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Today

1. Define one-way functions (OWEF).
&. Define Hardcore bits (HCB).

3. Show that one-way functions* + HCB = PRG

4. Goldreich-Levin Theorem: every OWEF has a, HCB.




One-way Functions (Informally)
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One-way Functions (Take 1)

A function (family) {E,,},,eny Where E,;: {0,1}"*— {0,1}(") is
one-way if for every p.p.t. adversary A, there is a negligible
function u s.t.

Prix « 10,1}y = F(x): A(1", y) = x] < u(n)

Consider F,,(x) = 0 for all x.

This is one-way according to the above definition.
In fact, impossible to find the inverse even if A has unbounded
time.

Conclusion: not a useful/meaningful definition.




One-way Functions (Take 1)

A function (family) {E,,},,eny Where E,;: {0,1}"*— {0,1}(") is
one-way if for every p.p.t. adversary A, there is a negligible
function u s.t.

Prix « 10,1}y = F(x): A(1", y) = x] < u(n)

The Right Definition: Impossible to find an inverse in p.p.t.




One-way Functions: The Definition

A function (family) {E,,},,eny Where E,;: {0,1}"*— {0,1}(") is
one-way if for every p.p.t. adversary A, there is a negligible
function u s.t.

Prix < {0,1}"y = F,(x); A(1" y) = x":y = Fp(x')] < u(n)

e (Can always find an inverse with unbounded time

e ... butshould be hard with probabilistic polynomial time

One-way Permutations:

One-to-one one-way functions with m(n) = n.



One-way Functions: Candidates

Subset sum:
— n n+1
G(aq, ..., Any X1, oy Xn) = (A1, o, Ay 2ui=1 Xja; TDOA 277 0)

where a; are random n-bit numbers, and x; are
random bits.

One-way functions candidates are abundant in nature.

We will see many other candidates from number
theory, coding theory, combinatorics later in class.



Today

1. Define one-way functions (OWEF).
&. Define Hardcore bits (HCB).

3. Show that one-way permutations (OWP) = PRG

4. Goldreich-Levin Theorem: every OWEF has a, HCB.




Hardcore Bits

If F is a one-way function, we know it’s hard to compute a
pre-image of F(x) for a randomly chosen x.

How about computing partial information about an inverse?

Exercise: There are one-way functions for which it is easy to
compute the first half of the bits of the inverse.



Hardcore Bits

If F is a one-way function, we know it’s hard to compute a
pre-image of F(x) for a randomly chosen x.

HARDCORE BIT (Take 1)

Nevertheless, there has to be a hardcore set of hard to invert
inputs. Concretely: Does there arist ssariby lexist sothathi lodnd
th#uie dsandttoprodpahitey non-negligibly better than 1/27?

* Any bit can be guessed correctly w.p. 1/2

* So, “hard to compute” — “hard to guess with
probability non-negligibly better than 1/2”




Hardcore Bits

If F is a one-way function, we know it’s hard to compute a
pre-image of F(x) for a randomly chosen x.

HARDCORE BIT (Take 1)

For any function (family) F: {0,1}"*— {0,1}™, abiti = i(n) is
hardcore if for every p.p.t. adversary A4, there is a negligible
function u s.t.

Prix (0,17 y = F(0): AQ) = x] S5+ u(n)




Does every one-way function
have a hardcore bit?

(Hard) Exercise: There are functions that are one-way, yet every
bit is somewhat easy to predict (say, with probability % + 1/n).

So, we will generalize the notion of a hardcore “bit”.



Hardcore Bits

HARDCORE PREDICATE (Definition)

For any function (family) F: {0,1}"*— {0,1}™, a function
B:{0,1}"*— {0,1} is a hardcore predicate if for every p.p.t.
adversary A, there is a negligible function u s.t.

1
Prix « {01}y = F(x):A(y) = B()] = 5+ pn(n)

For us, henceforth, a hardcore bit will mean a hardcore
predicate.




