning modes. The possible modes are
AUTONOMOUS, SCRIPTED and STANDBY. When in

AUTONOMOUS planning mode, an on-board plan is
requested whenever a Plan-Next-Horizon token is
encountered on the Planner Processing timeline or
when the spacecraft achieves a standby mode.

When in SCRIPTED mode, the EXEC selects a plan from
the file list specified in the EXEC_SCRIPT_UPDATE0
message whenever a Script-Next-Horizon token is
encountered on the Planner Processing timeline or
when the spacecraft achieves a standby mode. If an
inconsistent combination of Planner Processing

timeline token and planning mode selection occurs (e.g. a
Plan-Next-Horizon token is encountered in

SCRIPTED planning mode), the spacecraft will achieve
standby mode and then proceed according to the current
planning mode selection.

Typically, the last ground-generated plan in SCRIPTED
planning mode chain resets AUTONOMOUS planning
mode with an EXEC SET PLANNING MODE command

embedded in an Exec-Activity token. Then, if the
final ground generated plan contains Plan-Next-

Horizon token, the planner will generate a new plan
which will merge seamlessly with the end of the ground
generated plan. If the Plan-Next-Horizon token is
missing from the ground generated plan, the spacecraftwill
achieve a standby mode and then a new plan will be
requested.

Synchronization of these messages with ongoing activities
is managed because they have no effecton the system until
it is time to acquire a plan for the next planning horizon.
At that time, the executive decides how to proceed based on
the current planning mode and Planner Processing

timeline's token. They can only affectthe current planning
horizon if an EXEC_ABORT TO MODE('standby mode')
message is sent.

Sequence uplinks

This is just an instance of ground-based planning where the
plans contain nothing but Exec-Activity tokens and, if
extended operation in this mode is desired, Script-

Next-Horizon tokens. The plan file(s) are uplinked,
followed by the EXEC_SCRIPT_UPDATE0 message with
a file list argument and then the EXEC SET PLANNING

MODE('SCRIPTED') message. As in the previous
subsection, the spacecraft must achieve standby mode before
execution of the initial plan can begin.

Fault Diagnosis Overrides

Fault control is one of the primary mechanisms for ensuring
the safety of the spacecraft. Although the RA has excellent
fault detection and repair capabilities, the ground controllers
will occasionally want to override the RA's diagnoses.

An overridecapabilityallowsthe groundcontrollersto
changetheRA'sdiagnosisif theydisagreewithit forsome
reason.It alsoallowsthegroundcontrollersto reserve
failingdevicesbeforetheyfailcompletely.Forexample,the
groundmaydetectsignsthatthedatarecorderis failingand
decidenot to useit forroutinesciencebutsaveit for a

particular interesting opportunity that is coming up. This
can be done by declaring the data recorder "unusable" for

some period of time and then declaring it "usable" again
during the important science window. This capability may
also be used as a fault injection mechanism during testing.

The RA has two mechanisms for allowing the ground to
override its fault diagnoses. The first is an MI_HEALTH_
UPDATE(device,status) message, which tells MIR to

change the diagnosis of a device to a particular value (e.g.,
'healthy' or 'failed'). This message allows ground to
declare a device status to be any value which is defined for

that device by the MIR. It can be sent at any time.

Once a device has been declared failed by the RA, the health

update message is the only means of reviving it. Even if
low-level commanding and troubleshooting by the ground
team restores functionality to an ailing device, RA must
still be notified that the device is available. However,

declaring a device which has been previously classed as
failed to be healthy does not immediately affect plan
execution. Synchronization of this message with the
ongoing spacecraft activities occurs when the spacecraftstate
information is provided to the MM when it is time to plan
the next horizon. If it is desired to take advantage of the

restored capability immediately, a replan must be forced
immediately following the health update.

Ifa device is declared healthy when it is actually failed, the

RA will attempt to use the device as required by the current
goals and end up repeating the fault diagnosis process that
resulted in the failed declaration, eventually declaring the

device failed again. Therefore, prematurely declaring a
device healthy may waste time and resources while the
diagnostic process is repeated, but it will not result in
inconsistent behavior or dire consequences.

Ifa device is declared failed while it is in use, the MIR will

treat the situation just as if it had detected the fault itself at
that time. It will notify the EXEC of the failure and engage
in the normal recovery activities for the failure.

The other mechanism for performing fault diagnosis
overrides is the EXEC_POLICY_UPDATE(device, status)

message. This is a message to the EXEC that declares a
device usable or unusable. The EXEC passes the
usable/unusable status of the device to the PS as part of the

initial spacecraft state. The PS maintains health timelines
that track the health of certain high-level devices: for

example, the main engines, the camera, the attitude
thrusters, etc. If a device is declared unusable, the PS

generates plans that do not use the device, regardless of
whether MIR thinks it is healthy or not. When the device
is declared usable again, the PS can use the device. There

are no synchronization issues because this message only
affectsthe plan request from the EXEC to the MM. If the
message is received afterthe EXEC has sent a plan request
to the MM, it will not take effect until the next time a plan

request is necessary. As always, the ground operators must
force a replan in order to ensure that last minute changes are
included.

Parameter updates

We will define a parameter as any piece of information that's
used by the flight soRware, that is not changed by the lower
level or more traditional segment of the flight software, but

that the ground operators or RA may wish to change for
some reason. Typically, parameter updates are intended for

one specific software module and can include any kind of
information. Ephemeris file updates for the navigation
module or new calibration curves for instrument modules are

simple examples of parameter updates.

During sequenced operations, messages required for
parameter updates are built into the sequences by ground
operators. Validation of sequences and synchronization of
on-board activities is their responsibility and may be

achieved by traditional means.

However, the discussion here will focus on parameter

updates during autonomous operations. Table 4 shows that
the way a parameter update is achieved in the context of
autonomous operations depends on two properties of the

parameter. One is whether the parameter is to be updated
immediately or whether it is necessary to send the update at
a particular time or with some other temporal constraint
(e.g. after a specific event). The other property is whether or
not the value of the parameter matters to the RA. This

property assesses whether an asynchronous update could
lead to plan failure. For example, if a particular parameter
change caused the time required to complete a turn (attitude
change) to become significantly longer, the token for the
turn activity might time out, resulting in plan failure.

