
Mixing Reliability Prediction Models Maximizes Accuracy 

Overcome Component Limitations, Better Reflect Past Experiences, and Achieve Superior 
Predictions 

 

Although many models are available for performing reliability prediction analyses, each of these models was originally created 
with a particular application in mind. This document describes the most widely used reliability prediction models in terms of their 
intended applications, noting both their advantages and disadvantages. It then explains how mixing models in your reliability 
analyses yields more accurate predictions. 

Widely Used Reliability Prediction Models 

In any system, you have a mixture of electronic and mechanical parts. The selection of a reliability prediction model is driven by 
the critical parts in the system to be modeled and your system requirements. The following table lists the most widely used 
reliability prediction models and their intended applications, originating country, advantages, and disadvantages. 

 

Reliability 
Prediction Model 

Application & 
Originating 
Country 

Advantages Disadvantages 

MIL-HDBK-217 
The Military Handbook for 
the Reliability Prediction of 
Electronic Equipment 

Military and 
Commercial, United 
States 

Provides for both Parts 
Stress and Parts Count 
analysis of electronic parts. 
Can easily move from 
preliminary design stage to 
complete design stage by 
progressing from Parts 
Count to Parts Stress. 
 
Includes models for a broad 
range of part types. 
 
Provides many choices for 
environment types. 
 
Well-known and widely 
accepted. 

Is based on pessimistic failure 
rate assumptions. 
 
Does not consider other 
factors that can contribute to 
failure rate such as burn-in 
data, lab testing data, field test 
data, designer experience, 
wear-out, etc. 
 
NOTE: The Relex Reliability 
Prediction module overcomes 
these limitations by allowing 
you to use Telcordia 
calculation methods and 
PRISM process grades with 
MIL-HDBK-217. 

Telcordia (Bellcore) 
Reliability Prediction 
Procedure for Electronic 
Equipment (Technical 
Reference # TR-332 or 
Telcordia Technologies 
Special Report SR-332) 

Commercial, United 
States 

Offers analysis ranging from 
Parts Count to full Parts 
Stress through the use of 
Calculation Methods. 
 
Considers burn-in data, lab 
testing data, and field test 
data. 
 
Well-known and accepted. 

Considers only electronic 
parts. 
 
Supports only a limited 
number of Ground 
Environments. 
 
Fewer part models compared 
to MIL-HDBK-217. 
 
Does not account for other 
factors such as designer 
experience, wear-out, etc. 
 
NOTE: The Relex Reliability 
Prediction module overcomes 
these limitations by allowing 
you to use PRISM process 
grades with Telcordia. 



Mechanical 
The Handbook of Reliability 
Prediction Procedures for 
Mechanical Equipment 
(NSWC-98/LE1) 

Military and 
Commercial, United 
States 

Provides for analyzing a 
broad range of mechanical 
parts (seals, springs, 
solenoids, bearings, gears, 
etc.) 

Limited to mechanical parts. 

CNET 93 
Recueil de Donnes de 
Fiabilite des Composants 
Electroniques RDF 93 
(UTE C 80-819) 

Telecommunications, 
France 

Fairly broad range of part 
types modeled. 
 
Provides unique handling of 
PCBs. 

Considers only electronic 
parts. 
 
Only available in French. 

RDF 2000 
Recueil de Donnes de 
Fiabilite RDF 2000 (UTE C 
80-810) 

Telecommunications, 
France 

Introduces a new approach 
to failure rate modeling. 
 
Considers cycling profiles 
and their applicable phases 
when determining failure 
rate. 
 
Provides unique handling of 
PCBs. 

Considers only electronic 
parts. 
 
Cannot be mixed with other 
models because of the unique 
way in which failure rates are 
calculated. 
 
Very new, still gaining 
acceptance. 

HRD5 
The Handbook for 
Reliability Data for 
Electronic Components 
used in Telecommunication 
Systems 

Telecommunications, 
United Kingdom 

Similar to Telcordia. 
 
Fairly broad range of part 
types modeled. 

Considers only electronic 
parts. 
 
Not widely used. 

299B 
Chinese Military Standard 
GJB/z 299B 

Military, China Provides for both parts 
stress and parts count 
analysis. 

Considers only electronic 
parts. 
 
Currently used primarily in 
China. 
 
Based on an older version of 
MIL-HDBK-217. 
 
Cannot model hybrids. 

PRISM 
System Reliability 
Assessment Methodology 
developed by the Reliability 
Analysis Center (RAC) 

Military and 
Commercial, United 
States 

Incorporates NPRD/EPRD 
database of failure rates. 
 
Enables the use of process 
grading factors, 
predecessor data, and test 
or field data. 

Small, limited set of part types 
modeled. 
 
Newer standard, still gaining 
acceptance. 
 
Considers only electronic 
parts. 
 
Cannot model hybrids. 
 
No reference standard 
available. 

NPRD/EPRD 
Nonelectronics Parts 
Reliability (NPRD) and 
Electronic Parts Reliability 
(EPRD) databases by RAC 

Military and 
Commercial, United 
States 

Broad array of electronic 
and non-electronic parts. 
 
Based completely on field 
data. 

Consists entirely of databases 
of failure rates, not 
mathematical models. 

 

 



Mixing Models to Overcome Component Limitations 

Each reliability prediction model has its own set of advantages and disadvantages. By mixing the models used in your reliability 
analyses, you can greatly improve the accuracy of your predictions. For example, even very simple systems often have both 
electronic and mechanical components. To accurately predict the failure rates of both electronic and mechanical components, 
you would select a reliability model for electronic components, such as MIL-HDBK-217 or Telcordia, and also refer to The 
Handbook of Reliability Prediction Procedures for Mechanical Equipment from NSWC. By using both electronic and mechanical 
component models in your reliability analyses, you would obviously obtain more accurate predictions for the system and its 
components than by using either model alone. 

The need to mix reliability prediction models for the electronic components in a system stems from limitations on the component 
types that these models support. For instance, suppose you select Telcordia as the basis for analyzing the reliability of your 
electronic components; then, during your analysis, you realize that Telcordia does not support some of the switches and relays 
used in your system. By adding MIL-HDBK-217 to your modeling mix, you would gain comprehensive coverage for switches, 
relays, and several other components not supported by Telcordia. 

Similarly, if you selected PRISM as the basis for your analysis, coverage for switching devices, connectors, rotary devices, and 
inductors would be missing. To accurately assess system MTBF (Mean Time Between Failure) for systems with these 
components, you would have to add reliability models that covered these components to your modeling mix. Having multiple 
models available for your reliability analyses makes it much more likely that the failure rates predicted for the system and its 
component are accurate. 

Mixing Models to Better Reflect Past Experiences 

In addition to mixing reliability prediction models because of part type limitations, you may want to mix models because certain 
ones more accurately predict the failure rates your system components have experienced in the past. For example, perhaps the 
failure rates calculated by PRISM best reflect those for the integrated circuits in your system, and the failure rates calculated by 
Telcordia best reflect those for the resistors in your system. In such cases, you would want to be able to choose the model that 
calculates the failure rates closest to those experienced in the past for each type of system component. The ability to choose 
completely different models for various components in the same system empowers you to generate the most accurate 
predictions possible. 

Mixing Techniques for Superior Predictions 

NOTE: The following paragraphs describe features that are applicable only to specific reliability prediction models. However, 
none of these limitations apply to the Relex Reliability Prediction module. Providing that you have licensed a model described in 
this document, the Relex Reliability Prediction module supports the use of that model's features with all other licensed models. 

Although PRISM has models for calculating the failure rates of only a limited number of components, it provides many 
techniques for enhancing reliability predictions. For example, you can use PRISM process grades, which explicitly account for 
factors contributing to system reliability by grading the process for each system failure cause. If you think the reliability of a 
component is affected by process-related variability during the design and manufacturing process, you can use process grades 
to adjust the failure rates calculated for those components. 

PRISM also provides summary data from RAC’s Nonelectronics Parts Reliability (NPRD) and Electronic Parts Reliability (EPRD) 
databases for estimating failure rates of components that do not have models. If some of your components are operating within 
a specific set of environmental conditions and quality levels, you can retrieve the actual life-based failure rate values for 
components in very similar operating conditions from the NPRD and EPRD databases and then use these values in conjunction 
with reliability prediction models. 

