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Abstract

This is scenario for our problem: there is a finite flat plate immersed in
a parallel horizontal background flow, hinged at the leading edge. Above
the plate is red fluid and below the plate is blue fluid. The free end of the
plate oscillates about the horizontal axis in a prescribed periodic fashion.
As fluid moves past the plate, a boundary layer of vorticity is formed and
separates from the free end. The separated shear layer rolls up into consec-
utive vortices of opposite sign, one vortex per stroke of the plate. We model
this system using the Euler equations, which do not include the effects of
viscoscity, the “stickiness” of a fluid. Because of this, we would not have
boundary layer separation. This aspect of viscous flow is modelled by shed-
ding point vortices parallel from the trailing edge of the plate at every time
step, imposing the Kutta condition upon each point. The shed vorticity is
modelled by a regularized vortex sheet attached to the trailing tip of the
plate. The plate is modelled by a bound vortex sheet whose strength is
determined at each time step such that no flow goes through the wall and
circulation remains constant using Kelvin’s theorem. We then implement
the fourth-order Runge Kutta method to progress the system at every time
step. T computational results consist of the shed vortex sheet at a sequence
of times, with red particles above the sheet and blue below. We estimate the
amount of mixing by averaging the amount of blue and red particles in boxes
of size 2h. Results are presented for different values of h, and show that there
is a larger proportion of red particles in every other vortex. We also observe
the displacement of individual fluid particles in a reference frame fixed at
infinity and determine that there are interesting patterns within the vortex
showing regions in which particles have returned to their original positions.
Results also show that the integral displacement Vd(t) =

∫∫
R d(x0, t)dx0 of

fluid particles moving through the flow past the plate increases as a function
of time, seemingly without leveling off. In the future, we want to complete
a longer run simulation in order to see if over extended periods of time, the
distance function eventually hits a plateau.
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Chapter 1

Introduction

With the realization of the importance of climate change research, there is
an increased interest in the effect of mixing in water sources, particularly
oceans, and its effect on nutrient movement and temperature change. A
recent article from Nature details the efforts of a pair of scientists to measure
the level of mixing induced by the motion of sea creatures [2]. They found
that for large sea creatures, the amount of biogenic mixing induced is a
significant contributor to ocean mixing and nutrient transport. With this
research in hand, one is inclined to ask, then, how much mixing actually
occurs?

This is the inspiration for our current research. We wish to find a math-
ematical measure of the intensity of mixing as a fish swims through fluid at
rest far away, such as in a fish bowl. We have chosen to study the problem
in a reference frame fixed on the fish, and model the fish by an oscillating
flat plate. The plate is immersed in a parallel horizontal background flow,
hinged at the leading edge. Above the plate is one color fluid (i.e., red) and
below is a different color fluid (i.e., blue). The free end of the plate oscillates
about the horizontal axis in a prescribed periodic fashion. As fluid moves
past the plate wall, a boundary layer of vorticity is formed and separates
from the free end. The separated shear layer rolls up into a vortex, but with
every oscillation of the plate, the vorticity in the shear layer changes sign.
Thus the shed vorticity rolls up into a set of vortices of opposite sign. Refer
to Figure 1.1 for a visual.

Our question is how much this motion mixes the blue and red fluids.
In order to determine the answer to this, we first develop a mathematical
model based on Euler’s equations to mimic this phenomenon. The parts of
the model include approximating the plate by a bound vortex sheet, approx-
imating the flow by a free vortex sheet, and approximating the separation
of vorticity via the Kutta condition. We neglect the diffusion of viscoscity
within the model, so we have a sharp difference in velocity across the free
sheet rather than a smooth transition. In the following sections, we will
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Figure 1.1: Visual of the Model

discuss in detail the parts of the model.
We then develop a measure of proportion of mixing using a coarse and

fine grid of points laid over the flow. The coarse grid is used as the corner
of boxes, within which we use the fine grid to measure the proportion of
red fluid particles to total fluid particles. This gives us a level of mixing,
and using different sized coarse grids allows us to explore different levels of
mixing. In addition to this, we then investigate the displacement over time
of particles in a large “slab” of points. In a reference frame fixed at infinity,
we track the displacement of the particles within the slab of fluid as the plate
travels through. We quantify this displacement in two ways. First, we plot
the total displacement of each particle for a sequence of times. Second, we
compute the integral displacement of all particles in the slab as a function
Vd(t). This function appears to grow based on our data, but appears to
be approaching a plateau. Ideally, we would like to complete a longer run
simulation to see if this is truly a plateau or if this function continues to
grow.

The thesis is organized as follows. Chapter 2 describes the background of
the problem. Chapter 3 describes the results of our mixing analysis. Chapter
4 describes the results of the displacement analysis. Chapter 5 summarizes
the results and describes future research directions.
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Chapter 2

Background

In this chapter, we will detail the background that contributes to the con-
struction of our model[1].