Let's take a closer look at the last example. The maximum
turn rate of the spacecraft is controlled by a collection of
ACS parameters which are interdependent and must be
changed as sets or bundles. The process is not trivial and
has an impact on other spacecraftactivities. It can only be
accomplished by an ACS mode change or re-initialization.

Immediate

Delayed

Table 4. Mechanisms for achieving parameter updates based on parameter properties

Affects RA Does not affect RA

Goal + replan Parameter update messages within EXEC_EVAL message

Goal Parameter update messages within EXEC-ACTIVITY tokens

Parameters which are associated with reconfiguring a
subsystem or module are often of importance to the PS and
must be achieved at specific times. The proper method for
updating such parameters is to define a goal which
accomplishes the state change. The parameters (or sets of

parameters) to be updated become goal parameters (i.e. part
of the goal definition) and are specified for each instance of
the goal. The goal is scheduled by the PS to occur at the
required time under the necessary conditions, and the new

parameter values are then maintained by the appropriate
software module until the next update.

As discussed earlier, the new values may also need to be
stored in NVM if the spacecraft is expected to recover to this
state following a hardware reset. The options of updating
parameter(s) in DRAM and/or NVM can be included in the
goal def'mition, selectable by a goal parameter.

Using the goal mechanism to achieve these critical updates
ensures robustness in the presence of faults. Ifa plan breaks
during the time for which the update goal was scheduled,
the PS will re-schedule the goal for the next horizon.
However, the goal mechanism also results in the overhead of
additional goal definitions and timelines for the PS. The

asynchronous nature of the updates is handled by the MM,
as described mission profile updates.

Parameter updates which are less critical may be achieved by
simply sending messages to the target module. A parameter
update message may be defined specifically to manipulate
the value of a single parameter within a module.

Alternatively, a file containing updated parameter(s) could
be uplinked to the on-board file system, followed by a
message to the appropriate module announcing the presence
of the update file. This is useful for updating bundles of
parameters; the entire parameter set may be written in the
file. It is up to the target module to read the file, build a
new parameter structure, and switch the structure pointer at
the appropriate time. The asynchronous nature of these
messages is addressed implicitly with the assumption that
these messages do not affect plan execution and need only be
synchronized internally to the target module. However,
since any message may be sent using this mechanism, it is

incumbent on the ground system to provide safeguards
against sending messages which may disrupt on-board
activities.

If the update is desired for a later time (not during a
communications pass), the update is managed by the
Exec-Act±vity token. The messages (as many as
necessary) for the update are placed in a file and the file is
uplinked. A new Exec-Activity token with the
specified file as its argument is placed on the Exec-
Activity timeline via a mission profile update. At
execution time, the messages in the file specified by the
Exec-Activity token are sent. The advantage of this
approach is that only one PS timeline is required for an
unlimited variety of updates, and multiple messages may be
stored in each file. There are two disadvantages to this
approach. First, there is no checking to insure that the
update messages are consistent with other spacecraft

activities. Second, if the plan breaks before the update
occurs, there is no mechanism to insure that the update will
occur after recovery. The Exec-Activity token for a
particular update will not be rescheduled for a time past its

latest start time, but will simply be dropped. During
autonomous operations, this approach should be used
sparingly for sending messages other than simple parameter
updates. We believe that it is necessary to maintain a list of
accepted"safe" update messages which may be uplinked at
any time. All other messages must undergo a higher level

of scrutiny and operator concurrence within the ground
system prior to uplinking.

Parameter updates in real-time are achieved using the
EXEC_EVAL message fimetionality. The file containing
the messages is uplinked to the spacecraft. The message
EXEC_EVAL(filename)is sent to the EXEC. This causes
immediate execution of the file contents without the

overhead of a mission profile update or a plan generation.

As with other updates, parameter updates to DRAM and to
NVM are separate activities. The ground operator must
specify what is desired.

Software upgrades

Although the RA architecture supports software upgrades,
the process in the context of an agent-based mission is

essentially identical to the process for a more traditional
mission. Therefore, it will not be discussed further here.

However, a distinction can be made between the RA
software and the information encoded in the RA models.

The models used by the RA are likely to need occasional

tuning and upgrading, particularly in the early phases of the
mission. A mechanism to routinely update them without a
full software upgrade would make such updates a more
routine activity which can be performed without disrupting
normal spacecraftactivities. This would pave the way for
the eventual capability to have the agent modify its own

models as necessary. A capability currently exists to
perform such upgrades for a partial set of the RA models.
This is an area for future work.

7. TRACKING STATUS

We have described at some length how the RA works and
how ground operators uplink new information in order to
command the spacecraft at varying levels of autonomy.
However, we have not described how the spacecraft
communicates back with the ground and what kind of
information is downlinked. Of course, there is generally a
requirement to downlink the science data regardless of
operations mode. Acquiring the science data and returning
it to Earth is the primary purpose of the mission. However,
the amount and type of spacecrafthousekeeping, health and
safety data that is downlinked must also be considered.

In partially autonomous modes or ground controlled
operations modes, spacecraft status telemetry is necessary in
order for ground operators to perform their duties. The
amount and type of information required depends on the

operationsmode.,Whenoperatingin autonomousmode,
the RA monitorsthe spacecraftstate continuously
throughoutthemission.Unlessananomalyoccurswhich
theRAcannotresolveonitsown,thereis nostrictneedto
downlinkanystatustelemetrysincethegroundoperatorsare
not directly controllingany aspectof the spacecraft
operations.However,groundoperatorswill still wantto
havesomedegreeofvisibilityintothestateof thesystem
andtheprogressit is makingtowardachievingmission
goals. Thedegreeof visibilitydesiredwill bevariable.
Initially,operatorsmaywanttoseerelativelylargeamounts
of informationto reassurethemthat the spacecraftis
functioningnormally;aftermoreexperienceis accumulated,
theymaybecomeconfidentenoughto requirenomorethan
a highlevelactivitysummaryor eventuallyevenjust a
reportthatall iswell.

As with the multiplelevelsof spacecraftcommanding
describedearlier,ourmissionoperationsapproachincludes
multiplelevelsof spacecraftstatusmonitoringwhichare
selectableby groundoperators.We will discussthe
availablelevelsof monitoringandhowtheyrelateto our
operationsconceptbelow,butfirstwewillgiveanoverview
of telemetrygenerationand managementfor missions
involvingautonomousagents,usingtheDS1missionasa
model.