PRISM also allows you to include empirical data on a predecessor system and test data or field data to update the predicted 
reliability values. Similarly, Telcordia offers Calculation Methods to take advantage of burn-in-data, lab testing data, or field test 
data that has been collected. If you have such data for certain components, you will want to take advantage of it in the modeling 
of these components. 

In most cases, you would need to use PRISM to factor in process grades, empirical data on a predecessor system, and test data 
or field data to update predicted reliability values. Likewise, you would need to use Telcordia to have its Calculation Methods 
factor in burn-in, lab testing, and field test data. However, if you use the Relex Reliability Prediction module to perform your 
reliability analyses, such limitations do not exist. The Relex Reliability Prediction module extends the advantages and features 
unique to individual models to all models. Therefore, you can apply the process grade factors defined in PRISM to any licensed 
model to adjust the failure rates according to design and manufacturing factors. Or, the Calculation Methods defined in Telcordia 
for adjusting failure rates based on burn-in, lab testing, and field test data can be applied to any other licensed models. 



In conclusion, having many reliability prediction models available for your use will help to accurately assess your system MTBF. 
You can select the model best suited to your specific system parameters and your individual needs. 

Relex Reliability Prediction supports all of the models mentioned in this brief. If you would like additional information about how 
the Relex Reliability Prediction module provides for mixing models and techniques for superior results, please email 
info@relexsoftware.com. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Why FRACAS Means Superior Quality and Reliability 

Closing the Loop to Improve Your Products and Processes 

In reliability engineering, FRACAS is an acronym for Failure Reporting, Analysis, and Corrective Action System. FRACAS is the 
term used to designate a process by which companies track product defects and effectively respond and make corrections to fix 
problems. Product defects may be tracked during product design, testing, manufacturing, and field deployment. A 
comprehensive FRACAS allows you to efficiently track issues and ensure that reliability problems are addressed in a timely and 
successful manner. The FRACAS process is used throughout all types of industries. Successful FRACAS programs provide for: 

• Easy and timely collection of accurate failure and maintenance data from the lab, field, and supply chain in standardized 
and compatible data structures.  

• Total elimination of complicated and redundant paper-based data records throughout the failure collection process, 
thereby avoiding dual reporting.  

• Effective data analysis to determine root cause mechanisms and real-time failure trends for fast and accurate decision-
making.  

• Accurate historical reliability performance measures, such as mean time between failures (MTBF), mean time to failure 
(MTTF), mean time to repair (MTTR), and availability for use in determining appropriate corrective actions.  

• Customizable reports that facilitate and support corrective action decisions by both management and engineering 
personnel regarding the improvement of designs, manufacturing processes, and field support systems.  

• Optimized workflow management for timely dissemination, information accessibility, and rapid feedback and approval 
cycles to fully support Collaborative Engineering, Six Sigma, and ISO initiatives.  

• Continued monitoring and testing to ensure that implemented corrective actions either prevent failure recurrence or 
simplify or reduce maintenance tasks.  

• Support of legacy systems and contribution to a common database for reliability, maintainability, and system component 
and part information.  

• Automatic conveyance of all failure data and subsequent analysis results to product and system designers to drive 
design innovation.  

Closed-Loop System 
To provide such features to the various workgroup and enterprise levels that need them, a FRACAS must be an aggressive 
closed-loop system that is configurable, flexible, and scaleable! This means that all reported failures and faults must be entered 
in the FRACAS in an appropriate and controlled manner so that they can then be analyzed and corrective actions identified, 
implemented, and verified. The knowledge gained from this process must then be fed back into the design, manufacturing, and 
test process so that quality and reliability are improved. A simplified version of the closed-loop feedback path for a FRACAS 
follows. 

 
A FRACAS formally captures predetermined types of data about a failure in an Incident Failure Report (IFR). Completed IFRs 
are submitted to analysts so that they can identify the corrective actions that are to be implemented to prevent these failures 
from recurring. Whenever corrective actions are implemented and verified or are otherwise determined to be unnecessary, the 



IFR is closed. To reduce the possibility of an unmanageable backlog of open IFRs, management periodically reviews all 
unresolved IFRs to ensure their assignment and eventual closure. 
A FRACAS can be used throughout the life cycle of any hardware or software product or system process to track failures, 
incidents, issues, and even enhancements or suggestions. By implementing a FRACAS during the initial design phase, 
significant cost savings can be realized from early problem correction, when even major design changes can still be considered 
to eliminate or reduce susceptibility to known failure causes. Additional benefits of implementing corrective actions while 
performing in-house tests and inspections are the many opportunities that exist for determining if these corrective actions 
adequately solve the reported issues. 
If a FRACAS is not in place before product inspection or testing begins, problems often go totally unrecorded or insufficient data 
is captured. If a FRACAS is not in place before the product or process in put into production, it is unlikely that failure and 
maintenance data will be collected in a structured and timely manner. Consequently, determining and implementing effective 
corrective actions that either prevent failures from recurring or simplify maintenance tasks will become very difficult. 
Failure Logging 
All problems that occur during inspections, tests, and field use must be entered in the FRACAS using an established procedure 
for recording accurate failure information. Personnel who enter IFRs in the FRACAS should be properly trained to precisely 
capture the required data. To make entering data in IFRs easy, the entry forms for capturing failure information should be 
tailored to your hardware, software, or process. Once an IFR is created, the FRACAS should alert the responsible analyst to its 
existence and indicate the next required action. 
Failure Analysis 
An analyst examines the information entered in an IFR to determine the root cause of the failure and identify contributing factors. 
Methods for analyzing the root cause range from simple investigations of circumstances surrounding a failure to sophisticated 
laboratory analyses of failed parts. Once the analyst has established the root cause and contributing factors, he or she must 
develop logically derived corrective actions. As the number of IFRs in the FRACAS grows, the analyst can call upon the historic 
data for related or similar failures for help in resolving what the appropriate corrective actions for a failure should be. Once 
corrective actions are noted, the FRACAS should alert the technician who must perform them.  
Corrective Action and Verification 
When a technician is implementing corrective actions, he or she may be required to submit time or utilization logs containing 
operational hours and other time-related data needed to calculate MTBF. The technician may also be required to submit field 
service logs indicating maintenance times, actions, and part replacements. Visual monitoring or testing must then be performed 
to indicate that the corrective actions taken have either eliminated the failure or reduced its occurrence. Although verification is 
sometimes performed by the same or another technician, close out of the IFR is generally performed only by a manager. 
Workflow Management 
To be effective in meeting internal and external commitments, a FRACAS must provide for effectively managing the resources 
and strategies necessary to address open IFRs. Workflow management features within your FRACAS should facilitate the 
failure analysis process. Managers should be able to assign priorities to failures based on urgency, budgets, and the availability 
of personnel. To ensure that all IFRs are closed in a timely manner, managers should be able to track IFRs by priority levels, 
workflow resolution activities, resource assignments, and many other criteria. Management should also strive to improve quality 
and reliability by participating in the development, implementation, and verification of corrective actions and periodically 
reviewing failure trends. 
Closing the Loop 
A FRACAS builds upon and leverages all of the data entered in its centralized database to ensure early and sustained 
achievement of improved reliability and maintainability for your product or process. The structured procedure for entering, 
analyzing, and resolving IFRs produces valuable data about the reliability of your product or process and the efficiency of your 
organization to address issues. Analyzing and reporting on the IFRs in your FRACAS is vital to the efficiency and profitability of 
your organization. In addition to complete failure summary reports listing events and problems for specified time periods, your 
FRACAS should be able to generate root cause analyses (RCAs), problem analysis reports (PARs), material disposition reports 
(MDRs), product performance reports (which provide MTBF, MTTF, MTTR, availability, etc.), and failure trend charts. Feeding 
this critical information back into your design, manufacturing, and testing process provides the closed loop that promotes 
continuously improving quality and reliability throughout the life cycle of your product or process. 
If you would like additional information about how the Relex FRACAS Management System can close the loop to dramatically 
improve the quality and reliability of your products and processes, please email info@relexsoftware.com. 
 