2.1 Vorticity

Let u = (u, v, w, t) be the velocity vector field of the fluid flow. Then
the vorticity is defined as the curl of the velocity: ω = ∇ × u = (wy −
vz, uz − wx, vx − uy). Vorticity is the rotation of a fluid - like water in
a sink or bathtub as it is let out through the drain. Taylor series shows
that the fluid velocity is locally approximated by the superposition of a
translation (constant velocity) plus irrotational strain field (irrotation means
zero vorticity) plus rotating flow that rotates in the plane normal to the
vorticity vector with angular velocity equal to half the magnitude of the
vorticity vector. In a two-dimensional flow in the (x, y) plane, we have that
w = 0 and ∂

∂z = 0. As a result, ω = (0, 0, vx− uy), so the vorticity points in
the z direction. The nonzero component vx − uy is referred to as the scalar
vorticity. Our oscillating plate flow is assumed to be two dimensional. Refer
to Figure 2.1.

Circulation around a given curve, denoted ΓC , is given by equation (2.1).
Using Stokes Theorem, we see that ΓC =

∫
ωdA, or in our case, ΓC =∫

(vx − uy)dxdy.

ΓC =

∮
C

u · ds =

∫ L

0
u ·Tds =

∫
ωdA. (2.1)

For a single vortex, which we call a point vortex, we have that ω =
Γδ(x, y). Basically, this vortex is modelled by a delta function. A delta
function is a function which is zero everywhere except at the origin, where
the function is so large that its integral value is nonzero. Thus the flow
induced by a point vortex at the origin has zero vorticity everywhere outside
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Figure 2.1: Sample Vorticity Vectors

the origin, but it has nonzero total circulation. The induced velocity is given
by equation (2.2)[6].

(u, v) =
Γ

2π

(−y, x)

x2 + y2
(2.2)

In complex notation, associating the complex number z = x + iy with
the point (x, y) in the plane, we can write the conjugate complex velocity as

u− iv =
−Γ

2π

(y + ix)

x2 + y2

=
Γ

2πi

(x− iy)

x2 + y2

=
Γ

2πi

1

x+ iy

=
Γ

2πiz
.

(2.3)

Point vortices are an essential part of our model. We use them for the
plate and for the flow that is induced by the plate. This will be covered in
later sections.

2.2 Euler and Navier-Stokes

In this section, we will discuss Euler’s and Navier-Stokes’ equations, includ-
ing their contribution to our model. We will start with their inspiration,
as it comes from common physical principles. There are three equations
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which make up both Euler and Navier-Stokes systems: one based on conser-
vation of mass, one on conservation of momentum, and one on conservation
of energy. We will begin with mass to follow the derivation by Chorin and
Marsden [1].

In the derivations below, we often refer to the following theorem and its
generalization to higher dimensions, stated here without proof.

Theorem 1. Leibniz Formula If f is a continually differentiable function
in [a, b] (i.e., f ∈ C1[a, b]), then d

dt

∫ b
a f(t, s)ds =

∫ b
a
∂
∂tf(t, s)ds. See [5],

page 324.

2.2.1 Euler Equations

The first equation follows the conservation of mass, the law which states
that mass is neither created or destroyed. There are two versions of this
equation. The first is the integral form:

d

dt

∫
W
ρdV = −

∫
∂W

ρu · ndA (2.4)

where W is a fixed subregion of fluid, with smooth boundary ∂W , and
ρ(x, t) is the mass density. Here, n is the outward pointing normal to W .
This equation states that the rate of increase of mass in W equals the rate
at which mass is crossing ∂W in the inward direction. By the divergence
theorem, which states that over a given region S and its piecewise smooth
boundary ∂S with positive origin,

∫ ∫
∂S F · dS =

∫ ∫ ∫
S divFdV where F is

C1, we can rewrite equation (2.4) as
∫
W

[
∂ρ
∂t + div(ρu)

]
dV = 0. Because

this equation is to hold for every W , we can again rewrite it as:

∂ρ

∂t
+ div(ρu) = 0. (2.5)

or, by the identity ∇(fF) = f(∇ · F) + F · ∇f , where f = ρ and F = u,

∂ρ

∂t
+ ρ∇ · u + u · ∇ρ = 0

Dρ

Dt
+ ρ∇ · u = 0

(2.6)

where Dρ
Dt = ∂ρ

∂t+u·∇ρ. This is called the differential form of the conservation
of mass, or the continuity equation. In this equation, we see that if the
divergence of ρu is positive, then there is compression in the system. The
reverse, when the divergence of ρu is negative, leads to expansion.

The second equation is based on the balance of momentum. The physical
property behind this equation is the law that every action (or force) must
have an equal and opposite reaction in a closed system. That is, in a closed
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system, the total momentum is constant. In the Euler equations, this second
equation is:

ρ
Du

Dt
= −∇p+ ρb (2.7)

where D
Dt = ∂t + u · ∇ is the material derivative, p(x, t) is the pressure,

and b(x, t) are the body forces per unit mass. This equation can also be
compared to Newton’s second law, which states that force is the same as
mass times acceleration. In our model, we drop the extraneous body forces,
so our equation is simplified to ρDu

Dt = −∇p.
The final equation is actually split between two types of flow: incom-

pressible, where the material density is constant within a fluid particle or,
alternatively, the divergence of the velocity vector field is 0; and isentropic,
which is compressible and characterized by the existence of a function w
such that ∇w = 1

ρ∇p. Our flow is incompressible and so we will look in
more detail at this version.

