
6.003: Signal Processing

Fourier Transforms

11 March 2021



Logistics

In response to student feedback and following discussion among the

staff, two changes to course policy:

• Starting with PSet 5, feedback about correctness will be shown

before the deadline, but you will have a limited number of sub-

missions for each exercise.

• Jing and Adam will be in the Comingle room from 2-3pm on

Wednesdays as extra lecture-and-recitation-related office hours

(no check-ins)



Today: Fourier Transforms

Last two weeks: representing periodic signals as sums of sinusoids.

This representation provides insights that are not obvious from other

representations.

However:

• only works for periodic signals

• must know signal’s period before doing the analysis

This is impractical (or impossible) for a large category of signals,

which we still want to be able to analyze using these methods.

Today

Fourier analysis of aperiodic signals: the Fourier transform



Fourier Transform

Consider the following (aperiodic) function of time:

t

x(t)

−S 0 S

1

Can we represent it as a sum of sinusoids?



Toward the Fourier Transform

Let’s start by considering a related signal xp(·), which we create by

summing shifted copies of x(·):

xp(t) =
∞∑

m=−∞
x(t−mT )

t

xp(t)

−S 0 S−T T

1

Now we can directly find the Fourier Series coefficients of this new

signal (for arbitrarily-chosen T).

However, maybe that’s not really that helpful, since this signal

doesn’t look much like our original signal x(·). How can we fix that?



Toward the Fourier Transform

t

xp(t)

−S 0 S−T T

1

This signal doesn’t really look much like our original. How can we

fix that?



Toward the Fourier Transform

t

xp(t)

−S 0 S−T T

1

This signal doesn’t really look much like our original. How can we

fix that?

If we let T →∞, then xp(·)→ x(·), but xp(·) is still periodic, so we can

still represent it with a Fourier series!



Toward the Fourier Transform

Consequences of T →∞:

The frequency ω0 associated with k = 1 is defined to be 2π
T . As we

increase T , ω0 gets smaller, and the spacing between the coefficients

in terms of rad/sec gets smaller and smaller.

For S = 0.5 and for different values of T :
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Fourier Series to Fourier Transform

Once we have a periodic signal, we can find the FSC:

Xp[k] = 1
T

∫
T
xp(t)e−jkω0tdt

where ω0 = 2π
T .

Now we want to think about T → ∞ Let’s replace 1
T with ω0

2π , and

explicitly pick a period to integrate over:

Xp[k] = ω0
2π

∫ T/2

−T/2
xp(t)e−jkω0tdt



Fourier Series to Fourier Transform

Now, substitute into the synthesis equation:

xp(t) =
∞∑

k=−∞
Xp[k]ejkω0t

=
∞∑

k=−∞

{
ω0
2π

∫ T/2

−T/2
xp(t)e−jkω0tdt

}
ejkω0t

As we take T →∞, a few things happen:

• xp(t)→ x(t)
• w0 becomes an infinitesimally small value, ω0 → dω
• kω0 becomes a continuum, kω0 → ω (continuous)

• The bounds of integration approach −∞ and ∞ (respectively)

• The outer sum becomes an integral.

x(t) = 1
2π

∫ ∞
−∞

{∫ ∞
−∞

x(t)e−jωtdt
}
ejωtdω



Fourier Series to Fourier Transform

x(t) = 1
2π

∫ ∞
−∞

{∫ ∞
−∞

x(t)e−jωtdt
}
ejωtdω

From here, we’ll define X(ω) such that:

X(ω) =
∫ ∞
−∞

x(t)e−jωtdt

x(t) = 1
2π

∫ ∞
−∞

X(ω)ejωtdω

X(·) is the Fourier Transform of x(·).

Very similar to the Fourier series, except:

• x(·) need not be periodic

• x(·) can contain all possible frequencies



Continuous-Time Fourier Transform

Synthesis Equation

x(t) = 1
2π

∫ ∞
−∞

X(ω) e jωt dω

Analysis Equation

X(ω) =
∫ ∞
−∞

x(t) e−jωt dt



Continuous-Time Fourier Transform

Synthesis Equation

x(t) = 1
2π

∫ ∞
−∞

X(ω) e jωt dω

Analysis Equation

X(ω) =
∫ ∞
−∞

x(t) e−jωt dt

Problem: Find the Fourier transform of the following signal.

x(t) = e−tu(t) where u(t) =
{

1 if t > 0
0 if t < 0

Plot its real and imaginary parts.

Plot its magnitude and phase.



Fourier Transform

Find the Fourier transform of the following signal.

x(t) = e−tu(t) where u(t) =
{

1 if t > 0
0 if t < 0



Sketch Real and Imaginary Parts



Sketch Magnitude and Phase



Inverse Continuous-Time Fourier Transform

Find the signal whose Fourier transform is

X(ω) = e−|ω|



Continuous-Time Fourier Transform

Find the Fourier transform of:

x2(t) = e−(t−t0)u(t− t0)



Continuous-Time Fourier Transform

Find the Fourier transform of:

x3(t) = Sym{e−tu(t)}



Continuous-Time Fourier Transform

Find the Fourier transform of:

x4(t) = Asym{e−tu(t)}



Continuous-Time Fourier Transform

Find the Fourier transform of:

x5(t) = d

dt
Sym{e−tu(t)}



Continuous-Time Fourier Transform

Operations in time that map to multiplicative factors in frequency:

x(t) ctft←→X(ω)

x(t− t0) ctft←→ejωt0 X(ω)
dx(t)
dt

ctft←→jω X(ω)



Discrete-Time Fourier Transform

We can also apply these same ideas to DT signals. Consider the

following (aperiodic) DT signal:
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Can we represent this signal as a sum of DT sinusoids?