 

 

 

 



Understanding Importance Measures in Fault Tree Analysis 

Calculating Birnbaum, Criticality, and Fussell-Vesely Importance Measures 

 

Reliability importance measures attempt to identify the fault tree event whose improvement will yield the greatest improvement in 
system performance. The three most popularly used importance measures are: 

• Birnbaum  
• Criticality  
• Fussell-Vesely  

This technical brief explains how to calculate these three importance measures and describes the underlying logic that led to 
their development. It also demonstrates how to use each importance measure by rank ordering the basic events by the values of 
their importance measures and then considering improving first that basic event with the highest importance measure value. 
Birnbaum Importance Measure 
The Birnbaum importance measure is defined as: 
      IB(A) = P{X|A} - P{X|~A} 
            Where: 
               A   indicates that the event whose importance is being measured occurred. 
             ~A   indicates that this event did not occur. 
               X   indicates the top event. 
The Birnbaum importance measure for the event A is the difference in the probability of the top event given that the event A did 
occur minus the probability of the top event given that the event A did not occur. This is one measure of the increase in the 
probability of the top event due to the event A. 
Consider a top event X, which is the result of event A and event B being connected by an OR gate. The fault tree would define 
the top event X to be X = {A or B}. Assume that the probability of event A is 0.1 and that of event B is 0.2. 
Let P{X|A} denote the probability of the top event X given that the basic event A occurred. Clearly, if A occurs, {A or B} occurs, 
so that X occurs. Therefore: 
      P{X|A} = 1.0 
Also, let P{X|~A} denote the probability of the top event given that the basic event A does not occur. Here, given that A does not 
occur, X only occurs if the event B occurs. Therefore: 
      P{X|~A} = P{B} where P{B} = 0.2 
Thus, the Birnbaum importance measure equals: 
      IB(A) = (P{X|A} - P{X|~A}) = (1.0 - P{B}) = (1.0 - 0.2) = 0.8 
Criticality Importance Measure 
Although the Birnbaum importance measure, IB(A), is useful, it does not directly consider how likely the event A is to occur. For 
instance, in the previous example, IB(A) = (1.0 - P{B}) does not even involve the probability of the event A. This could lead to 
assigning high importance values to events that are very unlikely to occur and may be very difficult to improve. Remember, an 
event with a low probability of occurring in a fault tree is an event that has already been improved, so further improvement may 
be difficult to obtain. Therefore, in an attempt to focus only on those events that truly are important (which not only lead to the 
top event but also are more likely to occur and may reasonably be improved), a modified Birnbaum importance measure known 
as a Criticality importance measure is used. 
The Criticality importance measure is defined as: 
      IC(A) = IB(A) * P{A}/P{X} 
            = (P{X|A} - P{X|~A}) * P{A}/P{X} where X is the top event. 
The Criticality importance measure modifies the Birnbaum importance measure by: 

• Adjusting for the relative probability of the basic event A to reflect how likely the event is to occur and how feasible it is 
to improve the event (which makes it easier to focus on the truly important basic events).  

• Conditioning on the occurrence of the top event X to restrict the measure to evaluating the effect of the basic event A, 
not the probability of the top event X (which makes it possible to compare basic events between fault trees).  

Now, the Criticality importance measure, IB(A), for the earlier OR gate example, where P{A} = 0.1 and P{B} = 0.2, is to be 
calculated. The probability of the top event, the event X = {A or B}, is first calculated: 
      P{X} is the probability of the top event occurring. 
      P{A} is the probability of event A occurring. 
      P{-A} is the probability of event A not occurring. 
      P{A and B} is the probability of both events A and B occurring. 
      P {A or B} is the probability of either event A or event B or both events occurring. 



If events A and B are independent, then P{A and B} = (P{A} * P{B}). Therefore: 
      P{X} = P{A or B} 
            = P{A} + P{B} - (P{A} * P{B}) 
            = 0.1 + 0.2 - (0.1 * 0.2) = 0.28 
Based on earlier calculations: 
      IB(A) = 0.8, P{A} = 0.1, and P{X} = 0.28 
Therefore, the Criticality importance measure is given by: 
      IC(A) = (IB(A) * P{A}) / P{X} 
            = (0.8 * 0.1) / (0.28) = 0.2857143 
Similar calculations for event B yields: 
      IB(B) = 0.9 
And: 
      IC(B) = (IB{B} * P{AB}) / P{X} = 
            (0.9 * 0.2) / (0.28) = 0.6428571 
Now, consider the Criticality importance measure for the AND gate, where: 
      P{A} = 0.1, P{B} = 0.2, and P{X} = P{A and B} 
         = (P{A}) * (P{B}) = 
         (0.1) * (0.2) = 0.02, by independence of the basic events A and B. 
Here: 
      P{X|A} = P{A and B|A} 
            = P{B} * P{X|~A} 
            = P{A and B|~A} = 0.0 
      And: 
            IB(A) = P{X|A} - P{X|~A} = P{B} - 0.0 = P{B} 
Thus: 
      IC(A) = (IB{A} * P{A}) / P{X} = (P{B} * P{A}) / P{X} = P{X}/P{X} = 1.0 
Similarly, 
      IB (B) = P{X|B} - P{X|~B} = (P(A) - 0.0 = P{A} 
So that: 
      IC(B) = (IB{B} * P{B}) / P{X} = (P{A} * P{B}) / P{X} = P{X}/P{X} = 1.0 
Given independence of the basic events, all of the basic events under an AND gate will have the same Criticality importance 
measure. Thus, the Criticality importance measure is uninformative for AND gates. 
Fussell-Vesely Importance Measure 
The Fussell-Vesely importance measure is calculated quite differently than the Birnbaum or Criticality importance measures. It is 
constructed using minimal cut sets. A cut set is a set of basic events whose occurrence causes the top event to occur. A minimal 
cut set is a cut set that would not remain a cut set if any of its basic events were removed. 
For example, the set of all the basic events is a cut set (or else the fault tree would be meaningless). If the fault tree consists of a 
single AND gate, then the cut set consisting of all the basic events is the only cut set and the minimal cut set. This is because all 
events leading into an AND gate must occur in order for the AND gate to be activated. 
If the fault tree consists of a single OR gate, then the cut set consisting of all the basic events is not a minimal cut set unless 
there is only one basic event. This is because only one event leading into an OR gate needs to occur for the OR gate to be 
activated. In this case, any collection of basic events is a cut set. Therefore, given an OR gate, only those cut sets containing a 
single basic event are minimal cut sets. 
Minimal cut sets are important in fault trees because they may be used to calculate the probabilities of events, including the top 
event. For example, the probability of the top event is given by the probability of the union of all the minimal cut sets. 
Another interesting probability associated with the basic event A is the probability of the union of all minimal cut sets containing 
the basic event A. This is because the probability of the union of all minimal cut sets containing the basic event A is the 
probability that the top event is caused by a cut set containing the event A. This is a measure of the association of the basic 
event A with the top event X. It does not directly measure the probability that the top event X was caused by the basic event A, 
but it does indicate the potential importance of the basic event A. 
A useful fact is that the probability of the union (OR) of sets is equal to the sum of the probabilities of the sets when the sets are 
mutually exclusive. If the sets are "nearly" mutually exclusive and, in addition, the basic events are independent and their 
probabilities are small, then this equality is approximately satisfied. For example, suppose that two minimal cut sets, C1 and C2, 
are given by C1 = {A and B and C} and C2 = {A and D}. 
Then, exactly: 
      P{C1 or C2} = P{C1} + P{C2} - P{C1 and C2} 
            = P{C1} + P{C2} - {P(A and B and C) and (A and D)} 
            = P{C1} + P{C2} - P{A and B and C and D} 
            = P{C1} + P{C2} - P{A} * P{B} * P{C} * P{D}, which is approximately equal to P{C1} + P{C2} 
            when the probability of each of the basic events is small. 
This idea is used in calculating the Fussell-Vesely importance measure. This measure considers the ratio of the probability of 
the union of all minimal cut sets containing the basic event A, divided by the probability of the union of all minimal cut sets. In 
practice, the numerator is replaced by the approximating sum of the probabilities of all minimal cut sets containing the basic 
event A, and the denominator uses the exact calculation, which is simply the probability of the top event X. 