Hardcore Predicate (in pictures)
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Discussion on the Definition

HARDCORE PREDICATE (Definition)

For any function (family) F: {0,1}"*— {0,1}", a bit B: {0,1}""'—>
{0,1} is a hardcore predicate (HCP) if for every p.p.t.
adversary A, there is a negligible function u s.t.

1
Prix < {0,1}";y = F(x): A(y) = B(x)] < 5+ 1)

1. Definition of HCP makes sense for any function family, not
just one-way functions.

2. Some functions can have information-theoretically hard to
guess predicates (e.g., compressing functions)

3. We'll be interested in settings where x is uniquely determined
given F(x), yet B(x)is hard to predict given F(x)



Today

1. Define one-way functions (OWEF).
&. Define Hardcore bits (HCB).

3. Show that one-way permutations (OWP) = PRG

4. Goldreich-Levin Theorem: every OWEF has a, HCB.




OWP = PRG

CONSTRUCTION

Let F be a one-way permutation, and B an associated
hardcore predicate for F.

Then, define G(x) = F(x) | B(x) .

Theorem: (G is a PRG assuming F is a one-way permutation.

(Note that G stretches by one bit. Shafi will tell you how to
extend the stretch of G to any poly number of bits.)




OWP = PRG

CONSTRUCTION

Let F be a one-way permutation, and B an associated
hardcore predicate for F.

Then, define G(x) = F(x) | B(x) .

Theorem: (G is a PRG assuming F is a one-way permutation.

Proof (next slide): From Distinguishing to Predicting.




OWP = PRG

Theorem: (G is a PRG assuming F is a one-way permutation.
Proof: Assume for contradiction that ¢ is not a PRG.

Therefore, there is a p.p.t. distinguisher D and a polynomial
function p such that

Prlx < {0,1}y = G(x): D(y) = 1] —
Prly « {0,1}"*1: D(y) =1] = 1/p(n)

Think: D outputs “1” = D thinks its input is pseudorandom



OWP = PRG

Theorem: G is a PRG assuming F is a one-way permutation
and B is its hardcore predicate .

Proof: Assume for contradiction that ¢ is not a PRG.
Therefore, there is a p.p.t. distinguisher D and a polynomial
function p such that

Prix < 10,1}y = G(x): D(y) = 1] -
Prly « {0,1}"" : D(y) = 1] = 1/p(n)

We will construct a hardcore predictor A and show:

Pr[x < {0,1}*: A(F(x)) = B(x)] = % + 1/p'(n)



OWP = PRG

Theorem: G is a PRG assuming F is a one-way permutation
and B is its hardcore predicate .

Proof: Assume for contradiction that ¢ is not a PRG.
Therefore, there is a p.p.t. distinguisher D and a polynomial
function p such that

Prix < 10,1}y = G(x): D(y) = 1] -
Prly « {0,1}"" : D(y) = 1] = 1/p(n)

We will construct a hardcore predictor A and show:

Pr[x < {0,1}*: A(F(x)) = B(x)] = % + 1/p'(n)



OWP = PRG

Let’s look closely at D.

Prix <« {0,1};y = G(x): D(y) = 1] -
Prly « {0,1}™*1: D(y) = 1] = 1/p(n)

By definition:

Prlx < {0,1}"y = F(x)|B(x): D(y) = 1] —
Prly « {0,1}"**: D(y) = 1] = 1/p(n)



OWP = PRG

Let’s look closely at D.

Prix <« {0,1};y = G(x): D(y) = 1] -
Prly « {0,1}™*1: D(y) = 1] = 1/p(n)

A syntactic change:

Prix < {0,1}";y = F(x)|B(x): D(y) = 1] —
Prly, « {0,1}",y, <« {0,1},y = yoly1: D(y) = 1] = 1/p(n)



OWP = PRG

Let’s look closely at D.

Prix <« {0,1};y = G(x): D(y) = 1] -
Prly « {0,1}™*1: D(y) = 1] = 1/p(n)

Rewriting the second term:

Prix « {0,1}"; y = F(x)|B(x): D(y) = 1] —
Pr[x « {0,1}",y; « {0,1},y = F(x)|y1: D(y) = 1] = 1/p(n)
N

Pr[x < {0,1}",y = F(x)|0:D(y) = 1] + Pr|x < {0,1}",y = F(x)|1:D(y) = 1]

2



OWP = PRG

Let’s look closely at D.