Toward the DTFT

Start by considering a related signal xp[·], which we create by sum-

ming shifted copies of x[·]:

xp[n] =
∞∑

m=−∞
x[n−mN ]
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Now we can compute a DTFS (for arbitrarily chosen N)!



Toward the DTFT

If we let N →∞, then xp[·]→ x[·], but xp[·] is still periodic, so we can

still represent it with a Fourier series!

The frequency Ω0 associated with k = 1 is defined to be 2π
N . As we

increase N to infinity, Ω0 gets smaller, and the spacing between the

coefficients in terms of rad/sec gets smaller and smaller (but the

overall shape remains similar). N = 5:
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Toward the DTFT

If we let N →∞, then xp[·]→ x[·], but xp[·] is still periodic, so we can

still represent it with a Fourier series!

The frequency Ω0 associated with k = 1 is defined to be 2π
N . As we

increase N to infinity, Ω0 gets smaller, and the spacing between the

coefficients in terms of rad/sec gets smaller and smaller (but the

overall shape remains similar). N = 11:

6 4 2 0 2 4 6
0.2

0.0

0.2

0.4

0.6

0.8



Toward the DTFT

If we let N →∞, then xp[·]→ x[·], but xp[·] is still periodic, so we can

still represent it with a Fourier series!

The frequency Ω0 associated with k = 1 is defined to be 2π
N . As we

increase N to infinity, Ω0 gets smaller, and the spacing between the

coefficients in terms of rad/sec gets smaller and smaller (but the

overall shape remains similar). N = 21:
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Toward the DTFT

If we let N →∞, then xp[·]→ x[·], but xp[·] is still periodic, so we can

still represent it with a Fourier series!

The frequency Ω0 associated with k = 1 is defined to be 2π
N . As we

increase N to infinity, Ω0 gets smaller, and the spacing between the

coefficients in terms of rad/sec gets smaller and smaller (but the

overall shape remains similar). N = 41:
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Toward the DTFT

If we let N →∞, then xp[·]→ x[·], but xp[·] is still periodic, so we can

still represent it with a Fourier series!

The frequency Ω0 associated with k = 1 is defined to be 2π
N . As we

increase N to infinity, Ω0 gets smaller, and the spacing between the

coefficients in terms of rad/sec gets smaller and smaller (but the

overall shape remains similar). N = 101:
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Fourier Series to Fourier Transform

Once we have a periodic signal, we can find the FSC:

Xp[k] = 1
N

∑
<N>

xp[n]e−jkΩ0n

where Ω0 = 2π
N .

Now we want to think about N → ∞ Let’s replace 1
N with Ω0

2π , and

explicitly pick a period to sum over:

Xp[k] = Ω0
2π

∫ N/2

−N/2
xp[n]e−jkΩ0t



Fourier Series to Fourier Transform

Now, substitute into the synthesis equation:

xp[n] =
N/2∑

k=−N/2
Xp[k]ejkΩ0n

=
N/2∑

k=−−N/2

{
Ω0
2π

∫ N/2

−N/2
xp[n]e−jkΩ0t

}
ejkΩ0n

As we take T →∞, a few things happen:

• xp[n]→ x[n]
• Ω0 becomes an infinitesimally small value, Ω0 → dΩ
• kΩ0 becomes a continuum, kΩ0 → Ω (continuous)

• The bounds of summation approach −∞ and ∞ (respectively)

• The outer sum becomes an integral.



Discrete-Time Fourier Transform

Synthesis Equation

x[n] = 1
2π

∫
2π
X(Ω) e jΩn dΩ

Analysis Equation

X(Ω) =
∞∑

n=−∞
x[n] e−jΩn



Discrete-Time Fourier Transform

Synthesis Equation

x[n] = 1
2π

∫
2π
X(Ω) e jΩn dΩ

Analysis Equation

X(Ω) =
∞∑

n=−∞
x[n] e−jΩn



Discrete-time Fourier Transform

Problem: Find the Fourier transform of the following signal.

x[n] = anu[n] where u[n] =
{

1 if n ≥ 0
0 otherwise

Sketch its magnitude and phase.



Inverse Discrete-Time Fourier Transform

Find the signal whose Fourier transform is

X(Ω) = e−j3Ω



Discrete-Time Fourier Transform

Find the Fourier transforms of the following discrete-time signals.

• x1[n] = anu[n] where u[n] =
{

1 if n ≥ 0
0 otherwise

• x2[n] = a(n−n0)u[n− n0]

• x3[n] = Sym{anu[n]}

• x4[n] = Asym{anu[n]}

• x5[n] = nanu[n]



Discrete-Time Fourier Transform

Find the Fourier transform of

x2[n] = a(n−n0)u[n− n0]



Discrete-Time Fourier Transform

Find the Fourier transform of

x3[n] = Sym{anu[n]}



Discrete-Time Fourier Transform

Find the Fourier transform of

x4[n] = Asym{anu[n]}



Discrete-Time Fourier Transform

Find the Fourier transform of

x5[n] = nanu[n]



Discrete-Time Fourier Transform

Find the Fourier transform of x6[n]:

x6[n] =
{

(a)n/2 n = 0, 2, 4, 6, 8, ...,∞
0 otherwise

n

x6[n]

−1 0 1 2 3 4 5 6 7 8 9 10

1
a

a2
a3

a4 a5

Plot the magnitude and angle of X6(Ω) versus Ω.



Discrete-Time Fourier Transform

x6[n] =
{

(a)n/2 n = 0, 2, 4, 6, 8, ...,∞
0 otherwise



Power Square

Find the sum of the numbers in the infinite quadrant shown below,

where a < 1.
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