With the Fussell-Vesely importance measure, the fact that there is only one cut set for an AND gate leads to the uninformative 
result that all of the basic events leading to an AND gate will have the same value for the Fussell-Vesely importance measure. 
Now, consider the previous example of the fault tree with an OR gate. Two minimal cut sets exist: C1 = {A} and C1 = {B}. Recall 
that P{A} = 0.1, P{B} = 0.2, and that P{X} = P{A or B} = 0.28. Note that C1 is the only minimal cut set containing the basic event 
A, and C2 is the only minimal cut set containing the basic event B. Also, P{C1} = P{A} = 0.1, and P{C2} = P{B} = 0.2. Therefore, 
the Fussell-Vesely importance measures for the basic events A and B are given by: 
      IFV(A) = P{C1} / P{X} = 0.1 / 0.28 = 0.3571429 and 
      IFV(B) = P{C2} / P{X} = 0.2 / 0.28 = 0.7142857 
Importance Measure Usage 
If all three importance measures yield the same rank ordering of basic events, then the strategy for using the importance 
measures is straightforward. However, when the three importance measures yield different rank orderings of basic events, the 
following guidelines suggest how to select an appropriate solution: 

• Keep in mind that the goal is to assist in selecting the next basic event to consider for improvement. It cannot be 
concluded definitively that a particular basic event must receive the next improvement effort.  

• Ensure the correct primary time point is chosen. The rank ordering of the importance measures may be different at 
different time points.  

• Consider averaging the three-way ranking of the three importance measure rank orderings for each basic event. This 
may indicate a consensus of the three measures.  

• Study the sequential ranking, first by ranking by the Fussell-Vesely or Criticality importance measure and then break 
ties within the ranking by the Birnbaum importance measure.  

• When in doubt or when calculation performance is an issue, the Criticality importance measure is probably a reasonable 
single measure to use. It considers the probability of the basic event (an improvement over the Birnbaum importance 
measure). However, if this is a problem with uninformative results caused by AND gates (as can happen with the 
Fussell-Vesely importance measure), then use the Birnbaum importance measure.  
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Reliability Growth 

Observing and Predicting Trends in Reliability 

Today's complex products require that companies focus on establishing detailed plans and procedures for 
developing and manufacturing products that meet specified reliability, maintainability, and other performance 
requirements. Reliability growth refers to a well-defined process for identifying and correcting reliability 
problems early in the design process so that the reliability of a product increases or "grows" as the product goes 
through successive development stages. Reliability growth programs should be established for all new products 
and for all existing products undergoing major redesigns so that the improvement due to changes in design and 
manufacturing processes can be easily tracked. 

During the early design stage, a reliability goal is set for a product. Because failure data from prototype testing 
is not yet available, the initial reliability goal is often based on either the failure data for similar products or the 
failure data for the subcomponents of the product. During the development stage, product prototypes generally 
undergo extensive testing so that deficiencies in respect to design, engineering, and manufacturing can be 
identified and corrected. 

A typical reliability improvement test consists of operating product prototypes for several weeks in the same 
types of environments in which customers will eventually operate the product. A team of project engineers and 
technicians analyze every failure that occurs, determining root causes for failures and developing design and 
manufacturing improvements that are to either eliminate or reduce the recurrences of these failures. As the 
testing continues, the improvements developed by the team are incorporated into the prototype so that product 
reliability continues to improve throughout the testing period. 

Acheiving Reliability Growth 

The three most important steps in the iterative process for achieving reliability growth are depicted in the 
feedback loop that follows: 

 

Most of the problems encountered during testing are likely to be component failures and manufacturing 
deficiencies that could not be foreseen in the early design phase. Because various performance requirements 
can conflict, optimizing a design to meet one requirement can cause the design to fail to meet another 
requirement. Thus, iterations of designs are often needed to correct all of the component selection and 
manufacturing deficiencies that are found during prototype testing. 

In addition to improving reliability, early implementation of a reliability growth program minimizes the impact on 
production scheduling and total product cost, especially since the costs associated with either redesigning a 
product late in the development cycle or retrofitting products already in the field are extremely high. Developing 
a product that meets reliability requirements also ensures that the product ultimately meets user needs and has 
an acceptable total life cycle cost. Setting interim reliability goals that are to be achieved during testing ensures 
that resources are allocated efficiently. 



Reliability Growth Data 

The basic principle of any reliability growth model is to apply the testing results and data points to determine if 
the reliability of the product is growing sufficiently to meet the reliability requirements for the product. The types 
of data used for predicting reliability growth are: 

• Reliability Data. The reliability of the product is recorded at different points in time. The reliability is a 
ratio of the number of units still functioning and the number of units that entered the stage.  

• Success/Failure Data. The item is tested and can either succeed or fail. Success data can consist of a 
code indicating the outcome, such as S for Success or F for Failure; or, it can consist of a code 
indicating the failure mode for each failure. Success/failure data might also indicate the number of 
failures that occurred when several units are tested together.  

• Failure Time Data. The time to failure for an item is tracked using either cumulative or non-cumulative 
operating times. Failure time data is the most commonly used type of data in reliability growth. This 
data can be for one failure or system, or it can be for multiple failures or multiple systems, which is 
commonly called interval or grouped data.  

The failure data collected during prototype testing is used to determine whether the reliability goal for the 
product is likely to be met or exceeded by the time the product is scheduled to be put into full-scale production. 
Although many methods exist for modeling the reliability growth process, the Duane/Crow-AMSAA model is 
considered the best practice. In 1964, J. T. Duane, an engineer at the Aerospace Electronics Department of 
General Electronic Company, published a paper demonstrating how a learning curve approach could be used to 
monitor the continuing reliability improvements in the early stages of developing complex electromechanical and 
mechanical systems. Duane explained how this was because the lessons learned from failures were used to 
refine designs. 
According to Duane, a graph of the cumulative MTBF versus the cumulative operating time plotted on log-log 
paper fell close to a straight line. Graphing this learning curve provides a means of measuring and predicting 
reliability during a period of product change. Dr. Larry Crow later added powerful statistical capabilities to 
Duane's postulate for learning curve modeling to create the model so widely respected and implemented today. 
An example of a reliability growth chart generated by the Duane/Crow-AMSAA model follows: 

 
Reliability growth is generally quantified by graphing any of the following three measures over time: 

• The increase in the mission success probability (reliability).  
• The increase in MTBF.  
• The decrease in failure rate as a function of time.  

Reliability growth charts depict trends that are used to forecast failures as a function of additional test time or 
calendar time, thereby making planning for redesign and test resources easier. In addition to allowing you to 
determine whether reliability requirements will be achieved, reliability growth charts can help you to determine 



the time needed to meet these requirements and the associated costs. Extrapolating a growth curve beyond the 
currently available data shows what reliability a program can be expected to achieve providing that the 
conditions of the test and the engineering effort to improve reliability are maintained at their present levels. 
If the reliability growth graph indicates that the reliability goal is not going to be met or exceeded, then the 
product design must be improved. This might require the use of more reliable components or redundancy. 
Additional resources might also have to be devoted to designing and manufacturing a more reliable product to 
meet the required delivery date. 
Other Uses for Reliability Growth Charts 
In addition to analyzing the results from testing newly developed or redesigned products, the Duane/Crow-
AMSAA model can be used to: 

• Predict future failures.  
• Track fleets of repairable systems.  
• Provide accurate trending of significant events for management.  
• Forecast safety incidents that can be controlled.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fault Tree Gates Logically Link Basic Events to Top Events 

Analyze Numerous Hardware Configurations Using Multiple Gate/Event Options 

 

Fault Tree Analysis (FTA) is well recognized worldwide as an important tool for evaluating safety and reliability in system design, 
development, and operation. Based on a simple set of rules and logic symbols from probability theory and Boolean algebra, FTA 
uses a top-down approach to generate a logic model that provides for both qualitative and quantitative evaluation of system 
reliability. The undesirable event at the system level is referred to as the top event. It generally represents a system failure 
mode or hazard for which predicted reliability data is required. The lower level events in each branch of a fault tree are referred 
to as basic events. They represent hardware, software, and human failures for which the probability of failure is given based on 
historical data. Basic events are linked via logic symbols (gates) to one or more undesirable top events. 

