
MIT 6.875 & Berkeley CS276

Lecture 3
Foundations of Cryptography



Roadmap of the Course: Worlds in Crypto

OWF

PRG

Secret-key 
encryptionPRF

Hashing

Digital 
Signatures

PRP

Bit 
Commitment

Zero-
Knowledge  
proofsLecture 2-6, 11-12

Public-key 
encryptionLecture 7-10,…

…

Minicrypt:

Cryptomania:

OWF



Today

1. Define one-way functions (OWF). 

2. Define Hardcore bits (HCB). 

4. Goldreich-Levin Theorem: every OWF has a HCB.

3. Show that one-way functions* + HCB ⇒ PRG  



One-way Functions (Informally)
F

domain
range

Easy to 
compute

Hard to 
invert



One-way Functions (Take 1)

A function (family) 𝐹! !∈ℕ where 𝐹!: {0,1}!→ {0,1}$(!) is 
one-way if for every p.p.t. adversary 𝐴, there is a negligible 
function 𝜇 s.t.

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹! 𝑥 : 𝐴 1!, 𝑦 = 𝑥 ≤ 𝜇(𝑛)

Consider 𝑭𝒏 𝒙 = 𝟎 for all x. 

This is one-way according to the above definition. 
In fact, impossible to find the inverse even if 𝐴 has unbounded 
time.

Conclusion: not a useful/meaningful definition. 



One-way Functions (Take 1)

A function (family) 𝐹! !∈ℕ where 𝐹!: {0,1}!→ {0,1}$(!) is 
one-way if for every p.p.t. adversary 𝐴, there is a negligible 
function 𝜇 s.t.

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹! 𝑥 : 𝐴 1!, 𝑦 = 𝑥 ≤ 𝜇(𝑛)

The Right Definition: Impossible to find an inverse in p.p.t.



One-way Functions: The Definition

A function (family) 𝐹! !∈ℕ where 𝐹!: {0,1}!→ {0,1}$(!) is 
one-way if for every p.p.t. adversary 𝐴, there is a negligible 
function 𝜇 s.t.

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹! 𝑥 ; 𝐴 1!, 𝑦 = 𝒙(: 𝒚 = 𝑭𝒏 𝒙( ≤ 𝜇(𝑛)

One-way Permutations:
One-to-one one-way functions with 𝑚 𝑛 = 𝑛.

• Can always find an inverse with unbounded time

• … but should be hard with probabilistic polynomial time



One-way Functions: Candidates

G(𝑎), … , 𝑎!, 𝑥), … , 𝑥!) = (𝑎), … , 𝑎!,∑*+)! 𝑥*𝑎* mod 2!,))

where 𝑎* are random n-bit numbers, and 𝑥* are 
random bits.

Subset sum:

One-way functions candidates are abundant in nature. 

We will see many other candidates from number 
theory, coding theory, combinatorics later in class.



Today

1. Define one-way functions (OWF). 

2. Define Hardcore bits (HCB). 

4. Goldreich-Levin Theorem: every OWF has a HCB.

3. Show that one-way permutations (OWP) ⇒ PRG  



Hardcore Bits

If 𝐹 is a one-way function, we know it’s hard to compute a 
pre-image of 𝐹 𝑥 for a randomly chosen 𝑥. 

How about computing partial information about an inverse?

Exercise: There are one-way functions for which it is easy to 
compute the first half of the bits of the inverse.



Hardcore Bits

If 𝐹 is a one-way function, we know it’s hard to compute a 
pre-image of 𝐹 𝑥 for a randomly chosen 𝑥. 

Nevertheless, there has to be a hardcore set of hard to invert 
inputs. Concretely: Does there necessarily exist some bit of 𝑥
that is hard to compute?