In incompressible flow, it is assumed that all of the energy in the system
is kinetic energy and that the rate of change of kinetic energy in a portion of
fluid equals the rate at which the pressure and body forces do work. That
is, d

dtEkinetic = −
∫
∂Wt

pu ·ndA+
∫
Wt
ρu ·bdV . Because of incompressibility

(i.e., div(u) = 0) and the divergence theorem, we see that this is the same
as −

∫
Wt

(u · ∇p − ρu · n)dV , but this is a consequence of the balance of
momentum equation. Thus, we have that in incompressible flows, the Euler
equations are:

ρ
Du

Dt
= −∇p

Dρ

Dt
= 0

div(u) = 0

(2.8)

with the boundary condition that no fluid goes through wall boundaries of
the fluid, i.e.,

u · n = uwall · n. (2.9)

2.2.2 Navier-Stokes Equations

The Navier-Stokes’ equations are similar to the Euler equations with two
distinct differences: the balance of momentum equation and an additional
boundary condition. If we recall equations (2.8), the second is the balance
of momentum for incompressible flows. In Navier-Stokes, however, we have
a diffusion term brought on by viscosity. This term comes about from the
natural “stickiness” or “thickness” of a fluid, such as honey, which has a
much higher viscosity than water. Physically, honey will stick to a wall as
it moves past in a visible layer, whereas water has less resistance and will
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have a very thin boundary layer. The equation is:

Du

Dt
= −∇

(
p

ρ0

)
+
µ

ρ0
4u (2.10)

where ρ0 is a constant density and µ
ρ0

is the coefficient of kinematic viscosity,
which is responsible for diffusion within the system.

The extra boundary condition for Navier-Stokes completes the system of
equations and is consistent with physical observations: no flow at the wall.
It leads to boundary layer formation. To define, a boundary layer forms in a
thin layer of fluid near a wall as the velocity decreases, eventually becoming
0 at the wall. In equation form, this condition is u = 0 at the wall. This is
called the “no-slip condition”. As a result, the velocity on the wall becomes
zero. Since the effect of viscosity is to resist, the velocity close to the wall
continuously decreases, while away from the wall the velocity is equal to
that of the fluid flow. Thus a layer with a velocity gradient establishes itself
close to the wall . This is the boundary layer. All together, we have that
the Navier-Stokes equations for homogeneous flow (constant density ρ = ρ0)
are:

Du

Dt
= −∇

(
p

ρ0

)
+
µ

ρ0
4u

div(u) = 0

(2.11)

with the boundary conditions that u = 0 at the walls and u · n = 0.

2.3 Shear Layer

A shear layer is a region of a flow where there is a significant velocity gra-
dient, or where tangential velocity changes sharply, across a border, such as
at the boundary of a wall. This in particular is called a boundary layer. As
the flow gets closer to the wall, the velocity slows down, eventually reaching
0 at the wall itself. Refer to Figure 2.2.

Realistically, this is what will happen when flow is approaching the flap-
ping plate. As flow gets close to the plate, the viscoscity, or “stickiness” of
the fluid, increases, and a boundary layer will form. This causes the velocity
to slow to almost zero near the plate and actually zero at the wall. Once
past the plate, the boundary layer will separate, which causes trailing con-
centrations of vortices to form. This flow can be simplified using the Euler
equations, which we discussed in more detail in Section 2.2. Our hypothesis
is that within these vortices, significant mixing occurs.

2.4 On Circulation in Inviscid, Homogeneous Flows

Definition 1. The circulation around a closed curve Ct is defined: ΓCt =∮
Ct

u · ds[1].
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Figure 2.2: Free Shear Layer in the Interior of a Fluid

Definition 2. A vortex sheet or vortex line is a surface S or a curve L
that is tangent to the vorticity vector ω at each of its points[1].

Definition 3. A vortex tube consists of a two-dimensional surface S,
bounded by a curve C, that is nowhere tangent to ω, with vortex lines drawn
through each point of C[1].

Lemma 1. Let u be the velocity field of a flow and C a closed loop with
Ct = φt(C) a loop transported by the flow. Then d

dt

∫
Ct

u · ds =
∫
Ct

Du
Dt ds.

Proof. Let x(s) be a parametrization of the loop C, 0 ≤ s ≤ 1. Then a
parametrization of Ct is φ(x(s), t) such that ∂φ

∂t = u. By definition of the
line integral,

d

dt

∫
Ct

u · ds =
d

dt

∫ 1

0
u(φ(x(s), t), t) · ∂

∂s
φ(x(s), t)ds.