Prix <« {0,1};y = G(x): D(y) = 1] -
Prly « {0,1}™*1: D(y) = 1] = 1/p(n)

Rewriting the second term (again):

Prix « {0,1}"; y = F(x)|B(x): D(y) = 1] —
Pr[x « {0,1}",y; « {0,1},y = F(x)|y1: D(y) = 1] = 1/p(n)
N

Prix « (0,1",y = F®)IB(x):D(y) = 1] + Prlx « (0,13",y = F®)|BG): D) = 1]

2



OWP = PRG

Let’s look closely at D.

Prix <« {0,1};y = G(x): D(y) = 1] -
Prly « {0,1}™*1: D(y) = 1] = 1/p(n)

Putting things together:

1
= (Prlx < {01}y = FGOIB(x): D(y) = 1] -
Prlx — (0,1)",y = FGIB®): D) = 1]) = 1/p(n)

In English: D says “1” more often when fed with the “right
bit” than the “wrong bit”.



OWP = PRG

Let’s look closely at D.

Prix <« {0,1};y = G(x): D(y) = 1] -
Prly « {0,1}™*1: D(y) = 1] = 1/p(n)

Putting things together:

(*) —(Pr < {01}y =F(x)|B(x):D(y) = 1] —
rlx « {0,1}*,y = F(x)|B(x): D(y) = 1| ) = 1/p(n)

Now, let’s use D to predict the right bit.



OWP = PRG

The Predictor A works as follows:

Get as input z = F(x); Pick a random bit b; and feed D
with input z|b.

If D says “1”, output b as Ehe prediction for the hardcore bit
and if D says “0”, output b.




Analysis of the Predictor A
Prix « {0,1}": A(F(x)) = B(x)]

= Pr|x < {0,1}*: D(F(x)|b) = 1| b = B(x)] Pr|b = B(x)] +
Prix « {0,1}*: D(F(x)|b) = 0| b # B(x)] Pr[b # B(x)]

= %(Pr[x < {0,1}"""D(F(x)|b) = 1| b = B(x)] +
Pr[x « {0,1}*: D(F(x)|b) = 0| b # B(x)])
= %(Pr[x « {01} D(F(x)|B(x)) =1] +
Pr[x « {0,13": D(F (x)|B(x)) = 0])
= 2 (Prlx < (01 DF()IB() = 1] +
1 — Pr|x « {0, 1}n D(F(x)|B(x)) =1])
=— (1 +(%) 2 + 1/p(n) B




Today

1. Define one-way functions (OWEF).
&. Define Hardcore bits (HCB).

3. Show that one-way permutations (OWP) = PRG

4. Goldreich-Levin Theorem: every OWEF has a, HCB.




A Hardcore Predicate for all OWF

Let’s shoot for a universal hardcore predicate.

i.e., a single predicate B where it is hard to guess B(x) given F(x)

Is this possible?

Turns out the answer is “no”. Pick your favorite amazing B. | claim
that you can construct a one-way function F for which B is not
hard-core. | will leave it to you as an exercise.

So, what is one to do?



Goldreich-Levin (GL) Theorem

Let {B,: {0,1}"*— {0,1}} where
B,-(x) = (r,x) = Y.}-; 1r;x; mod 2

be a collection of predicates (one for each r). Then, a random
B.- is hardcore for every one-way function F. That is, for every
one-way function F, every PPT A, there is a negligible function

us.t.
Pr[x « {0,1}%r « {0,1}"": A(F(x),r) = B.(x)] < % + u(n)

Alternative Interpretation 1: For every one-way function F,
there is a related one-way function F'(x,r) = (F(x),r) which
has a deterministic hardcore predicate.