• Any bit can be guessed correctly w.p. 1/2 

• So, “hard to compute” → “hard to guess with 
probability non-negligibly better than 1/2” 

Nevertheless, there has to be a hardcore set of hard to invert 
inputs. Concretely: Does there exist some bit of 𝑥 that is hard 
to guess with probability non-negligibly better than 1/2?

HARDCORE BIT (Take 1)



Hardcore Bits

If 𝐹 is a one-way function, we know it’s hard to compute a 
pre-image of 𝐹 𝑥 for a randomly chosen 𝑥. 

HARDCORE BIT (Take 1)

For any function (family) 𝐹: {0,1}!→ {0,1}$, a bit 𝑖 = 𝑖(𝑛) is 
hardcore if for every p.p.t. adversary 𝐴, there is a negligible 
function 𝜇 s.t.

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹 𝑥 : 𝐴 𝑦 = 𝑥* ≤
1
2
+ 𝜇(𝑛)



Does every one-way function 
have a hardcore bit?

(Hard) Exercise: There are functions that are one-way, yet every
bit is somewhat easy to predict (say, with probability )-+ 1/𝑛).

So, we will generalize the notion of a hardcore “bit”. 



Hardcore Bits

HARDCORE PREDICATE (Definition)

For any function (family) 𝐹: {0,1}!→ {0,1}$, a function 
𝐵: {0,1}!→ {0,1} is a hardcore predicate if for every p.p.t. 
adversary 𝐴, there is a negligible function 𝜇 s.t.

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹 𝑥 : 𝐴 𝑦 = 𝐵(𝑥) ≤
1
2
+ 𝜇(𝑛)

For us, henceforth, a hardcore bit will mean a hardcore 
predicate.



Hardcore Predicate (in pictures)

x

Eas
y to 

compute

Easy to compute

F(x)

B(x)

Hard to 
compute



Discussion on the Definition
HARDCORE PREDICATE (Definition)

For any function (family) 𝐹: {0,1}!→ {0,1}$, a bit 𝐵: {0,1}!→
{0,1} is a hardcore predicate (HCP) if for every p.p.t. 
adversary 𝐴, there is a negligible function 𝜇 s.t.

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹 𝑥 : 𝐴 𝑦 = 𝐵(𝑥) ≤
1
2
+ 𝜇(𝑛)

1. Definition of HCP makes sense for any function family, not 
just one-way functions. 
2. Some functions can have information-theoretically hard to 
guess predicates (e.g., compressing functions)

3. We’ll be interested in settings where 𝑥 is uniquely determined 
given F(𝑥), yet B(𝑥)is hard to predict given F(𝑥)



Today

1. Define one-way functions (OWF). 

2. Define Hardcore bits (HCB). 

4. Goldreich-Levin Theorem: every OWF has a HCB.

3. Show that one-way permutations (OWP) ⇒ PRG  



OWP ⇒ PRG

Let 𝐹 be a one-way permutation, and 𝐵 an associated 
hardcore predicate for 𝐹.

CONSTRUCTION

Then, define 𝐺 𝑥 = F 𝑥 | B(𝑥) .

Theorem: 𝐺 is a PRG assuming 𝐹 is a one-way permutation.

(Note that 𝐺 stretches by one bit. Shafi will tell you how to 
extend the stretch of 𝐺 to any poly number of bits.)



OWP ⇒ PRG

Let 𝐹 be a one-way permutation, and 𝐵 an associated 
hardcore predicate for 𝐹.

CONSTRUCTION

Then, define 𝐺 𝑥 = F 𝑥 | B(𝑥) .

Theorem: 𝐺 is a PRG assuming 𝐹 is a one-way permutation.

Proof (next slide): From Distinguishing to Predicting.



OWP ⇒ PRG

Theorem: 𝐺 is a PRG assuming 𝐹 is a one-way permutation.