Because our dependence is now on s, we can now move the d
dt inside the

integral. Using the product rule, we now have
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d

dt

∫
Ct

u · ds =

∫ 1

0

∂

∂t

[
u(φ(x(s), t), t)

]
· ∂
∂s
φ(x(s), t)

+ u(φ(x(s), t), t) · ∂
∂t

∂

∂s
φ(x(s), t)ds

=

∫ 1

0

[
∂

∂t
u +

∂

∂x
u
dx

dt
+

∂

∂y
u
dy

dt
+

∂

∂z
u
dz

dt

]
· ∂
∂s
φ(x(s), t)

+ u(φ(x(s), t), t) · ∂
∂t

∂

∂s
φ(x(s), t)ds

=

∫ 1

0

[
∂

∂t
u + (u · ∇)u

]
· ∂
∂s
φ(x(s), t)

+ u(φ(x(s), t), t) · ∂
∂t

∂

∂s
φ(x(s), t)ds

=

∫ 1

0

Du

Dt
(φ(x(s), t), t) · ∂

∂s
φ(x(s), t)ds

+

∫ 1

0
u(φ(x(s), t), t) · ∂

∂t

∂

∂s
φ(x(s), t)ds.

where, by convention, D
Dt denotes the material derivative D

Dt = ∂
∂t + u · ∇.

By definition, ∂φ
∂t = u, so the second term becomes

∫ 1

0
u(φ(x(s), t), t) · ∂

∂s
u(φ(x(s), t), t)ds =

1

2

∫ 1

0

∂

∂s
(u · u)ds.

Because Ct is closed, we get that the second term equals zero. Changing
out of the parametrization to the original coordinate system, the first term
equals ∫

Ct

Du

Dt
ds.

Theorem 2. Kelvin For isentropic flow without external forces, the circu-
lation ΓCt is constant in time.

Proof. Using the lemma and that the flow is isentropic, inviscid flow, with
no external forces, (i.e., Du

Dt = −∇w),

d

dt
ΓCt =

d

dt

∮
Ct

u · ds

=

∮
Ct

Du

Dt
ds

= −
∮
Ct

∇w · ds

= 0
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because Ct is closed.

Theorem 3. Helmholtz If ρ is constant, then (1) If C1 and C2 are any
two curves encircling a vortex tube, then

∮
C1

u · ds =
∮
C2

u · ds = Γ, and
we call this common value the strength of the tube. (2) The strength of the
vortex tube is constant in time as the tube moves with the fluid.

Proof. Let C1 and C2 be as in Figure 2.3. The surface connected by these two
curves is labeled S, and the end faces enclosed by C1 and C2 are labeled S1

and S2, respectively. The region enclosed by the curves and S is denoted by
V , and Σ = S∪S1∪S2. By Gauss’ theorem, which states that

∫∫
R∇·FdV =∫

∂R F · dA, we have

0 =

∫
V
∇ · ωdx =

∫
Σ
ω · dA

=

∫
S1∪S2

ω · dA +

∫
S
ω · dA

=

∫
S1

ω · dA +

∫
S2

ω · dA +

∫
S
ω · dA.

Because each part of this equation must equal zero, then we know that∫
S1

ω · dA = −
∫
S2

ω · dA. By Stokes’ theorem, however, we know both∫
C1

u · ds =

∫
S1

ω · dA∫
C2

u · ds = −
∫
S2

ω · dA

and since the right hand sides are equal, the first part of the theorem is
proven. The second part follows as a direct result from Kelvin’s theorem.

Figure 2.3: Image taken from [1].
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2.5 The Vortex Sheet Approximation

In simulations, shear layers are difficult to model. For simplicity, we will
approximate this shear layer with a vortex sheet. A vortex sheet is a surface
of zero thickness characterized by a jump discontinuity in tangential velocity,
rather than a diminishing velocity close to the wall, and can be viewed as
an infinite sum of point vortices. Refer to Figure 2.4.

Figure 2.4: Example of a Vortex Sheet

To parametrize this sheet, we must utilize Kelvin’s theorem. The follow-
ing subsections will describe in more detail.

2.5.1 Birkhoff-Rott Equations

Figure 2.5: Jump Discontinuity in Velocity
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The velocity of this free vortex sheet is given by the Birkhoff-Rott equa-
tions, which simply state that the sheet is given by an infinite superposition
of point vortices. That is, if z(Γ, t) = x(Γ, t) + iy(Γ, t), where z(Γ, t) de-
scribes the vortex sheet position, with flow of a simple point vortex described
by equation (2.3), parameterized by circulation Γ, then the velocity is given
by the principal value integral, denoted by a dash through the integral sign:

dz̄

dt
=

1

2πi
−
∫

dΓ′

z(Γ, t)− z(Γ′, t)
=
u+ + u−

2
. (2.12)

where u+ is the velocity above the sheet and u− the velocity below the sheet,
as in Figure 2.5. This second equality follows from the Plemelj relation,
which is not shown here. For our approximation, we discretize this by zj(t) =
z(Γj , t) and get

dzj
dt

=
1

2πi

N∑
k=1,k 6=j

∆Γ

zj − zk
. (2.13)

The function σ(s) is called the vortex sheet strength. Referring to Figure
2.6 for a visual, we can define the following:

∆Γ =

∫
∆C

u · ds

≈ −u+∆s+ u−∆s

= −(u+ − u−)∆s.