Telemetry generation and management

Telemetry is generated on-board by each software module in
streams. A single module may produce multiple streams.

The contents and rates of each stream are determined by the
module. Additionally, each module may have multiple
modes with different telemetry streams generated for each.
For example, a module may have a nominal mode and an
anomaly mode which generates additional diagnostic data.

Modes may be selectable by the module automatically or by
command from the RA or ground. The telemetry manager
module routes the streams to various telemetry pools. A
given stream may be routed to a single pool or multiple
pools.

Telemetry pools are managed by the telemetry manager.
Each pool is a memory bufferof fixed size which contains

related data. A pool may contain data from only telemetry
stream or from multiple streams. For example, a Science
Data pool may contain image files from an on-board camera
and spectrograph files from an on-board spectrometer. There
may be pools for Real-Time Engineering Data and Stored
Engineering Data; both of these would contain streams from
multiple modules. Each pool is sized such that it will not
overflow ifa single communications pass is missed. If more
than one pass is missed, each pool has a set of deletion rules
for managing overflow. Typical choices are to delete either
the oldest or newest data when the bufferis full. Deletion

rules may be modified by parameter update. For
downlinking, a downlink priority table allocates each pool a
priority and a percentage of the downlink bandwidth.
Higher priority pools are emptied before lower priority pools
are downlinked. Pools with identical priorities share the
downlink according to their bandwidth percentages.

Downlink priority tables are selectable by parameter update
from the ground or the remote agent.

Variable levels of spacecraft status reporting

At the lowest level of autonomy, the ground operators are
fully responsible for knowledge of the spacecraft status and
for generating command sequences to accomplish mission
objectives. They would therefore have a great need for
visibility of data from all of the traditional spacecraft
systems. Although not required to fly the spacecraft,
additional data generated by the on-board autonomy software
may offeroperators additional insight. For example, state
identification and diagnostic analysis produced by the MIR

and high level engineering,data summarization produced by
the beacon mode module (see below) may help to focus
operator attention where it is most needed. For this mode,
the downlink priority table may give raw telemetry higher
priority while including summaries from the autonomy
modules at relatively low priority.

For fully autonomous operation with no anomalies, the
ground operators do not need any status information from
the spacecraft, but they may require it. They will still have
full access to the raw engineering data generated by each
module. However, raw telemetry is difficult to interpret
when ground operators do not have detailed knowledge of
the spacecraft state or activities as a function of time. There
are two approaches to addressing this problem, which may
be adopted sequentially.

One approach is for the RA. to provide additional products
in the telemetry to give operators additional detailed
visibility into spacecraftactivities. These products include
plans, sequence traces from the EXEC, and logs of the MIR
diagnostic analyses. In this approach, both the RA data
pools and raw engineering data pools are downlinked with
approximately equal priority. This process is bandwidth

intensive, but it is feasible during the earlier phases of the
mission, when the spacecraft is closer to Earth and data rates
are relatively high. This is also the period when fully
autonomous operations will be initiated and operators will
want the greatest visibility possible to assess the RA's

performance. Tuning of the RA models will be a priority
activity during this period.

As operators gain confidence in the RA's performance, the
second approach to providing visibility to operators may be
adopted. In this approach, the downlink priority table is
modified to give high priority to RA data pools and the data
summarization data pool, providing the ground with
activity and diagnostic logs, statistics, and trend
information. Raw telemetry data may be downlinked at a
very low priority as time permits.

At an even higher level of abstraction, when there are no
anomalies, the downlink priority table may be modified to
limit status data to an "executive summary" pool that
verifies that all is well. It may also include a brief listing of
science goals that were accomplished in the current reporting
period and those which are scheduled for the next reporting
period. This approach might be particularly useful in order

tolimitdownlinkbandwidthduringroutineandtroubleflee
phasesof themission. Latein themission,whenthe
spacecraftisdistantfromtheEarthanddataratesarelow,
thismaybeessentialtomaximizesciencedatareturn.

During partially autonomous operations, the downlink

priority table is set to give greater insight into some areas,
while relying on summary data for others. For example, if
the RA is managing the spacecraft housekeeping and ground
is managing payload operations, science instrument data

pools may be given priority equal to the RA and data
summarization pools.

When anomalies occur, the RA switches to a downlink

priority table optimized for anomaly investigation and
resolution. The RA can switch telemetry modes in affected

software modules (if they haven't detected the anomaly
internally and switched themselves) to force generation of
diagnostic data for routing to anomaly resolution telemetry

pools. The RA can generate additional diagnosis and
recovery action logs for routing to the anomaly resolution

pools. The anomaly resolution and data summarization
pools will be given highest priority and the science data
pool will be given low priority until the anomaly is
resolved or ground selects another downlink priority table

manually.

Beacon mode operations

Having discussed the contents of the spacecraft telemetry, we
will now describe the downlink strategy used for DS 1. The

RA manages periodic scheduled DSN communications

passes, during which goals, parameters and other messages
are uplinked, while spacecraft and science data are
downlinked according to the current downlink priority table.
However, while traditional missions do not generally have
the ability to request prompt help from the ground in the
case of anomalies, we do have a strategy for contacting the
ground outside of normal scheduled passes when necessary.

The strategy is to continually power the communications
system and low gain (omnidirectional) antenna whenever
power constraints do not preclude it and to place the
communications system in beacon mode [5]. The beacon
mode module monitors spacecraft health update messages
from the EXEC and MIR and compares these messages with
an internal fault table in order to map the overall spacecraft
health into one of four states. Each of these states is

represented by a tone which indicates how urgent it is to
track the spacecraft for telemetry. The selected tone is
continuously broadcast via the low gain antenna. The
definitions of tones correspond roughly to: (1) nominal,
(2) something interesting to report (not urgent),
(3) important to service spacecraft soon or state could
deteriorate and/or critical data could be lost, and

(4) spacecraftemergency, contact needed immediately. The
beacon mode module also includes a data summarization

component that computes running summaries of engineering
data.