Goldreich-Levin (GL) Theorem

Let {B,: {0,1}"*— {0,1}} where
B,-(x) = (r,x) = Y.}-; 1r;x; mod 2

be a collection of predicates (one for each r). Then, a random
B.- is hardcore for every one-way function F. That is, for every
one-way function F, every PPT A, there is a negligible function

us.t.
Pr[x « {0,1}%r « {0,1}"": A(F(x),r) = B.(x)] < % + u(n)

Alternative Interpretation 2: For every one-way function F, there
exists (non-uniformly) a (possibly different) hardcore predicate
(rr, x). (Cool open problem: remove the non-uniformity)




Proof of GL Theorem

Let’s make our lives easier: assume a perfect predictor P

F v lves casier: assume 2 pe
1
Prlx Prfi0 4100711260 A} TOAF (RLF S £, )r2ey=11p (n)

We will need to show an inverter A for F

Pr[x « {0,1}": A(F(x)) = x":F(x) =F(x)| = 1/p'(n)



Proof of GL Theorem

Let’s make our lives easier: assume a perfect predictor P

\ : b tere b

Prix « {0,1}";r « {0, 1} P(F(x),r) ={r,x)] =1

The inverter A works as follows:

Oninputy = F(x), A runs the predictor P n times, on

inputs (y,e1), (¥, €2), ...,and (¥, e,) where e; =
100..0,e, = 010 ...0,... are the unit vectors.

Since A is perfect, it returns {e;, x) = x;, the it" bit of x on the
it" invocation.



Proof of GL Theorem

OK, now let’s assume less: assume a pretty good predictor P

\ : b tere T

Prix « {0,1}";r « {0, 1} P(F(x),r) = (r,x)] = % + 1/p(n)

First, we need an averaging argument.

Claim: For at least a 1/2p(n) fraction of the x,

Prlr « {0,1}": P(F(x),r) = (r,x)] = % + 1/2p(n)

Proof: Exercise in counting.

Call these the good x.




Proof of GL Theorem

For at least a 1/2p(n) fraction of the x, ;
Pr[r « {0,1}*: P(F(x),r) = (r,x)] = 2 + 1/2p(n)

Key Idea: Linearity

Pick a random r and ask P to tells us (r, x) and (r + e;, x).
Subtract the two answers to get (e;, x) = x;.

Proof: Pr[we compute x; correctly]
> Pr[P predicts (r, x) and (r + e;, x) correctly]
= 1 — Pr|P predicts(r, x) or (r + e;, x) wrong]
> 1 — (Pr[P predicts(r, x) wrong] +
Pr[P predicts(r + e;, x) wrong]) (by union bound)

1 1 1
21_2'(Z_zp(n))_5+1/p(")




Proof of GL Theorem

For at least a 1/2p(n) fraction of the x, ;
Pr[r « {0,1}*: P(F(x),r) = (r,x)] = 2 + 1/2p(n)

Inverter A:

Repeat for eachi € {1,2, ...,n}:
Repeat logn /p(n) times:

Pick a random r and ask P to tells us (r, x) and (r + ¢;, x).
Subtract the two answers to get a guess for x;.

Compute the majority of all such guesses and set the bit as x;

Output the concatenation of all x; as x.

Analysis: Chernoff + Union Bound




Real Proof (will not do in class)

Assume (after averaging) that for > 1/2p(n) fraction of the x,
Prir « {0,1}: P(F(x),r) = (r,x)] = > +1/2p(n)

Key Idea: Pairwise independence

Reference: Goldreich Book Part 1, Section 2.5.2.
http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/part2N.ps



The Coding-Theoretic View of GL

x = ({x,7))refo,1yn Can be viewed as a highly redundant,
exponentially long encoding of x =the Hadamard code.

P(F(x),r) can be thought of as providing access to a noisy
codeword.

What we proved = unique decoding algorithm for Hadamard code
with error rate % — 1/p(n).

The real proof = list-decoding algorithm for Hadamard code with
error rate % — 1/p(n).



Recap
1. Defined one-way functions (OWEF).
&. Defined Hardcore bits (HCB).

3. Goldreich-Levin Theorem: every OWF has a HCB.

(showed proof for an important special case)

4. Show that one-way permutations (OWP) = PRG

(in 1act, one-wagy functions = PRG, but that’s a
much harder theorem)



Next Lecture: Back to PRGs