Today, computerized FTA is used to analyze very complex systems as well as very complex relationships between hardware, 
software, and humans. Small fault trees have fewer than 100 events, medium fault trees have from 100 to 1,000 events, and 
large fault trees have more than 1,000 events! Using good FTA software, you can cut, copy, paste, rearrange, and delete events 
and gates in various fault tree branches to quickly and easily compare different hardware configurations. An example of a very 
simple computer-generated fault tree follows.  

 
* Generated in Relex Fault Tree. Click the image to view a full-size version.  

In this fault tree, "Passenger Injury Occurs in Elevator" is defined as the top event. The reasons why passenger injury in an 
elevator could occur have been determined to be either that the box free falls or that the door is open at an inappropriate time. 
After determining all possible causes for each event identified, the events and gates for connecting them to higher-level events 
are added to the fault tree. Any faults that can be further developed to determine causes are then added as lower-level events 
and connected by the appropriate gates. 

The lowest-level basic events that terminate fault tree paths are often called terminal events or primary events. They are 
either component-level events that cannot be further resolved or external events. For example, in the first level of possible 



events for the free fall of the box, "Cable off Pulley" and "Broken Cable" are terminal events. Because these events are primary 
faults, they are not developed any further in the fault tree. 

The tables below describe the fault tree gates and events that are implemented in Relex and many other computerized FTA 
programs. Note: Relex Fault Tree is the only commercial software product for reliability analysis that supports dynamic gates 
(Functional Dependency, Sequence-Enforcing, and SPARE gates). Although a few other competing products support two-input 
Priority AND gates, none of them perform the dynamic analysis (Markov) required. 

 

 

 

Fault Tree Gates 

Bitmap/Line 
Art 

Gate 
Name 

Gate Description 

 

AND Gate The AND gate is used to indicate that the output occurs if and only if all the input events occur. 
The output of an AND gate can be the top event or any intermediate event. The input events can 
be basic events, intermediate events (outputs of other gates), or a combination of both. There 
should be at least two input events to an AND gate. 
 
Summary of Logic: All events must be TRUE for the output to be TRUE. 

 

OR Gate The OR gate is used to indicate that the output occurs if and only if at least one of the input 
events occur. The output of an OR gate can be the top event or any intermediate event. The 
input events can be basic events, intermediate events, or a combination of both. There should 
be at least two inputs to an OR gate. 
 
Summary of Logic: If at least 1 event is TRUE, the output is TRUE. 

 

Voting Gate 
(m/n) 

The Voting gate (m/n) is used to indicate that the output occurs if and only if m out of the n input 
events occurs. The m input events need not occur simultaneously. The output occurs when at 
least m input events occur. When m = 1, the Voting gate behaves like an OR gate. The output of 
a Voting gate can be a top event or an intermediate event. The input events can be basic 
events, intermediate events, or combinations of both. 
 
Summary of Logic: If m = 2 and n = 3, 2 input events must be TRUE for the output to be 
TRUE. 

 

Exclusive 
OR Gate 

(XOR Gate) 

The Exclusive OR (XOR) gate is used to indicate that the output occurs if and only if one of the 
two input events occurs and the other input event does not occur. The output of an XOR gate 
can be the top event or an intermediate event. The input events can be basic events, 
intermediate events, or combinations of both. An XOR gate can have only two inputs. 
 
Summary of Logic: If 1 and only 1 input event is TRUE, the output is TRUE. 

 

NAND Gate The NAND gate functions like a combination of an AND gate and a Not gate. The NAND gate is 
used to indicate that the output occurs when at least one of the input events is absent. The 
output of a NAND gate can be the top event or an intermediate event. The input events can be 
basic events, intermediate events, or combinations of both. The presence of a NAND gate may 
give rise to non-coherent trees, where the non-occurrence of an event causes the top event to 
occur. 
 
Summary of Logic: If there is at least 1 FALSE event, the output is TRUE. 



 

NOR Gate The NOR gate functions like a combination of an OR gate and a Not gate. The NOR gate is 
used to indicate that the output occurs when all the input events are absent. The output of a 
NOR gate can be the top event or an intermediate event. The input events can be basic events, 
intermediate events, or combinations of both. The presence of a NOR gate may give rise to non-
coherent trees, where the lack of an event causes the top event to occur. 
 
Summary of Logic: If there is at least 1 TRUE input event, the output is FALSE. 

 

Not Gate The Not gate is used to indicate that the output occurs when the input event does not occur. The 
presence of a Not gate may give rise to non-coherent trees, where the non-occurrence of an 
event causes the top event to occur. There is only one input to a Not gate. 
 
Summary of Logic: The output is the opposite of the input gate or event. 

 

Inhibit Gate The Inhibit gate is used to indicate that the output occurs when the input events (I1 and I2) occur 
and the input condition (C) is satisfied. The output of an Inhibit gate can be a top event or an 
intermediate event. The input events can be basic events, intermediate events, or combinations 
of both. 
 
Summary of Logic: If all input events and the input condition are TRUE, the output is TRUE. 

 

Priority AND 
(PAND) 

Gate 

The Priority AND (PAND) gate is used to indicate that the output occurs if and only if all input 
events occur in a particular order. The order is the same as that in which the inputs events are 
connected to the PAND gate from left to right. The PAND gate is a dynamic gate, which means 
that the order of the occurrence of input events is important to determining the output. Relex 
PAND gates support multiple inputs. This is a generalization of an earlier version of the Relex 
PAND gate where only two inputs were allowed. 
 
The output of a PAND gate can be the top event or an intermediate event. The inputs can be 
basic events or outputs of any AND gate, OR gate, or dynamic gate (Priority AND gate, 
Functional Dependency gate, Sequence-Enforcing gate, or SPARE gate). (These gates should 
have the inputs from basic events or other AND gates and OR gates.) You may rearrange items 
that enter PAND gates to fail in temporal order from left to right to trigger the event. The PAND 
gate also supports a single input. When only a single input exists, then occurrence of that input 
will trigger the event. 
 
Summary of Logic: All input events must be TRUE for the output to be TRUE, and the events 
should occur from left to right in the temporal order. 

 

Transfer 
Gate 

A Transfer gate is a symbol used to link logic in separate areas of a fault tree. There are two 
primary uses of Transfer gates. First, an entire fault tree may not fit on a single sheet of paper 
(or you may want to keep the individual trees small to view and organize them). Second, the 
same fault tree logic may be used in different places in a fault tree. Through the use of Transfer 
gates, you can define this logic once and use it in several places. To use a Transfer gate, you 
insert a Transfer In gate in a fault tree, that links to a Transfer Out gate, which represents the top 
gate of another fault tree. 

 

Remarks 
Gate 

A Remarks gate is used for the entry of comments. A Remarks gate has no calculation data 
associated with it, and, therefore, has no effect on calculations. However, the tree branch may 
continue after a Remarks gate. There can only be one input to a Remarks gate. 

 

Pass-
Through 

Gate 

A Pass-Through gate is used for visually aligning the events and gates in a fault tree. A Pass-
Through gate extends a vertical connector for visual alignment. A Pass-Through gate has no 
calculation data associated with it, and, therefore, has no effect on calculations. However, the 
tree branch may continue after a Pass-Through gate. There can be only one input to a Pass-
Through gate. 



 

Functional 
Dependency 

Gate 

The functional dependency (FDEP) gate is used to indicate that all dependent basic events are 
forced to occur whenever the trigger event occurs. The separate occurrence of any of the 
dependent basic events has no effect on the trigger event. The FDEP gate has one trigger event 
and can have one or more dependent events. All dependent events are either basic events or 
spare events. The trigger event can be a terminal event or outputs of any AND gate, OR gate, or 
dynamic gate (PAND gate, FDEP gate, Sequence- Enforcing gate, or SPARE gate). 
 