A low cost ground antenna is capable of monitoring these

signals during a significant portion of each day. This gives

ground operators daily visibility into the spacecraft's health.
If a contact is requested that cannot wait until the next
scheduled high gain pass (typically once per week), the
ground operators can command an immediate high gain pass
via the low gain omnidirectional antenna using an
EXEC ABORT TO MODE() message with the standby
mode chosen to be an Earth communications mode such as

'HGA TO EARTH' (high gain antenna to Earth). If a
high gain pass is not possible, operators can switch the
spacecraft from beacon mode to low rate telemetry mode via
the low gain antenna. Summary status data can then be
downlinked at a lower rate. The summary data will be

controlled by a special low-rate downlink priority table and
will include the beacon mode data summarization pool and

a remote agent data summarization pool. Note that the
beacon mode technology can provide increased ground

operator visibility into spacecrafthealth for both traditional
and agent-based missions. It is a separate autonomy
technology flown on DS1 which complements the RA
extremely well.

Visualization tools

Because the ground operators must now have the ability to
interpret a great deal of complex data from the spacecraft,
such as plans, plan execution status and diagnostic
summaries of the spacecraftstate, it is clear that traditional
numerical or data plotting displays are not adequate.
Visualization tools have been developed for RA data. For

viewing plans and plan execution status, there is a graphical
display tool [6] that depicts the planner timelines, the
tokens on them and the constraints between the tokens.

Color coding of the tokens indicates which are complete,
which are currently executing and which have failed, along
with more detailed status information which can be

summoned by clicking on tokens of interest. The MIR

team has a graphical ground interfaceto the on-board MIR
called Stanley which provides a schematic view of the
spacecraft state information. These tools assist ground
operators in determining if they need to take any action.

8. SUMMARY OF ARCHITECTURE REVISIONS

The current RA architecture diagram is shown in Figure 6.
A number of revisions were found to be necessary as we
transitioned from the SOl prototyping effort to the DSI
flight software development project. However, they fall into
two basic categories as shown by the two new elements in
the figure: the Mission Manager and the ground interface.

Mission manager

We added the MM because we needed to manage goals for
an extended operational lifetime (2 years or more) rather than
a 1-2 planning horizon scenario. The MM maintains the
mission profile, a partially specified plan containing a
database of goals for the entire mission (or a significant
portion of it). The addition of the MM to the RA involved
modifying the interfacebetween the EXEC and the PS for
requesting a new plan. The MM now takes initial state
information from the EXEC's plan request, extracts the
appropriate goals from its database, and formulates a

J Ground]

PlanningExperts I Fault

(incl. Navigation) I Monitors

Figure 6. Current RA Architecture

complete new plan request for the PS. Additional internal
modifications were required for the EXEC and PS to
successfully implement the seamless chaining of plans over
many planning horizons.

Ground interface

We also added a ground interface for the RA. This was not
necessary for the SOl scenario, since that scenario was
explicitly intended to demonstrate resolution of a failure
under circumstances where ground intervention was not
possible. However, for an extended mission, a great deal of
ground interaction is anticipated and must be
accommodated. The ground interface implementation can
be further subdivided into several key capabilities.

Multiple levels of commanding

We implemented multiple levels of commanding in order to
provide a means for a gradual hand-off of operations from

ground operators to the on-board agent. At the most basic
level, we provided a sequencing capability to allow the
mission to be flown much as traditional missions are flown,

with no on-board autonomy. A ground-based planning
capability was implemented to allow exercising of the
execution and monitoring functions of the RA on fully
specified plans supplied by ground operators. A partially
autonomous mode was implemented to allow the RA to
gradually take over the planning and scheduling functions
while the ground operators maintain greater control over key
activities. A fully autonomous mode was then
implemented. The lower levels of autonomy may also be
used during other mission phases or activities as deemed

appropriate by the ground operators.

Device health updates

We provided a means of performing device health updates
which override the MIR diagnosis for the device. There is
also a related means to declare a device unusable, regardless
of its health status. This allows operators to perform
troubleshooting if the MIR is making a diagnosis in error,

or to preserve failing devices before they fail completely. It
also provides a convenient fault injection mechanism for
testing.

Information updates

Additionally, we provided a means of performing all of the
information updates required to support the capabilities
described above, as well as a general parameter updating
capability. We explicitly addressed concerns about the
impact of each type of information update on spacecraft
activities.

Spacecraft monitoring

Finally, we provided support for monitoring spacecraft
behavior at multiple levels of detail, fi'om highly abstracted
summary data to "traditional" raw telemetry, with many
intermediate steps in between. We incorporated the features
of beacon mode operations into the RA and provided the
necessary visualization tools to interpret the downlinked
health and status data.

Messages and tokens

The above ground interfacewas implemented with a small
set of new messages, shown in Table 5, and three new
tokens, shown in Table 6. With these few constructs, it is

possible to function at any of the commanding levels and
send any message (all defined internal flight software
messages) to the spacecraft from the ground. Note that all of
the other defined messages (including parameter updates)
must be sent from the ground via either mission profile
updates, Exec-Act:5.vS.t:y tokens, or EXEC-EVAL

messages.

9. VARIABLE AUTONOMY

Our operations-focusedagent developments enable humans
to interact with the agent at multiple levels. In this section,
we elaborate on some different uses of this capability within

a mission life cycle.

Incremental autonomy

One key issue concerns the timing and processes by which
knowledge necessary to support autonomy gets encoded into
the agent, on the one hand, and the processes by which the
operators become familiar with the agent, start learning to
use it, and gain confidence in it, on the other hand. Our

prototype, based on complete autonomy, required operators
to move fi'om low-level management to high-level
delegation in one big jump and all at once.

Some recent work in knowledge acquisition has focused on
supporting increasing levels of assistance and competence
from a knowledge-based system, rather than trying to build
the ultimate capabilities into the system at the start. The
"everything-from-the-start" approach has two problems.
First, it takes a long time to add in all the knowledge that
users would eventually like in the system, which can
considerably slow down the deployment and adoption of a

new system. Second, higher-level capabilities need to be
developed based on feedback fi'om users in the course of real-
world use of the developing system.