Proof: Assume for contradiction that 𝐺 is not a PRG. 
Therefore, there is a p.p.t. distinguisher 𝐷 and a polynomial 
function 𝑝 such that

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐺 𝑥 : 𝐷 𝑦 = 1 −
Pr 𝑦 ← 0,1 !,) ∶ 𝐷 𝑦 = 1 ≥ 1/𝑝(𝑛)

Think: D outputs “1” = D thinks its input is pseudorandom



OWP ⇒ PRG

Theorem: 𝐺 is a PRG assuming 𝐹 is a one-way permutation 
and B is its hardcore predicate .

Proof: Assume for contradiction that 𝐺 is not a PRG. 
Therefore, there is a p.p.t. distinguisher 𝐷 and a polynomial 
function 𝑝 such that

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐺 𝑥 : 𝐷 𝑦 = 1 −
Pr 𝑦 ← 0,1 !,) ∶ 𝐷 𝑦 = 1 ≥ 1/𝑝(𝑛)

We will construct a hardcore predictor 𝐴 and show:

Pr 𝑥 ← 0,1 !: 𝐴 𝐹(𝑥) = 𝐵(𝑥) ≥
1
2
+ 1/𝑝′(𝑛)



OWP ⇒ PRG

Theorem: 𝐺 is a PRG assuming 𝐹 is a one-way permutation 
and B is its hardcore predicate .

Proof: Assume for contradiction that 𝐺 is not a PRG. 
Therefore, there is a p.p.t. distinguisher 𝐷 and a polynomial 
function 𝑝 such that

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐺 𝑥 : 𝐷 𝑦 = 1 −
Pr 𝑦 ← 0,1 !,) ∶ 𝐷 𝑦 = 1 ≥ 1/𝑝(𝑛)

We will construct a hardcore predictor 𝐴 and show:

Pr 𝑥 ← 0,1 !: 𝐴 𝐹(𝑥) = 𝐵(𝑥) ≥
1
2
+ 1/𝑝′(𝑛)



OWP ⇒ PRG

Let’s look closely at D.

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐺 𝑥 : 𝐷 𝑦 = 1 −
Pr 𝑦 ← 0,1 !,) ∶ 𝐷 𝑦 = 1 ≥ 1/𝑝(𝑛)

By definition:

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹 𝑥 |𝐵(𝑥): 𝐷 𝑦 = 1 −
Pr 𝑦 ← 0,1 !,) ∶ 𝐷 𝑦 = 1 ≥ 1/𝑝(𝑛)



OWP ⇒ PRG

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐺 𝑥 : 𝐷 𝑦 = 1 −
Pr 𝑦 ← 0,1 !,) ∶ 𝐷 𝑦 = 1 ≥ 1/𝑝(𝑛)

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹 𝑥 |𝐵(𝑥): 𝐷 𝑦 = 1 −
Pr 𝑦. ← 0,1 ! , 𝑦) ← 0,1 , 𝑦 = 𝑦.|𝑦): 𝐷(𝑦) = 1 ≥ 1/𝑝(𝑛)

A syntactic change:

Let’s look closely at D.



OWP ⇒ PRG

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐺 𝑥 : 𝐷 𝑦 = 1 −
Pr 𝑦 ← 0,1 !,) ∶ 𝐷 𝑦 = 1 ≥ 1/𝑝(𝑛)

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹 𝑥 |𝐵(𝑥): 𝐷 𝑦 = 1 −
Pr 𝑥 ← 0,1 ! , 𝑦) ← 0,1 , 𝑦 = 𝐹(𝑥)|𝑦): 𝐷(𝑦) = 1 ≥ 1/𝑝(𝑛)

Rewriting the second term:

=
Pr 𝑥 ← 0,1 ! , 𝑦 = 𝐹(𝑥)|𝟎: 𝐷(𝑦) = 1 + Pr 𝑥 ← 0,1 ! , 𝑦 = 𝐹(𝑥)|𝟏: 𝐷(𝑦) = 1

2

Let’s look closely at D.