So we see that
∆Γ

∆s
≈ −(u+ − u−) = −[u]+− = σ(s). (2.14)

We call this the strength.

Figure 2.6: Vortex Sheet Visual
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2.5.2 Instability

We now have to consider the possibility of an instability, however. We start
with equation (2.12). We multiply the top and the bottom by z(Γ, t)− z(Γ′, t),
replace z(Γ, t) = x+iy and z(Γ′, t) = x′+iy′, and receive the following equa-
tions:

dx

dt
=
−1

2π
−
∫

y − y′

(x− x′)2 + (y − y′)2
dΓ′

dy

dt
=

1

2π
−
∫

x− x′

(x− x′)2 + (y − y′)2
dΓ′

(2.15)

Consider a small perturbation of a flat sheet in the form x(Γ, t) = Γ +
p(Γ, t), y(Γ, t) = Γ + q(Γ, t) where p = PeωteikΓ and q = QeωteikΓ, and p, q
are small, O(ε). Then we get

x− x′ = Γ− Γ′ + p(Γ, t)− p(Γ′, t) = Γ− Γ′ + p− p′

y − y′ = q(Γ, t)− q(Γ′, t) = q − q′.
(2.16)

From here we get

(x− x′)2 + (y − y′)2 = (Γ− Γ′)2 + 2(Γ− Γ′)(p− p′) +O(ε2). (2.17)

Then we see that

1

(x− x′)2 + (y − y′)2
=

1

(Γ− Γ′)2 + 2(Γ− Γ′)(p− p′) +O(ε2)

=
1

(Γ− Γ′)2

[
1

1 + 2(p−p′)
Γ−Γ′ +O( ε2

(Γ−Γ′)2 )

]
.

(2.18)

Using the Taylor expansion of 1
1−x where x = −2(p−p′)

Γ−Γ′ −O( ε2

(Γ−Γ′)2 ), we get

1

1 + 2(p−p′)
Γ−Γ′ +O( ε2

(Γ−Γ′)2 )
= 1− 2(p− p′)

Γ− Γ′
−O

(
ε2

(Γ− Γ′)2

)
+O(ε4)

(2.19)
so then (2.18) becomes

1

(x− x′)2 + (y − y′)2
=

1

(Γ− Γ′)2

[
1− 2(p− p′)

Γ− Γ′
+O(ε2)

]
. (2.20)

We then multiply (2.20) by x− x′ and do some algebra to get:

x− x′

(x− x′)2 + (y − y′)2
=

1

Γ− Γ′
− p− p′

(Γ− Γ′)2
+O(ε2). (2.21)
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From here we get the linearized equations, dropping the smaller terms:

dx

dt
=
−1

2π
−
∫

q − q′

(Γ− Γ′)2
dΓ′

dy

dt
=

1

2π
−
∫

1

Γ− Γ′
− p− p′

(Γ− Γ′)2
dΓ′

=
−1

2π
−
∫

p− p′

(Γ− Γ′)2
dΓ′.

(2.22)

The first term in the second integral goes to zero, so it is dropped out and
the formula for dy

dt simplifies.

Plugging in our values for p and q into dx
dt from (2.22),

PωeωteikΓ =
−1

2πi
−
∫
Qeωt(eikΓ − eikΓ′)

(Γ− Γ′)2
dΓ′

Pω =
−1

2πi
−
∫
Q(1− eik(Γ′−Γ))

(Γ− Γ′)2
dΓ′

=
−Q
2π
−
∫ ∞
−∞

1− eikx

x2
dx

=
Qk

2
.

(2.23)

This last equality follows from the residue theorem. Similarly, we can de-
termine that Qω = Pk

2 . Then we multiply the two results together and
get

PQω2 = PQ
k2

4

ω2 =
k2

4

ω = ±k
2
.

(2.24)

This is our dispersion relation. This dispersion presents us with two
problems. First, we get exponential growth of high wavenumbers being in-
troduced by roundoff. That is, once we decrease past machine precision,
roundoff error is present in the system, which creates the potential for expo-
nential growth of w. The second problem comes in the form of a singularity
formation in finite time - that is, after some critical time tc, this filter no
longer works, so there will be no convergence of our point vortex approxi-
mation and k will continue to grow infinitely. We will cover the proposed
solution to both of these problems in the next section.

2.5.3 Regularization

We must ask ourselves why the problems presented above are important.
Machine accuracy can be significantly affected by the introduction of spuri-
ous roundoff error as it combines upon itself with each progessive timestep.
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“When an analytic function is interpolated at equidistant points in exact
arithmetic, the discrete Fourier coefficients decay exponentially with in-
creasing wavenumber” but roundoff error can actually make these coeffi-
cients increase[3]. This creates irregular point motion, the likes of which
is not seen in real flows. This roundoff error only increases with the num-
ber of intervals. Robert Krasny completed a study in 1986 which shows
that for N = 50 equally spaced interpolation points, there is a relatively
small amount of irregular point motion. For N = 100, however, irregular
point motion appears early and increases exponentially due to compounded
roundoff error. Because of this, one is unable to use any large values of N,
thus becoming unable to achieve any increased accuracy in interpolation.