Message

File uplink

Table

EXEC ABORT TO MODE()

EXEC EVAL
EXEC POLICY UPDATE

5. Messages defined to implement _round interface for RA
From Argument(s) Purpose
Ground to:

File Mana[_er
Executive

Executive

Executive

EXEC SET PLANNING MODE Executive

EXEC SCRIPT UPDATE Executive

MI HEALTH UPDATE MIR

MM GOAL UPDATE Mission

Manager

Filename

HGA TO SUN
HGA TO EARTH
LGA Z TO EARTH
DEFAULT

Filename

Device, status

AUTONOMOUS
SCRIPTED
STANDBY

File list

Device_ status
Filename

Uplink file to on-board file system
Interrupt plan and place spacecraft
specified standby mode

in

Immediately send messages in file
Directs the executive to declare a device

status in the initial state it provides for
planning; status may be 'usable' or

'unusable'_ regardless of device's health
Set planning mode

Provide list of potential plans for
SCRIPTED mode; EXEC chooses first plan
file in list with start time consistent with
current time

Sets device status to specified value
Notify mission manager that a mission

profile update file is available

Token

Exec-Activity

Plan-Next-Horizon

Script-Next-Horizon

Table 6. Tokens defined to implement _round interface for RA

Timeline Contents Purpose
Exec Activi ty Filename Messages in specified file are sent when token

is executed

Planner Processing Nil Set aside time in current plan to plan for next

planning horizon
Nil Allows chaining of multiple ground

_enerated plans in SCRIPTED mode
Planner Processing

In the "increasing levels of assistance" approach [7], users
receive a system with a minimal set of capabilities, which

they can start using immediately. Then, the system
supports users in the incremental development of new
knowledge on top of the older capabilities, in a smooth
migration of responsibility for lower-level tasks from the

user to the system.

In the context of autonomous systems, we are interested not

only in increasing over time the levels of assistance the
agent can provide to the operators, but also in increasing the
level of autonomy the operators are willing to delegate to the

agent. This involves developing not only capability, but
trust as well. Hence, we describe the process as incremental

autonomy:

Deliver a system with minimal high-level knowledge,
and relying on the operator to perform higher level

capabilities.
Encode increasingly higher-level knowledge into the
system, which can then apply its own higher-level
capabilities to this new knowledge to conduct
increasingly autonomous operations.

• Continually modify the knowledge based on feedback
from using the system.

Our new architecture lets ground operators use the agent in
low-level mode, to interact with it in the traditional style.
Then as ground operators gain confidence with the agent,
they can def'me a few timelines and tokens for some
automatable activity, but command the rest at a low level.
They can even use the structure to generate detailed plans for
ground-based verification, and upload the results to the
spacecraft. Over time they can group the low level
commands into Exec-Activity tokens, and then into

full tokens with explicitly modeled constraints. Similarly,
they can move capabilities from ground to on-board. Thus
we support a delivery of minimal capability, with
incremental increases in functionality all at the discretion of

ground operators, on their schedule.

Variable autonomy

Incremental autonomy addresses increasing capability and
increasing trust over time. If we focus only on this issue, it
might seem as if the eventual goal is to produce an entirely
autonomous system. Full autonomy is useful because it
enables missions in which humans could not possibly assist

the agentdue to limitationsin communicationsand
responsespeed,andalsobecauseit reducesoperationscosts
whichmightprohibithumaninterventionevenwhenit is
physicallypossible. Put succinctly,the goal of full
autonomyistominimize the necessity for human interaction
with the spacecraft.

However, we believe that full autonomy is not the complete
goal. Scientists would like to be involved with the
spacecraft, when possible, to suggest new targets based on
new observations and to help get the most interesting data
down first. Similarly, ground operators need to be involved
with the spacecraft, when possible, to resolve problems

using detailed engineering knowledge, to fix software
problems or update the spacecraft with the latest algorithms.
In addition, judicious reliance on human interaction, when
possible, can have many benefits on overall system design.
For example, we can rely on humans to solve the really hard
cases, while letting the autonomous system address the
more typical cases. This reduces the amount of knowledge
that needs to be built into the onboard agent, thus reducing

software design costs and accelerating the software
development schedule. Since soft'ware development costs
are becoming a major factor in the overall costs of running a
mission, reductions in these costs actually make autonomy
an affordable possibility. Hence, it is also a desirable goal
to maximize the capability for human interaction with the
spacecraft.

We unify these two goals in the concept of variable

autonomy:

• Enable the operator to be in as much control as is
possible and desired.

• Enable the operator to let the system do everything as
autonomously as possible and desired.

• Enable the operator to choose for which aspects he
wants which level of autonomy.

• Minimize the necessity, but maximize the capability,
for human interaction with the spacecraft.

We provide two examples of the benefits of variable
autonomy in spacecraftoperations. The first example is in
the area of fault protection. Of all the faults that could
possibly happen, only a few will really happen in flight. Of
those, only a few really need to be addressed on the
spacecraft. If you don't support human involvement, the
autonomous system needs to have knowledge to handle all
possible cases (or risk losing the mission). If you support
human involvement when possible, you can choose which
faults to handle on-board beyond the minimum required to
keep the spacecraft alive long enough to call for human help.
These choices can be based on trading offthe costs of up-

front knowledge engineering necessary to recover from the
fault on-board and continue with the mission against the
benefits of increased mission returns since the spacecraftcan
continue execution in this situation without having to wait

for human help.

The second example concerns relying on humans to handle
the hard cases in sequence generation. Some mission

phases, like cruising to a planet, occupy much of the
lifetime of a mission, while other phases, like insertion into
the planet's orbit, occur only once in the entire mission. In
the case of a 10-year cruise to Pluto, it is almost certainly
worth encoding the knowledge to enable the agent to
function autonomously during as much of this period as
possible, to save operations costs. But in developing a
sequence for the critical Pluto flyby, where many
considerations must be factored in that are unique for this
one day period, it may well be cost-effectiveto rely on
human operators to play a major role (and they'll want to).
If we did not enable operators to vary their level of
involvement across different phases, we would force them to
choose between autonomous operation of the entire mission,
including the potential high cost and risk to handle the orbit
insertion, and traditional operation of the entire mission,
including the high cost of staffing during a long and routine
cruise period.

We can distinguish two types of variable autonomy. A
simple form of variable autonomy is phase-variable
autonomy, in which the operator can choose to use different
levels of autonomy in different phases of a mission. This is
the form illustrated in the sequencing example above, in
which the operators may rely on the agent to plan its own
activities for cruise phase, with relatively little attention or
tracking from ground, but then they may design the
sequence of activities for the orbit insertion phase entirely by
hand and monitor the state before the sequence at a free level
of detail to make sure everything is set up just right.