OWP ⇒ PRG

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐺 𝑥 : 𝐷 𝑦 = 1 −
Pr 𝑦 ← 0,1 !,) ∶ 𝐷 𝑦 = 1 ≥ 1/𝑝(𝑛)

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹 𝑥 |𝐵(𝑥): 𝐷 𝑦 = 1 −
Pr 𝑥 ← 0,1 ! , 𝑦) ← 0,1 , 𝑦 = 𝐹(𝑥)|𝑦): 𝐷(𝑦) = 1 ≥ 1/𝑝(𝑛)

Rewriting the second term (again):

=
Pr 𝑥 ← 0,1 ! , 𝑦 = 𝐹(𝑥)|𝑩(𝒙): 𝐷(𝑦) = 1 + Pr 𝑥 ← 0,1 ! , 𝑦 = 𝐹(𝑥)|𝑩(𝒙): 𝐷(𝑦) = 1

2

Let’s look closely at D.



1
2
(Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹 𝑥 |𝑩(𝒙): 𝐷 𝑦 = 1 −

Pr 𝑥 ← 0,1 ! , 𝑦 = 𝐹(𝑥)|𝑩(𝒙): 𝐷(𝑦) = 1 ) ≥ 1/𝑝(𝑛)

OWP ⇒ PRG

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐺 𝑥 : 𝐷 𝑦 = 1 −
Pr 𝑦 ← 0,1 !,) ∶ 𝐷 𝑦 = 1 ≥ 1/𝑝(𝑛)

Putting things together:

In English:  D says “1” more often when fed with the “right 
bit” than the “wrong bit”.

Let’s look closely at D.



1
2
(Pr 𝑥 ← 0,1 !; 𝑦 = 𝐹 𝑥 |𝑩(𝒙): 𝐷 𝑦 = 1 −

Pr 𝑥 ← 0,1 ! , 𝑦 = 𝐹(𝑥)|𝑩(𝒙): 𝐷(𝑦) = 1 ) ≥ 1/𝑝(𝑛)

OWP ⇒ PRG

Pr 𝑥 ← 0,1 !; 𝑦 = 𝐺 𝑥 : 𝐷 𝑦 = 1 −
Pr 𝑦 ← 0,1 !,) ∶ 𝐷 𝑦 = 1 ≥ 1/𝑝(𝑛)

Putting things together:

Now, let’s use D to predict the right bit.

(∗)

Let’s look closely at D.



OWP ⇒ PRG

The Predictor A works as follows:
Get as input 𝑧 = 𝐹(𝑥); Pick a random bit 𝑏; and feed 𝐷
with input 𝑧|b.    
If 𝐷 says “1”, output b as the prediction for the hardcore bit 
and if 𝐷 says “0”, output S𝑏. 



Analysis of the Predictor A
Pr 𝑥 ← 0,1 !: 𝐴 𝐹(𝑥) = 𝐵(𝑥)

= Pr 𝑥 ← 0,1 !: 𝐷 𝐹 𝑥 |𝑏 = 1| 𝑏 = 𝐵(𝑥) Pr 𝑏 = 𝐵 𝑥 +
Pr 𝑥 ← 0,1 !: 𝐷 𝐹 𝑥 |𝑏 = 0| 𝑏 ≠ 𝐵(𝑥) Pr 𝑏 ≠ 𝐵 𝑥

=
1
2
(Pr 𝑥 ← 0,1 !: 𝐷 𝐹 𝑥 |𝑏 = 1| 𝑏 = 𝐵(𝑥) +
Pr 𝑥 ← 0,1 !: 𝐷 𝐹 𝑥 |𝑏 = 0| 𝑏 ≠ 𝐵(𝑥) )

=
1
2 (Pr 𝑥 ← 0,1 !: 𝐷 𝐹 𝑥 |𝐵(𝑥) = 1 +

Pr 𝑥 ← 0,1 !: 𝐷 𝐹 𝑥 |𝐵(𝑥) = 0 )