Dependent events are repeated events that are present in other parts of the fault tree. The 
FDEP gate is a dynamic gate, which means the temporal order of the occurrence of events is 
important to analyze this gate. Generally, the output of the FDEP gate is not that important; 
however, it is equivalent to the status of its trigger event. 
 
The FDEP gate can also be used to set the priorities for SPARE gates. For example, if multiple 
spares are connected to a FDEP gate, after the occurrence of the trigger event, all spares that 
are connected to the FDEP gate will fail. Upon failure of these spares, the next available good 
spare in those SPARE gates will replace the failed spares. If there exists a conflict in choosing 
the next available spare between multiple SPARE gates, the priority will be based on the order 
of the connection of these spares in the FDEP gate from left to right. 
 
Summary of Logic: When the trigger event is TRUE, then dependent events are forced to 
become TRUE. The trigger event must be TRUE for the output to be TRUE. 

 

Sequence-
Enforcing 

Gate 

The sequence-enforcing (SEQ) gate forces events to occur in a particular order. The input 
events are constrained to occur in the left-to-right order in which they appear under the gate. 
This means that the leftmost event must occur before the event on its immediate right, which 
must occur before the event on its immediate right is allowed to occur, etc. The SEQ gate is 
used to indicate that the output occurs if and only if all input events occurs, when the input 
events must occur in a particular order.  
 
The SEQ gate is a dynamic gate, which means the occurrence of the inputs follows a sequential 
order. In other words, an event connected to a SEQ gate will be initiated immediately after 
occurrence of its immediate left event. Therefore, if the leftmost input is a basic event, then the 
SEQ gate works like a cold SPARE gate. The SEQ gate can be contrasted with the PAND gate 
in that the PAND gate detects whether events occur in a particular order (but the events can 
occur in any order), whereas the SEQ gate allows the events to occur only in the specified order.
 
The first input (leftmost input) to a SEQ gate can be a terminal event or outputs of any AND 
gate, OR gate, or dynamic gate (PAND gate, FDEP gate, SEQ gate, or SPARE gate). Only 
basic events are allowed for all other inputs. You may rearrange the events that enter SEQ 
gates; however, rearrangement is not allowed if the first input is an output from another gate. 
 
Summary of Logic: The output is TRUE if and only if all input events are TRUE; but the input 
events must occur in a particular order. 

 

SPARE Gate The SPARE gate is used to model the behavior of spares in the system. The SPARE gate is 
used to indicate that the output occurs if and only if all input spare events occur. All inputs of a 
SPARE gate are spare events. A SPARE gate can have multiple inputs. The first event (leftmost 
event) is known as the primary input, and all other inputs are known as alternative inputs. The 
primary event is the one that is initially powered on, and the alternative inputs specify that they 
are in standby mode. After a failure, the active/powered unit that is the first available spare from 
left to right will be chosen to be active. If all units are failed, then the spare will be considered as 
failed (output occurred). 
 
Depending on the dormancy factor of spares, spares can fail even in standby mode. The Relex 
SPARE gate is more flexible and can handle any kind of spares. If the dormancy factor of all 
spares connected to a SPARE gate is 0, then the spare acts like a cold spare. If the dormancy 
factor of all spares connected to a SPARE gate is 1, then the spare acts like a hot spare. If the 
dormancy factors of all spares connected to a SPARE gate are the same (and are between 0 
and 1), then the spare acts like a warm spare. If the dormancy factors of its inputs are different, 
then it handles generalized situations. The SPARE gate is a dynamic gate, which means the 
temporal order of the occurrence of events is important to analyze this gate. You may rearrange 
spare events that enter SPARE gates. 
 
Summary of Logic: All inputs must be TRUE for the output to be TRUE. 



Fault Tree Events 

Bitmap/Line 
Art 

Event 
Name 

Event Description 

 

Basic Event A Basic event is either a component-level event that is not further resolved or an external event. 
It is at the lowest level in a tree branch and terminates a fault tree path. Component-level 
events can include hardware or software failures, human errors, and system failures. 

 

Spare Event A Spare event is used to specify spares in dynamic fault trees. A Spare event is similar to a 
basic event in functionality; however, a spare event allows only rates as inputs. The dormancy 
factor of the spare indicates the ratio of failure rate in the spare mode and the failure rate in the 
operational mode. Spare events can have a spare pool, which represents the number of 
identical instances of that event. For example, if a spare pool of an event is 2, there are 2 
identical spare components of that spare event. Spare events are restricted to use as either 
spares to SPARE gates or as dependent events to FDEP gates. 

 

House Event A House event can be turned on or off. When a House event is turned on (TRUE), that event is 
presumed to have occurred and the probability of that event is set to 1. When a House event is 
turned off (FALSE), it is presumed not to have occurred, and the probability is set to 0. House 
events are useful in making parts of a fault tree functional or non-functional. When a House 
event is turned off, the gate that the House event inputs to will be removed from the tree during 
calculation. By turning that same House event on, the gate that the House event inputs to will 
be calculated normally. House events are also referred to as trigger events and switching 
events. 

 

Undeveloped 
Event 

An Undeveloped event is used if further resolution of that event does not improve the 
understanding of the problem, or if further resolution is not necessary for proper evaluation of 
the fault tree. It is similar to a Basic event, but is shown as a different symbol to signify that it 
could be developed further, even though you have not done so for the analysis. Undeveloped 
events may be broken down into associated gates and events. 

 

 

 

 

 

 

 

 

 

 

 



Selecting the Appropriate Reliability Model 

Choosing Between RBDs, Fault Trees, Event Trees, and Markov Analyses 

 

System failure depends on the combination and sequence of component failures. If the system failure can be expressed 
completely based on the combinations of component failures, then the failure model is known as a combinatorial model. 

To model any system effectively, you must: 

• Understand the overall system configuration and system behavior.  
• Be able to define the failure and repair distributions of the components.  
• Be able to represent the system structure visually.  

The above system knowledge is essential to determining and performing the appropriate mathematical analysis. 
The table below provides descriptions of several modeling methodologies and lists both the advantages and disadvantages 
associated with their traditional implementations. It then notes the more recent advances that either reduce or eliminate some of 
these disadvantages. 
Note: Traditional RBDs, Fault Trees, and Event Trees cannot model the temporal order of events. This means that, in these 
methodologies, it does not matter whether component 1 fails first or component 2 fails first. If component 2 is used only after 
component 1 fails, then the order of events is important. Only Markov models can consider the order of events and the actual 
times of their occurrences. Thus, Markov models are the only correct models for highly dependable, complex systems. 
 
 
 
 

  RBDs Fault Trees Event Trees Markov 
Analyses 

Description Models system 
success logic using 
modular or block 
structure. 

Models system level 
faults, external 
events, conditional 
events, and non-
coherence. Primarily 
used for safety 
analysis in systems 
where the probability 
of critical failures can 
be very low. 

Models 
consequences and 
are often used with 
Fault Trees to model 
complex behaviors. 

Models complex 
scenarios such as 
repairs, priorities, 
standbys, and shared 
loads. 

Advantages Easy to understand. 

Easy to evaluate 
using analytical 
methods. 

Easy to integrate 
various components 
using sub-
models/blocks. 

Easy to model 
redundancy. 

Easy to specify 
component priorities. 

Easy to verify system 
success paths. 

Events can be 
generic faults 
(meaning that they 
need not be failures). 

Can be modular. 

Easy to visualize the 
cut sets. 

Easy to understand 
system level failures. 

Are evolutionary, 
allowing details to be 
added. 

Can be used with 
Event Trees to model 

Can model various 
failure modes and 
their associated 
consequences. 

Used for risk and 
safety analysis. 

Can be used to 
model capacity. 

Provides flexibility. 

Models temporal 
orders of events, 
making the analysis 
of complex scenarios 
possible. 

Considers state 
dependent transition 
rates (failure and 
repair). 

Can specify 
capacities on states. 
(Capacities are also 
called rewards.) 



complex behaviors. 

Disadvantages Models only one type 
of system failure 
mode/consequence, 
combining all failures 
as one. 

Can model only 
failure and repair 
events, thereby 
excluding human 
errors and external 
events from 
consideration. 
(Otherwise, you must 
use "fictitious" 
components.) 