Robert Krasny presented a method of correction for the instabilities
presented by the Birkhoff-Rott discretizations in 1986[3]. The first of these
methods is to impose a filter upon the system which, below a certain machine
representation level, any Fourier coefficient will be automatically set to 0
rather than be allowed to decrease below machine precision, thus causing
artificial computational noise. For example, we could say that any coefficient
below 10−13 be set to 0. This method is referred to as the “Krasny filter”.

There is an outstanding issue with the Krasny filter, however – it only
works before the time that a singularity forms in the flow. In our case,
we have a singularity immediately, so we can never implement the Krasny
filter. How, then, do we fix our flow such that we get regular point motion
and roll up? The answer was also given by Krasny[4]. Instead of a filter
which only works before the critical time tc, this method works from the very
beginning. He implements a regularization to the Birkhoff-Rott equations to
desingularize them. He introduces a small δ > 0 and receives the equation:

dz̄

dt
=

1

2πi
−
∫

z(Γ, t)− z(Γ′, t)dΓ′

|z(Γ, t)− z(Γ′, t)|2 + δ2
(2.25)

with the discretization

dzj
dt

=
1

2πi

N∑
k=1,k 6=j

zj − zk∆Γ

|zj − zk|2 + δ2
. (2.26)

This equation produces convergence in N and δ past the critical time which,
before, was unable to be passed, and allows for the creation of the “spiral”
like appearance of real flows. Krasny’s analysis revealed accurate and low-
error, with high resolution, roll up. Thus, this discretization in equation
(2.26) is the one present in our model.

2.6 Modelling Flow Past an Oscillating Plate

Using all of the pieces from previous sections, we will now describe our model
in detail. Our model consists of three main parts: the free and bound vortex
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sheet, the boundary layer separation, and our numerical approach

2.6.1 The Free Sheet

Figure 2.7: Free Vortex Sheet

The separated shear layer is modelled by a free vortex sheet. Its induced
velocity is regularized, given by equation (2.26).

2.6.2 The Bound Sheet

The plate is modelled by a vortex sheet bound to the plate whose strength
σ(s) is determined such that the fluid velocity does not cross the plate. To
recall from Section 2.2 on the Euler and Navier-Stokes equations, the first
part is given by the formula u · n = uwall · n. The plate is approximated
by a sum of point vortices of strength ∆Γk that induce velocity given by
equation (2.13).

Figure 2.8: Bound Vortex Sheet

18



Figure 2.9: Boundary Layer Separation

2.6.3 Modelling Boundary Layer Separation

The next part of the model is releasing point vortices into the flow to simulate
the boundary layer separation which is absent in the Euler equations. In
this process, we have to determine two criteria: first where to place the
vortices and second with what circulation. The “where” is given as parallel
to the edge of the plate with the average veocity of u− and u+. We must

invert the system given by σedge = −(ue+−ue−) and uaverage,edge =
ue++ue−

2 to
determine this. The second determines that the circulation must be forced
to adhere to the Kutta Condition.

Theorem 4. Kutta Condition In inviscid, incompressible flow, satisfying
the inviscid Euler Equations (refer to (2.8)), with fluid leaving parallel to the
edge, the amount of vorticity shed from an edge satisfies dΓ

dt = 1
2(u2
− − u2

+).

Figure 2.10: Shedding Off Plate - Kutta Condition

19



Proof. Refer to Figure 2.10 for a visual. We know by definition that Γ(t) =∮
Ω ωdV . Then from the Euler equations

dΓ

dt
=

d

dt

∮
Ω
ωdV

=

∮
Ω

∂ω

∂t
dV.

From incompressibility and the identity ∇(fF) = f(∇ ·F) + (∇f) ·F where
f is a scalar function and F is a vector function, it follows that, using f = ω
and F = u ∮

Ω

∂ω

∂t
dV = −

∮
Ω

(u · ∇)ωdV

= −
∮

Ω
∇ · (ωu)dV.

Then using the divergence theorem,

−
∮

Ω
∇ · (ωu)dV = −

∮
∂Ω
ωu · ndS.

We assume from this point, for simplicity, that we have a reference frame in
which the plate is parallel to the x-axis. Because of this, it follows that

−
∮
∂Ω
ωu · ndS = −

∮
∂Ω

∂u

∂y
udy

= −
∮
∂Ω

1

2

∂(u2)

∂y
dy

=
1

2
(u2
− − u2

+).

Together, the Kutta condition, the strength, and the average velocity
at the edge restrictions determine the vortex shedding, which is essential to
each progressive time step.

2.6.4 Numerical Method

Nitsche and Krasny[7] developed the model described above to simulate
axisymmetric flow out of a circular tube. Sheng et al.[8] applied this model
to planar flow past the oscillating plate, as considered in this work. Our
model must be updated at each time step using fourth-order Runge Kutta
in states, as follows:

(1) Compute the sheet strength σ so that the fluid velocity normal to the
plate is equal to the plate’s normal velocity. This is achieved by determining
the plate’s position at time t, then calculating the right hand side of a system
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Ax = b, where b is the velocity, accounting for that induced by the plate,
and x is σ.