The most general and flexible form is activity-variable
autonomy, in which the operator can choose to use different
levels of autonomy to control different activities at any given
time. This is illustrated in the fault protection example
above, in which the operator may desire that the agent
handles some faults by detailed diagnosis followed by
autonomous replanning, whereas the operator wants the
agent to go directly to a standby mode and wait for human
help in other situations. A similar example from
sequencing would be to have the agent plan the navigation
activities but rely on ground operators to manage detailed
scheduling of the science instruments.

Our architecture supports both phase-variable and activity-
variable autonomy. For example, operators can use the
Exec-Act:ivit2/" tokens to install fine-grain activities

within plans generated on-board by the agent, and can also
use this to change parameters in the middle of autonomous
plan execution. Similarly, the operators can choose the
level of detailed telemetry they want to track, from high-
level beacon tones down to debugging data, and they can
choose the level of level of detail on a system-by-system

basis and vary this over time.

Agent-variable autonomy

The preceding discussion has focused on enabling human
operators to vary the autonomy granted to the agent. Our
architecture also enables the agent to vary its own level of
autonomy in some situations. For example, RA turns off
its autonomous planning capability and waits for human

assistanceif it isunableto findaplan,if it needsto plan
froma situationforwhichits planningmodelsarenot
definedorapplicable,orif itdetectsrepeatedfailuresduring
planexecution.Suchagent-variable autonomy can increase
operator willingness to delegate autonomy to the agent
because the agent will call back for help if the situation goes
beyond its capabilities.

Simplicity vs. optimization

Another key theme concerns the tradeoffs between simplicity
and optimization. In several cases in our design of the RA
for operations, there were simpler ways to achieve some of

the operational goals, but at the cost of interrupting the
mission activities. For example, we could require that
parameter updates can only be performed in standby mode.
This solves the problem of inconsistency with the on-board
planner with a simpler design than the one we described.
However, operators might then be more reluctant to use

autonomy in phases when they think they might want to
update parameters, as they may be unwilling to sacrifice key
science activities. While these considerations motivated us

to develop a more complex and capable design, such
simplifying alternatives should be kept in mind as useful de-
scopes in the development of autonomous agents for
mission operations.

10. RELATED WORK

This section relates our work to other work developing
systems that are highly autonomous and which also support
human interaction when necessary or desirable.

From the spacecraft perspective, Cassini [8] developed a
highly autonomous system, but not a full agent in the sense
that it was doing patchwork functions, supporting only what
was necessary for that particular mission-critical scenario,

rather than automating the capabilities (like planning)
performed on ground.

Several other AI researchers have developed agents based
around variable levels of autonomy. Mixed-initiative
planning and scheduling has become a popular area of
research. An emerging idea in this area is for operators to

interact with the agent at the level of constraints on problem
solutions. The agent is free to solve problems in any
manner consistent with the operator-imposed constraints. If
the solution is already fully-constrained, the agent is given
minimal autonomy, whereas if the solution contains only
constraints corresponding to high-level goal achievement,
the agent has a high level autonomy. Our ground-to-planner
interface adopts this constraint-based approach. Systems
like Ozone [9] and O-Plan [10].take mixed-initiative
constraint-based planning further by developing structured
interfaces and dialogues between computer and humans and
also by developing richer constraint representations

including lists of open issues, rationales for decisions, and
authority structures. However, these projects have focused
on the planning capability, and do not go into issues of the
entire execution architecture. Nor do they support the needs
of full mission operations, including long missions, health

updates, and parameter changes.

Lockheed's Tactical Planning and Execution System
(TPES) [11] is a mixed-initiative system for planning and
execution in the naval domain. Like RA, TPES supports
high-level monitoring, in the form of alerts, current plans,
and execution traces. It also supports mixed-initiative
generation of plans, and the provision of new information
during plan execution. Such new information includes
command over-rides, policy changes, and situation updates.
However, the mixed-initiative control in this model relies

on the human operator being onboard the vehicle. Thus the
operator can interact with the plan as it is being formed,
gather immediate understanding of the current state of the
system, and exercise immediate control when necessary.
Thus, unlike the :, case for autonomous spacecraft, the
approach did not need to address issues concerned with

integrating changes within some future situation. However,
the interaction model does account for the currently-
executing plan leaving the controlled system with a set of
commitments that may affecthow the current plan can be
modified, even if the current plan execution is aborted.

JSC's 3T architecture [12][13] provides support for activity-
variable autonomy during operations. Each procedure
implemented by the 3T executive may have alternate
methods to execute depending on a user-specifiablelevel-of-
autonomy parameter attached to the procedure. Def'med
autonomy levels include autonomous, supervised, guided
and tele-operated. Autonomous methods execute without
human assistance; guided methods follow user control but
take limited autonomous actions such as obstacle avoidance;

tele-operated methods monitor activity without taking
actions; and supervised methods ask the user to decide

which level of autonomy to grant as each method is
executed. Like the Lockheed work, this approach seems
most useful when the user is interacting with the agent in
real-time (onboard an autonomous vehicle or co-located with

a robot). For example, significant delays in communication
to the agent reduce the value of asking the operator whether
or not a particular activity should be performed
autonomously. However, the approach is complementary to
the constraint-based approach taken in RA and this type of
capability could be incorporated in RA with minimal
change to the rest of the architecture.

Many researchershave developed expert advisory systems,
like the PI-in-a-Box [14], or the Pilot's Associate [15].
While such systems provide good support for human
involvement, they do not provide a level of full autonomy.
Because of this, they also do not have to address the issues
of supporting different levels of autonomy at different phases,
and providing for transitions across these commanding
styles.

Baudin et al. [7] developed the concept of"increasing levels
of assistance" in the development of knowledge-based
systems. Their DEDAL document indexing and retrieval
system is initially deployed with an index for each
document and with a capability for users to add new indices.
As the system gains experience with users searching for
documents, it automatically creates new indices. Over time,

DEDALcanusetheindexesanduserfeedbackto support
creationof newretrievalheuristics,vocabulary,andeven
domainmodels.Ourworkextendsthenotionofincreasing
assistancewith the conceptof incrementalautonomy,in
whichthesystemgainsnotonly capabilitybutalsotrust
overtime,andwiththeconceptof scaleableautonomy,in
whichweexplicitlysupportmultiplelevelsof interaction
simultaneouslythroughouttheevolutionofthesystem.