Models only coherent 
structures. 

Computational time 
can be lengthy for 
complex models. 

Models are static, 
providing no method 
for standby 
comparisons. 

Priorities cannot be 
set (unless dynamic 
gates are used). 

Modeling capacity is 
only possible using 
multiple Fault Trees. 

Computational time 
can be lengthy for 
non-modular Fault 
Trees. 

Models are static, 
providing no method 
for standby 
comparisons. 

Supports only 
exponential 
distributions. 

Models are more 
difficult to construct 
and harder to 
understand. 

Computational time 
can be lengthy. 

Methodology 
Advances 

Switches and 
junctions are 
extending RBDs to 
non-modular 
(network) 
applications. 

Flow and capacity 
can now be 
considered. 

Switches, delays, 
and priorities are 
allowing for modeling 
temporal and 
conditional events. 

Standby 
redundancies provide 
for modeling 
temporal events. 

The addition of 
dynamic gates now 
allow Fault Trees to 
model temporal 
events, spares, 
priorities, sequences, 
and forced failures. 

Limited acceptance 
of dynamic Event 
Trees. Therefore, 
these techniques are 
not available in 
commercial software 
products. 

Semi-Markov and 
non-homogeneous 
Markov models can 
handle highly 
complex systems, 
including all types of 
failure distributions. 
However, users must 
have good modeling 
skills to use these 
methodologies. 

 

 

 

 

 

 



FRACAS: Providing Continual Improvement in Quality and Reliability 

Creating an Effective FRACAS for Any Application 

 

A FRACAS (Failure Reporting, Analysis, and Correction Action System) is an important process by which the quality and 
reliability of a product, service, process, or software application can be tracked, measured, and ultimately improved. Companies 
known for providing highly reliable products have identified a comprehensive closed-loop FRACAS as one of the most critical 
elements in their reliability programs. The following table, published by the Reliability Analysis Center1 (RAC), is based on a 
1995 survey of reliability tasks. 

Most Important Reliability Tasks Based on Normalized Score 

Rank Task Normalized 
Score 

1 FRACAS 88.3 

2 Design Reviews 83.8 

3 Subcontractor/Vendor Control 72.1 

4 Parts Control 71.2 

5 FMECA 70.3 

6 Reliability Qualification Test 68.5 

7 Predictions 62.2 

8 Test, Analyze and Fix (TAAF) 59.5 

9 Thermal Analysis 58.6 

10 ESS 54.1 

As you can see, 88.3 percent of the survey respondents viewed a FRACAS as the most important reliability task. It received the 
highest rating because of its ability to feed root failure cause and corrective action information back into the design process to 
further improve design reliability. And, as RAC points out, early elimination of root failure causes greatly contributes to both 
product reliability growth and attaining customer satisfaction following product/service delivery. 

FRACAS Applications 

A FRACAS can be adopted to cover a wide range of applications, including but not limited to: 

• A FRACAS for hardware, software, and processes.  
• A FRACAS for any kind of product (such as electronic boxes, airplane development or manufacturing, airlines, cellular 

telephone service, software development, production lines, services, etc.).  
• A FRACAS for the entire product life cycle (such as development, prototypes, testing, field testing, service, storage, 

maintenance, etc., or, for software development, integration, field service, or other any conceivable phase in the product 
life).  

• A FRACAS answering various civilian and military specifications, such as FAA, US DOD, IEC, NATO, IEEE, SAE, or 
other national or organization requirements.  

The Failure Reporting, Analysis and Corrective Action System (FRACAS) Application Guidelines 2 provides information about 
what a FRACAS is, how it can be effectively tailored, and how it can be applied beyond the traditional tracking of hardware 
failures. To perform a qualitative assessment, such as whether a customer is satisfied with a product or service, or a quantitative 
assessment, such as whether the reliability performance goals of a product or service have been achieved, a FRACAS must be 



used consistently. According to this publication, defining what constitutes a failure is perhaps the most critical aspect of 
implementing an effective FRACAS. The following table provides RAC definitions for a failure and failure events. 
Failure and Failure Events 

Terms Definitions 

Failure An event in which an item does not perform one or more of its 
required functions within the specified limits under specified 
conditions. A failure can either be catastrophic (total loss of 
function) or out-of-tolerance (degraded function beyond 
specified limits due to such occurrences as part failure, 
detuning, misalignment, and maladjustment, which are often 
classified as faults). 

Failure Symptom Any circumstance, event, or condition associated with the 
failure that indicates its existence or occurrence. Failure 
symptoms can include a temporary, intermittent indication of 
failure that cannot be duplicated. 

Failure Effect The consequence that a particular failure mode has upon the 
operation, function, or status of a product or service. 

Failure Mode The type of defect contributing to a failure, the consequence of 
the failure (i.e., how the failure manifests), or the manner in 
which the failure is observed. 

Failure Mechanism The process that results in the failure; the process of 
degradation or chain of events leading to and resulting in a 
particular failure mode. 

Failure Cause The circumstance that induces or activates a failure 
mechanism, e.g., defective soldering, design weakness, 
assembly techniques, software error, manufacturing process, 
clerical error, etc. 

Failure Classifications 
According to the Failure Reporting, Analysis and Corrective Action System (FRACAS) Application Guidelines, the classification 
of failure events helps to determine: 

• The level of analysis that should be performed on each failure.  
• The appropriate corrective action that should be taken (and when) to eliminate the failure or at least to minimize its 

recurrence.  

The following table lists the generic categories that RAC uses to classify failures. 
 
 
 

Classification Definitions 

Failure, Relevant A product (or service) failure that has been verified and can be 
expected to occur in normal operational use. Relevancy 
indicates whether a specific failure should "count" or not in the 
calculation of reliability for a produce or service (see "Failure, 
Chargeable" below). 

Failure, Non-Relevant A product (or service) failure that has been verified as having 
been caused by a condition not defined for normal operational 
use. 

Failure, Chargeable A relevant primary failure of the product (or service) under test, 
and any secondary failures resulting from a single failure 
incident. This definition of failure is typically limited to formal, 
contractually required reliability tests (performed in-house or in 
the field). 



Failure, Non-Chargeable A non-relevant failure, or a relevant failure caused by a 
previously agreed to set of conditions that eliminates the 
assignment of failure responsibility to a specific functional 
group. This definition of failure is typically limited to formal, 
contractually required reliability tests (performed in-house or in 
the field). 

Failure, Pattern The occurrence of two or more failures of the same part (or 
function) in identical or equivalent applications, where the 
failures are caused by the same basic failure mechanism, and 
the failures occur at a rate inconsistent with the expected part 
(or function) failure rate. 

Failure, Multiple Simultaneous occurrence of two or more verified independent 
failures. When two or more failed parts are found during 
troubleshooting, and assignable causes cannot be verified as 
dependent, multiple failures are presumed to have occurred. 

In developing a FRACAS, you may choose to either adopt the RAC terminology and classifications or to use your own. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Markov Analysis, Part 1 

Markov Analysis Accurately Models Dynamic Behaviors 

 

Combinatorial models such as reliability block diagrams (RBDs) and fault trees are used to predict the reliability of complex 
systems. However, they cannot accurately model such dynamic system behaviors as: 

• Repairs.  
• Common-cause and dependent failures.  
• Shocks (shared loads and induced failures).  
• Sequence/state-dependent failure rates (standby components).  
• Variable configurations.  
• Complex error handling and recovery mechanisms (common pool of repair technicians).  
• Phased mission requirements.  