(2) Evolve the system parts:
(a) free sheet using dx

dt = ufreesheet + uplate, where uplate uses the
updated σ

(b) Γ using the Kutta condition, as described in 2.6.3

(c) plate (i.e., bound sheet) using
dxplate
dt = uplate.

After every stage within Runge-Kutta, (1) and (2) are both updated.
After all stages of Runge-Kutta are completed, the vortex locations on the
sheet and plate are updated as well as the time and σ. Then an insert
routine is initiated (if necessary) to add extra points on the free sheet if
two neighboring points are too far apart, the definition of “too far” being
determined by the user at initialization.

See Figure 2.11 for the complete model, where the green is the plate,
the blue is the vortex sheet, and the background lines are instantaneous
streamlines (added in post-processing).

Figure 2.11: Complete Model
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Chapter 3

Mixing Results

Our first goal of this project is to determine the degree to which fluid mixes
when a fish swims past. Now that we have created the model of the physical
system, we can actually begin to conduct our analysis. We require a few
more steps before we can ultimately measure our mixing, though.

3.1 Set-Up

After running our code in FORTRAN, we have an output file in MATLAB
format. We load the data into MATLAB and then introduce two grid point
meshes on top of the calculated flow: a fine mesh and a coarse mesh. The
coarse mesh will be used as corners of “boxes” around the elements within
the fine mesh, where the parameter h defines half the side length of the
“box”. At each point of the fine mesh, we position a particle and determine
whether this particle is “red” or “blue”. Then we count the proportion of
red particles in each of the boxes of the coarse mesh and assign this value
to the center point of the coarse mesh.

To assign “red” and “blue”, we must complete some simple calculations.
First, for a point f0(x, y) in the fine mesh, we must find the point xs(x, y)
on the sheet which is closest. Once we have found this closest point, we then
create two vectors V1 and V2. The formulas are:

V1 = xs+1 − xs
V2 = f0 − xs

(3.1)

where xs+1 is the next point on the sheet in order of progression. We then
take the cross product of these vectors. This will result in a vector which
points only in the z direction. If the nonzero entry is negative, then f0 is on
the left side of the sheet and is assigned red. Otherwise, f0 is blue.

We repeat this process for all of the points in the fine mesh. We then
create a matrix with binary entries where each point is represented with
either 1 or 0 (red or blue, respectively). We now incorporate the coarse
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mesh. As stated earlier, we use the coarse mesh as corners on boxes which
surround the points in the fine mesh.

First we pick four points from the coarse mesh that are arranged in a box
and determine which fine mesh points reside inside of the corners. We isolate
these entries from the binary matrix and sum them. We then divide this
number, denoted R, by the total number of entries taken from the binary
matrix, denoted T . This gives us a proportion, denoted M , of red points to
total points within each box. As an example, say that the box created by
our coarse mesh contains 12 points of the fine mesh. If 3 of the contained
points are red, then the proportion would be 0.25.

3.2 Measuring Mixing

Using the process described in 3.1 with different size coarse grids, we gener-
ate several matrices of mixing proportions. Images are shown in Figure 3.1.
(Larger images are shown at the end of the section.)

Each row of images in Figure 3.1 refers to a different size coarse grid,
where h quantifies half the side length of the box. For example, (a) and (b)
use h = 0.1, so the box used in these images has side length 0.2.

These images tell us a great deal about the intensity of mixing. As
expected, mixing only truly occurs in the vortices as particles from above
and below the sheet roll up with the sheet (though they do not cross, as will
be discussed in 4.2). We also see that as h approaches zero, the smearing
caused by the mixing shrinks considerably and the image reverts to that of
just the vortex sheet.

Not as expected, however, is what happens within a vortex pair. As one
can see, the left vortex of this pair clearly shows a larger proportion of blue
particles whereas the right vortex clearly has more red particles. The case
seems to be the same for every vortex pair. One vortex will clearly dominate
in a certain color. We theorize that this is due to movement bias caused by
the plate. That is, when the plate moves downward, there will be a larger
amount of red particles present to be rolled into the sheet. The opposite is
true when the plates moves upward - there will be a larger amount of blue
particles.
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(a) Mixing, h=0.1 (b) Mixing, h=0.1, zoom

(c) Mixing, h=0.2 (d) Mixing, h=0.2, zoom

(e) Mixing, h=0.4 (f) Mixing, h=0.4, zoom

Figure 3.1: Mixing Results
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Chapter 4

Particle Displacement

Having determined a measurement of mixing in our model, we then move
our focus to our second goal: measuring displacement. In order to monitor
and calculate the dispersion of fluid particles as they travel past the plate
and become trapped within vortices, we have to add one more element to
the model: a “slab” of fluid particles, placed behind the plate, which moves
with the velocity of the background flow as shown in Figure 4.1. These
particles will travel with the flow and, through mixing and otherwise, become
displaced from their original position. We reverse the reference frame for
this part of the problem, fixing the frame at infinity rather than on the
plate. This analysis is also completed during post-processing, just as with
the mixing results.