=
1
2 (Pr 𝑥 ← 0,1 !: 𝐷 𝐹 𝑥 |𝐵(𝑥) = 1 +

1 − Pr 𝑥 ← 0,1 !: 𝐷 𝐹 𝑥 |𝐵(𝑥) = 1 )

=
𝟏
𝟐
(𝟏 +(∗)) ≥

𝟏
𝟐
+𝟏/𝒑(𝒏)



Today

1. Define one-way functions (OWF). 

2. Define Hardcore bits (HCB). 

4. Goldreich-Levin Theorem: every OWF has a HCB.

3. Show that one-way permutations (OWP) ⇒ PRG  



A Hardcore Predicate for all OWF

Let’s shoot for a universal hardcore predicate.

i.e., a single predicate 𝐵 where it is hard to guess 𝐵(𝑥) given F(𝑥)

Is this possible?

Turns out the answer is “no”. Pick your favorite amazing 𝐵. I claim 
that you can construct a one-way function 𝐹 for which 𝐵 is not 
hard-core. I will leave it to you as an exercise.

So, what is one to do?



Goldreich-Levin (GL) Theorem

Let {𝐵@: {0,1}!→ {0,1}} where

be a collection of predicates (one for each 𝑟). Then, a random
𝐵@ is hardcore for every one-way function 𝐹. That is, for every 
one-way function F, every PPT A, there is a negligible function 
𝜇 s.t.

𝐵@ 𝑥 = 𝑟, 𝑥 = ∑*+)! 𝑟*𝑥*mod 2

Pr 𝑥 ← 0,1 !; 𝑟 ← 0,1 !: 𝐴 𝐹 𝑥 , 𝑟 = 𝐵@(𝑥) ≤
1
2
+ 𝜇(𝑛)

Alternative Interpretation 1: For every one-way function 𝐹, 
there is a related one-way function 𝐹( 𝑥, 𝑟 = (𝐹 𝑥 , 𝑟) which 
has a deterministic hardcore predicate.



Goldreich-Levin (GL) Theorem

Let {𝐵@: {0,1}!→ {0,1}} where

be a collection of predicates (one for each 𝑟). Then, a random
𝐵@ is hardcore for every one-way function 𝐹. That is, for every 
one-way function F, every PPT A, there is a negligible function 
𝜇 s.t.

𝐵@ 𝑥 = 𝑟, 𝑥 = ∑*+)! 𝑟*𝑥*mod 2

Pr 𝑥 ← 0,1 !; 𝑟 ← 0,1 !: 𝐴 𝐹 𝑥 , 𝑟 = 𝐵@(𝑥) ≤
1
2
+ 𝜇(𝑛)

Alternative Interpretation 2: For every one-way function 𝐹, there 
exists (non-uniformly) a (possibly different) hardcore predicate 
𝑟A, 𝑥 .  (Cool open problem: remove the non-uniformity)



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃

Pr 𝑥 ← 0,1 !; 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
1
2
+ 1/𝑝(𝑛)

We will need to show an inverter 𝐴 for 𝐹

Pr 𝑥 ← 0,1 ! ∶ 𝐴 𝐹 𝑥 = 𝑥(: 𝐹 𝑥( = 𝐹(𝑥) ≥ 1/𝑝′(𝑛)

Let’s make our lives easier: assume a perfect predictor 𝑃

Pr 𝑥 ← 0,1 !; 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 = 1



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃

The inverter 𝐴 works as follows: 

On input y = 𝐹 𝑥 , 𝐴 runs the predictor 𝑃 𝑛 times, on 
inputs 𝑦, 𝑒) , 𝑦, 𝑒- , … , and (𝑦, 𝑒!) where 𝑒) =
100. . 0, 𝑒- = 010…0,… are the unit vectors.