Maes [16] addresses the need to increase trust as well as
competence, and suggests that the best way is to advance
both of these incrementally through experience with the
user. We adopt this same philosophy. However, the
learning interface agents developed by Maes perform only
one style of reasoning, applied to one type of knowledge.
As described above, our concept of variable autonomy
explicitly supports multiple levels of interaction
simultaneously. This requires a much more complex
system, since user interaction at a low level may interfere
with autonomous interaction at a higher level.

11. FUTURE WORK

The version of the RA to be flown on DS1 [3] demonstrates
the basic requirements for operation with an autonomous
agent. However, there are a number of useful features we
would like to develop and demonstrate for future missions.
In the current RA, the system is designed to abort the
current plan execution if it loses capabilities needed for plan
operation, and to then replan based on the degraded
capabilities. This can be improved in two ways. First, we

can provide a convenient mechanism for operators to specify
dynamically that some goals are lower-priority and should
be dropped if they cannot succeed, rather than leading to
failure of the overall plan. Second, the RA will continue
executing a degraded plan even if capabilities are
subsequently restored that might permit a better plan,
although these increased capabilities will be taken into
account the next time the agent generates a plan. A
mechanism for "opportunistic replanning" would enable the
agent to distinguish contexts in which it is best to abort the
plan and generate a new one to take advantage of the new
opportunities. Another useful extension would be
interactive support for robust planning, in which ground

operators might inform the agent of particular faults they are
concerned about (such as the potential failure of an antenna
motor which has been behaving erratically), and the agent
could then develop plans which would succeed even if that
kind of fault comes up during execution.

The MM component of the RA maintains a mission profile
and decides which mission goals are applicable to the
current planning horizon. While the MM supports user
editing of the mission profile, it currently does not do any
actual mission planning, which must thereforebe performed
entirely on ground. Limited capabilities for on-board
mission planning would enable the agent to dynamically
prioritize activities based on higher-level mission goals and
potentially free the operators from worrying about short-term
way-points in the mission profile.

A final capability to mention concerns reconfiguring
telemetry for anomaly resolution. We pointed out that all
flight software modules support detailed debugging modes,
and that operators can command the software to generate
more debugging information to aid trouble-shooting. We
suggested that the agent might make use of these facilities as
well. This could enable the agent to improve its own
ability to diagnose problems and could also help the ground
to troubleshoot in the critical situations in which they are
able to receive down-link but not uplink to the spacecraft.
This feature is not implemented at present, but seems
worthy of further exploration.

12. CONCLUSION

This paper has described the Remote Agent (RA), with
particular emphasis on how it supports the wide range of
capabilities required by ground operations. These include
the need to support ground operators and the RA sharing a
long-range mission profile with facilities for asynchronous
ground updates; support ground operators monitoring and
commanding the spacecraft at multiple levels of detail
simultaneously; and enable ground operators to provide
additional knowledge to the RA, such as parameter updates,
model updates, and diagnostic information, without
interfering with the activities of the RA or leaving the
system in an inconsistent state.

The resulting architecture supports incremental autonomy,
in which a basic agent can be delivered early and then used
in an increasingly autonomous manner over the lifetime of
the mission. It also supports variable autonomy, as it
enables ground operators to benefit from autonomy when
they want it, but does not inhibit them from obtaining a
detailed understanding and exercising tighter control when

necessary. While these concepts are similar to those
addressed in the context of user interface agents, mixed-

initiative planning systems, or expert advisory systems, the
context of autonomous operations leads to some
fundamentally differentissues because the operator is only
able to interact with the agent asynchronously and
infrequently. The substantial delays in communication
mean that the operation of the agent is harder to monitor at a
detailed level, so the operator cannot always rely on taking
immediate control when desired. Moreover, the strong
desire to have the agent do something useful when we are
not commanding it, to maximize its productivity, makes it
all the more challenging and important to f'md effective ways
to support ground interaction without interfering too much
with the agent's ongoing activities.

These issues are critical to the successful development and

operation of any autonomous agent to control spacecraft or
other systems that must function autonomously for long
periods of time, such as unmanned submarines, airplanes,
rovers, and mobile robots operating under extreme
conditions. As the agents we build become increasingly
capable, we need to learn how to let them go out and do
work for us without requiring constant management, but we
also want to keep an open line of communication so that we
are not shut out from the action. We want agents that

minimizethe necessityfor our attention,but yet still
maximizethecapabilityforusto interactwith,themtoget
whatwewant. SincetheRA will bethefirst on-board
agentto controla realspacecraft,the issueswehadto
address,andthe methodswe developed,shouldbe of
interestto researchersdeployinga widerangeof agent
architecturesforthisdomain.

13.ACKNOWLEDGMENTS

ThankstoSandyKrasnerforhelpingtodevelopmanyof the
basic approaches we adopted. Thanks also to the NMP
DS1 Flight/Ground lnterface Working Group, particularly
Tom Starbird, for many valuable ideas and discussions.
Ron Keesing, Chris Plaunt, and Kanna Rajan are members
of the remote agent team who were instrumental in
implementing the ground interface architecture. Additional
thanks are due to Bob Kanefsky and Pandu Nayak for
defining the device health updates message. Finally, we
would like to express our appreciation to Gregory Dorais for
reviewing the manuscript.

REFERENCES

[1] J. Hackney, D.E. Bernard, and R.D. Rasmussen, "The
Cassini Spacecraft: Object Oriented Flight Control
Software," in 1993 Guidance and Control Conference,
Keystone, CO, 1993.
[2] Barney Pell, Douglas E. Bernard, Steve A. Chien,
Erann Gat, Nicola Muscettola, P. Pandurang Nayak,
Michael D. Wagner, and Brian C. Williams, "An
Autonomous Spacecraft Agent Prototype," Autonomous
Robotics Journal, 1998, (To Appear).
[3] Douglas E. Bernard, Gregory A. Dorais, Chuck Fry,
Edward B. Gamble Jr., Robert Kanefsky, James Kurien,
William Millar, Nicola Muscettola, P. Pandurang Nayak,
Barney Peli, Karma Rajan, Nicolas Rouquette, Benjamin
Smith, Brian C. Williams, "Design of the Remote Agent
Experiment for Spacecraft Autonomy", in Proc. oflEEE
Aeronautics Conference (Aero-98), Aspen, CO, IEEE Press,
1998.