Figure 4.1: Flow with “Slab”
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4.1 Our Formula

In order to measure integral displacement, we had to develop a numerical
approximation. In a reference frame fixed at infinity, we replace u by u−u∞,
where u∞ is the constant velocity of the background flow. We denote the
integral displacement as Vd(t), which is dependent on time t. Our formula
is:

Vd(t) =

∫∫
R
d(x0, t)dx0

≈
∑
i

∑
j

d(x0(i,j), t)∆x∆y
(4.1)

where d(x0, t) = |x(t; x0)− x0| and x(t) solves the differential equation

dx

dt
= (u− u∞)(x, t)

x(0) = x0

(4.2)

for every x0 in the “slab” of points.

4.2 The Results

We calculate Vd at every time step for seven periods to create a plot of the
function in time. The result of this process can be seen in Figure 4.3, which
is plotted on a log-linear scale.

We found this result surprising. The level part at the beginning details
the portion of the simulation before the plate hits the slab of points. After-
wards, as we would expect, there is a sharp exponential growth in integral
displacement as points become trapped in vortices and swirl away from their
original positions. We hypothesized before, however, that the points would
then spin back to close to their original positions and we would see a leveling
off of the graph. This picture seems to mirror the shape of either a square
root or logarithmic function. Both of these, though they will increase at a
decreasing rate, will increase to infinity, implying that the points never reach
a steady state. We know from real flows that flows absolutely must steady
out - like in a pond, where ripples will eventually dissipate given enough
time. We theorize that this is an issue with our model.

In addition to this function, we also decided to see where the most move-
ment occurs. We chose to make a video of the evolution of d(x0, t) at each
point x0. As we obviously cannot include the video in this paper, refer to
Figure 4.2 for three snapshots of the video at different points in time.

The blue areas refer to points that have not moved far from their original
locations or, at later times, have returned to close to their original location.
Yellow refers to points that have moved moderately far from their original
locations, and red refers to points that have moved significantly far from
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their original positions. The points in the middle of vortices have moved
the furthest, whereas those which never hit the velocity and flow induced
by the plate stay roughly close to their original positions. The video also
shows that there seems to be a movement bias - all of the points will move
together either downwards or upwards, depending on the original flapping
motion of the plate. Our simulation always flaps the plate downwards first,
so all of the points move downward as time progresses.

There is an alternative approach of plotting the total distance travelled,
which will show different information for each particle. Some particles which
have returned to close to their original positions may have actually been far
away, and then come back, but travelled a large distance. Images of this
phenomenon are not shown.

These snapshots help explain what we see in Figure 4.3. The points
trapped in the vortices are constantly moving further and further from their
original positions, and thus contribute to the continued growth of Vd(t).
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(a) At t=0

(b) After some time

(c) At t=7

Figure 4.2: Snapshots of Evolution of Fluid Particle Displacement
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Figure 4.3: Integral Displacement as a function of time
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Chapter 5

Conclusion

5.1 Summary

This paper covered the explanation and background of our problem to begin.
We have a parallel background flow past an immersed plate, fixed at one end,
which flaps in a prescribed motion. This model is made up of three main
parts: a free vortex sheet to model the shear layer, a bound vortex sheet
to model the plate, and boundary layer separation modelled by releasing a
point vortex at every time step into the flow. The picture of this model is
once again shown below.

Figure 5.1: Visual of the Model

We have several findings from this work. In terms of mixing, we find
exactly what we would expect - that the most mixing occurs within the
vortices, where it is more intense for the larger regions of interest across the
boundary of the free vortex sheet. We displayed this in several figures in
Chapter 3.

Next we have more surprising results - that our simulation results in
linear growth in the integral displacement function Vd(t), the formula for
which is given by equation (4.1). This function as plotted in Figure 4.3
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appears to continue increasing, but at a seemingly decreasing rate, which
may indicate that the function eventually hits a plateau. The points which
show the most displacement are those in the center of the vortices, which
also tend to move downwards (or upwards) depending on the movement bias
of the plate. In the next section, we will talk about future work on both of
these subjects and possible methods of improvement.

5.2 Future Work

To continue this work, we would ideally like to do a few things. First, our
measure of mixing is rough and elementary. We would like to find a way
to measure this mixing using an integral method as opposed to using pro-
portions. As this kind of measurement has not been approached before, we
feel that it is a natural step from our current work. Our current method,
however, would benefit from longer runs of our simulation. Currently, we
only have data up to slightly over seven periods. Due to time and computa-
tional speed and power limitations, we were unable to complete a longer run
for this paper. We would like to run the simulation to at least ten periods,
preferably longer, to see if we can find any other trends.

A longer run could also benefit our integral displacement analysis. At
seven periods, our function Vd(t) appears to continue to increase, but at a
decreasing rate. This could imply either a behavior like

√
x or log(x), or it

could reach a plateau given enough time. If it behaves like the former, this
could imply an issue with our model. We would then be inclined to research
improvements to our model in which the particles would evetually reach a
steady state, similar to what we see in real flows.
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