Let’s make our lives easier: assume a perfect predictor 𝑃

Pr 𝑥 ← 0,1 !; 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 = 1

Since 𝐴 is perfect, it returns 𝑒*, 𝑥 = 𝑥*, the 𝑖BC bit of 𝑥 on the 
𝑖BC invocation. 



Proof of GL Theorem

Assume for contradiction there is a predictor 𝑃

First, we need an averaging argument.

OK, now let’s assume less: assume a pretty good predictor 𝑃

Pr 𝑥 ← 0,1 !; 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
3
4
+ 1/𝑝(𝑛)

Claim: For at least a 1/2𝑝(𝑛) fraction of the 𝑥, 

Pr 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
3
4
+ 1/2𝑝(𝑛)

Call these the good 𝑥.

Proof: Exercise in counting.



Proof of GL Theorem

Pr 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
3
4
+ 1/2𝑝(𝑛)

For at least a 1/2𝑝(𝑛) fraction of the 𝑥, 

Key Idea: Linearity

Pick a random 𝑟 and ask 𝑃 to tells us 𝑟, 𝑥 and 𝑟 + 𝑒*, 𝑥 . 
Subtract the two answers to get 𝑒*, 𝑥 = 𝑥*.

Proof: Pr[we compute 𝑥* correctly]
≥ Pr[P predicts 𝑟, 𝑥 and 𝑟 + 𝑒*, 𝑥 correctly]
= 1 − Pr P predicts 𝑟, 𝑥 or 𝑟 + 𝑒*, 𝑥 wrong
≥ 1 −(Pr P predicts 𝑟, 𝑥 wrong +

Pr P predicts 𝑟 + 𝑒*, 𝑥 wrong )
≥ 1 − 2 g )

D−
)

-E ! = )
-+ 1/𝑝(𝑛)

(by union bound)



Proof of GL Theorem

Pr 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
3
4
+ 1/2𝑝(𝑛)

For at least a 1/2𝑝(𝑛) fraction of the 𝑥, 

Pick a random 𝑟 and ask 𝑃 to tells us 𝑟, 𝑥 and 𝑟 + 𝑒*, 𝑥 . 
Subtract the two answers to get a guess for 𝑥*.

Repeat log 𝑛 /𝑝(𝑛) times: 

Compute the majority of all such guesses and set the bit as 𝑥*

Repeat for each 𝑖 ∈ 1,2, … , 𝑛 : 

Output the concatenation of all 𝑥* as 𝑥.

Inverter A:

Analysis: Chernoff + Union Bound



Real Proof (will not do in class)

Pr 𝑟 ← 0,1 !: 𝑃 𝐹 𝑥 , 𝑟 = 𝑟, 𝑥 ≥
𝟏
𝟐
+ 1/2𝑝(𝑛)

Assume (after averaging) that for ≥ 1/2𝑝(𝑛) fraction of the 𝑥, 

Key Idea: Pairwise independence

Reference: Goldreich Book Part 1, Section 2.5.2.
http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/part2N.ps



The Coding-Theoretic View of GL

𝑥 → ( 𝑥, 𝑟 )@∈{.,)}! can be viewed as a highly redundant, 
exponentially long encoding of 𝑥 = the Hadamard code.

𝑃(𝐹 𝑥 , 𝑟) can be thought of as providing access to a noisy
codeword.

The real proof = list-decoding algorithm for Hadamard code with 
error rate )-− 1/𝑝(𝑛).

What we proved = unique decoding algorithm for Hadamard code 
with error rate )

D
− 1/𝑝(𝑛).



Recap

1. Defined one-way functions (OWF). 

2. Defined Hardcore bits (HCB). 

3. Goldreich-Levin Theorem: every OWF has a HCB.

4. Show that one-way permutations (OWP) ⇒ PRG  

(showed proof for an important special case)

(in fact, one-way functions ⇒ PRG, but that’s a 
much harder theorem)



Next Lecture: Back to PRGs