[4] Erann Gat, "ESL: A Language for Supporting Robust
Plan Execution in Embedded Autonomous Agents," in
Proceedings of the AAAI Fall Symposium on Plan
Execution, AAAI Press, 1996.

[5] E. J. Wyatt, R. L. Sherwood and M. K. Sue, "An
Overview of the Beacon Monitor Operations Technology" in
Proc. of the Fourth International Symposium on Artificial
Intelligence, Robotics, and Automationfor Space (i-
SAIRAS), Tokyo, Japan, 1997.
[6] Reid Simmons and Greg Whelan, "Visualization Tools
for Validating Soft-ware of Autonomous Spacecraft," in Proc.
of the Fourth International Symposium on Artificial
Intelligence, Robotics, and Automation for Space (i-
SAIRAS), Tokyo, Japan, 1997.
[7] Catherine Baudin, Smadar Kedar and Barney Pell,
"Increasing Levels of Assistance in Refinement of
Knowledge-Based Retrieval Systems," Knowledge
Acquisition 6(2), 179-196, 1994. Also appears as R1ACS
Technical Report 94.03.

[8] G.M. Brown, D.E. Bernard, and R.D. Rasmussen,
"Attitude and Articulation Control for the Cassini

Spacecraft: A Fault Tolerance Overview," in 14th
A1AA/IEEE Digital Avionics Systems Conference,
Cambridge, MA, November 1995.
[9] Stephen F. Smith, Ora Lassila and Marcel Becker,
"Configurable, Mixed-lnitiative Systems for Planning and
Scheduling," in Advanced Planning Technology, (ed. A.
Tate), Menlo Park, CA, AAAI Press, 1996.
[10] Austin Tate, "Mixed Initiative Interaction in O-Plan".
in Proceedings of the AAAI Spring Symposium on
Computational Models for Mixed Initiative Interaction,
Stanford, California, USA, March 1997.

[11] Steven W. Mitchell, "A Hybrid Architecture for Real-
Time Mixed-Initiative Planning and Control," in Procs. of
AAAI-97, Cambridge, MA: AAAI Press, 1997.

[12] R. P. Bonasso, D. Kortenkamp, and T. Whitney,

"Using a Robot Control Architecture to Automate Space

Shuttle Operations," in Proceedings of the Fourteenth

National Conference on Artificial Intelligence (AAAI/IAAI
97), Menlo Park: AAAI Press, 1997.

[13] R. P. Bonasso, D. Kortenkamp, D. Miller, and M.

Slack, "Experiences with an Architecture for Intelligent,

Reactive Agents," JETAI, 9(1), ! 997.
[14] R. J. Frainier, N. Groleau, L. R. Hazelton, S.P.
Colombano, M. Compton, I. Statler, P. Szolovits, and L.

R. Young, "Pl-in-a-Box: a knowledge-based system for
space science experimentation", A1 Magazine 15(1), 39-51,
1994.

[15] Dan Bailard and Lisa Rippy, "A Knowledge-Based
Decision Aid for Enhanced Situational Awareness," in
Procs. 13th Digital Avionics Systems Conference, Phoenix,
AZ: IEEE, 1994.
[16] Patti Maes, "Agents that Reduce Work and
Information Overload", Communications of the ACM,
Volume 37, Number 7, July 1994.

Dr. Douglas E. Bernard received his
B.S. in Mechanical Engineering and
Mathematics from the University of
Vermont, his M.S. in Mechanical
Engineering from MIT and his Ph.D. in
Aeronautics and Astronautics from
Stanford University. He has participated
in dynamics analysis and attitude
control system design for several
spacecraft at JPL and Hughes Aircraft,

including Attitude and Articulation Control Subsystem
systems engineering lead for the Cassini mission to Saturn.

Currently, Dr. Bernard is group supervisor for the flight
system engineering group at JPL and team lead for Remote
Agent autonomy technology development for the New
Millennium Program.

Dr. NicolaMuscettolais a Senior
Computer Scientist at the
ComputationalSciencesDivisionof
theNASAAmesResearchCenter.
HereceivedhisDiplomadi Laurea
in Electrical and Control
Engineeringand his Ph.D. in

..... _ Computer Science from the
_ Politectnico di Milano, Italy. He is

_ the principal designer of the HSTS

planning framework and is the lead of the on-board
planner team for the Deep Space 1 Remote Agent
Experiment. His research interests include planning,
scheduling, temporal reasoning, constraint propagation,
action representations and knowledge compilation.

Dr. Barney Pell is a Senior Computer
Scientist in the Computational Sciences
Division at NASA Ames Research

Center. He is one of the architects of
the Remote Agent for New Millennium's
Deep Space One (DS-1) mission, and
leads a team developing the Smart
Executive component of the DS-1
Remote Agent. Dr. Pell received a B.S.

degree with distinction in Symbolic
Systems at Stanford University. He received a Ph.D. in

computer science at Cambridge University, England, where
he studied as a Marshall Scholar. His current research

interests include spacecraft autonomy, integrated agent
architecture, reactive execution systems, collaborative

software development, and strategic reasoning. Pell was
guest editor for Computational Intelligence Journal in
1996 and has given tutorials on autonomous agents, space
robotics, and game-playing.

Dr. Scott R. Sawyer is lead of the
Mission Critical Systems group
within the Intelligent Systems
Center at the Lockheed Martin

Advanced Technology Center, with
interests in autonomous ground
and flight systems for space
applications. He was formerly the

lead systems engineer for the DS1 flight�ground interface
team. He has a B.Sc. in Physics from MIT, an MS. in
Engineering from Stanford University, and an M.A. and
Ph.D. in Astronomy from the University of Texas at Austin.

Dr. Benjamin Smith is a member of the
Artificial Intelligence group at JPL, and
Deputy Lead of the JPL element of the
DS1 planning team. He holds a Ph.D.
in computer scienee from the University
of Southern California. His research

interests include intelligent agents,
machine learning, and planning.