Because of their flexibility, generalized stochastic processes are widely used to assess system reliability and related 
characteristics in mission critical systems. 
Stochastic Processes 
Stochastic processes have a number of states that describe the behavior of a set of random variables. The behavior of the 
stochastic process varies with respect to an index. In reliability engineering, this index is generally system time. This means that 
the stochastic process is used to describe the dynamics of a system with respect to time. 
State space is the set of all possible states of a process, and index space is a set of all possible index values. At a particular 
time (index value), a system will be in one of its possible states. In each state, a set of events can occur. The occurrence 
distribution of each state depends on the history of the system (all previous events and state transition times). 
In reliability engineering, the state space is generally discrete. For example, a system might have two states: good and failed. 
There are, however, applications in which state space can be continuous. Examples include the water level in a tank (where 
tank failure characteristics depend on the water level), the load on a shaft, the waiting time for repair, etc. If the state space is 
discrete, then the process is called a chain. 
Similarly, the state index can be discrete or continuous. In most reliability engineering applications, the state index (time scale) is 
continuous, which means that component failure and repair times are random variables. However, cases exist where the state 
index is discrete. Examples include time-slotted (synchronous) communication protocol, shifts in equipment operation, etc. 
Markov Processes 
Markov processes are a special class of stochastic processes that uniquely determine the future behavior of the process by its 
present state. This means that the distributions of events (rates of occurrences) are independent of the history of the system. 
Furthermore, the transition rates are independent of the time at which the system arrived at the present state. Thus, the basic 
assumption of a Markov process is that the behavior of the system in each state is memoryless. The transition from the current 
state of the system is determined only by the present state and not by the previous state or the time at which it reached the 
present state. Before a transition occurs, the time spent in each state follows an exponential distribution. 
In reliability engineering, these conditions are satisfied if all events (failures, repairs, switch-overs, etc.) in each state occur with 
constant occurrence rates (failure rate, repair rate, switch-over rate, etc.). Because the basic behavior of the process is time-
independent, these processes are also called Time Homogeneous Markov processes or simply Homogeneous Markov 
processes. However, failure and repair rates of a component can depend upon the current state. Because of constant transition 
rate restriction, the Homogenous Markov process should not be used to model the behavior of systems that are subjected to 
component wear-out characteristics. General stochastic processes should be used instead.  
In most cases, special classes of the stochastic processes that are generalizations to the Homogenous Markov processes are 
used. The corresponding models include: 

• Semi-Markov models. Although very similar to Homogeneous Markov models, the transition times and the probabilities 
(distributions) depend on the time at which the system reached the present state. This means that the transition rates in 
a particular state depend on the time already spent in that state, but that they do not depend on the path by which the 
present state was reached. Thus, transition distributions can be non-exponential.  

• Non-homogeneous models. Although very similar to Homogeneous Markov models, the transition times depend on 
the global system time rather than on the time at which the system reached the current state.  

A non-exponential distribution (such as normal or Weibull) can be approximated as a set of exponential distributions. In this 
case, even the distributions are non-exponential, and homogeneous Markov models can be used. However, the results are 
approximate. 
As noted earlier, Markov processes are classified based on state space and index space characteristics. The following table lists 
the characteristics of the four types of Markov processes and their corresponding model names. 



State Space Index Space Common Model Name 
Discrete Discrete Discrete Time Markov Chains 
Discrete Continuous Continuous Time Markov Chains 
Continuous Discrete Continuous State, Discrete Time 

Markov Processes 
Continuous Continuous Continuous State, Continuous 

Time Markov Processes 

Markov Model Types 
In most reliability engineering applications, the state space is discrete and the index space (time scale) is continuous. Thus, 
Discrete State Space, Continuous Index Space Homogenous Markov processes are the most commonly implemented. 
Because the term Markov chain is generally used whenever state space is discrete, the above table refers to these models as 
Continuous Time Markov Chains. In many textbooks, these models are simply called Continuous Markov Models.  
In addition to being an important concept in reliability analysis, Markov models find wide applications in other areas, including: 

• Artificial music.  
• Spread of epidemics.  
• Traffic on highways.  
• Occurrence of accidents.  
• Growth and decay of living organisms.  
• Emission of particles from radioactive sources.  
• Number of people waiting in a line (queue).  
• Arrival of telephone calls at a particular telephone exchange.  

Markov models are the only accurate method for modeling complex situations. The complex proofs related to these models can 
be found in many reliability engineering handbooks and related publications. 
Limitations of Homogeneous Markov Models 
Homogeneous Markov models are limited by two major assumptions: 

• The transitions (probabilities) of changing from one state to another are assumed to remain constant. Thus, a Markov 
model is used only when a constant failure rate and repair rate assumption is justified.  

• The transition probabilities are determined only by the present state and not by the system’s history. This means future 
states of the system are assumed to be independent of all but the current state of the system.  

Part 2 of this Technical Brief will discuss the creation of state transition diagrams for Markov analyses. 
 

 

 

 

 

 

 

 

 

 



Markov Analysis, Part 2 

Creating State Transition Diagrams for Markov Analyses 

 

State Transition Diagrams 

Markov state transition diagrams are graphical representations of system states and the possible transitions between these 
states. They provide a visual aid to help understand Markov models. A state transition diagram can graphically represent all: 

• System states and their initial conditions.  
• Transitions between system states and corresponding transition rates.  

In some cases, analysts represent continuous Markov models in terms of their discrete equivalents. The transition rates are 

replaced with equivalent transition probabilities considering that the state transition time is very small ( ). This leads to a 
situation where the system can remain in the current state after time t with some probability. Thus, in this case, the probabilities 
of remaining in the existing state (transition rates) are also shown in the diagram. 
A given system configuration is considered, at any instant in time, to exist in one of several possible states. In a single diagram, 
all of the operational and failure states of the system and the possible transitions between them are shown. The state transition 
diagram displays system states as individual nodes and transitions as either arrows or arcs. 
An Example of a Single-Component System 
Consider a non-repairable component with a constant failure rate ( ). The component has two states: good and failed. The 
states of the system are equivalent to the states of the component. Initially, assume that the component is good. The system 
reaches the failed state when the component fails. Once the system reaches a failed state, it will remain there forever because 
no events occur in the failed state. The state transition diagram of this single-component system can be represented as shown 
in Figure 1. 

 
Figure 1. Single-Component, Non-Repairable System 
Because state transition diagrams are more visual than mathematical matrix representations, they are much easier to interpret. 
A state transition diagram is similar to a flow diagram representation that would be used in system analysis. It graphically 
represents the various system states and the rates associated with the transitions between the system states. Because a 
direction is associated with a transition, a state transition diagram can be viewed as a directed graph. 
Construction of State Transition Diagram 
The basic steps in constructing state transition diagrams are: 

1. Define the failure criteria of the system.  
2. Enumerate all of the possible states of the system and classify them into good or failed states.  
3. Determine the transition rates between various states and draw the state transition diagram.  

An Example of a Two-Component System 
Assume that there are two components in a system (labeled A and B), and that these components are in parallel. Thus, the 
system will function properly as long as at least one of the two components is good. Also assume that 1 and 2 are the 
failure rates of component A and component B respectively. Therefore, the system has a total of four states (labeled S1, S2, S3, 
and S4): 

• S1. Component A is good, and Component B is good. (The system is good.)  
• S2. Component A is good, but Component B has failed. (The system is good.)  
• S3. Component B is good, but Component A has failed. (The system is good).  
• S4. Component B has failed, and Component A has failed. (The system has failed).  



Of the four system states possible, only one, S4, is a failed state. The state transition diagram of this two-component system is 
shown in Figure 2. Because the two components in this example are assumed to be independent and non-repairable, this 
problem can be solved using a combinatorial model such as an RBD. 

 
Figure 2. Two-Component, Non-Repairable System 
Generally, the arrow representing the initial state is omitted from the diagram because: 

• The initial state is generally where all components are in the good condition. In this example, S1 is the initial state.  
• Multiple initial states can exist, such as when there are multiple phases of a mission. In these cases, all initial states are 

assigned probabilities that are represented by an initial state probability vector.  

Now, assume that the components can be repaired as long as there is no system failure. This means that failed components can 

be repaired in state S2 and state S3. Also assume that 1 and 2 are the repair rates of component A and component B 
respectively. Figure 3 shows a state transition diagram that can represent this system. This problem cannot be solved using 
combinatorial models. 



 
Figure 3. Two-Component, Non-Repairable System with Repairable Components 
In some textbooks, the state transition diagrams of continuous models are represented using their discrete equivalents. For 
example, if is the transition rate from state i to state j, then the probability of occurrence of that transition within (a small 
increment of t) is approximately equivalent to . If there are multiple events that can occur in that state and their summation 

is , then is equivalent to the probability of transition within . This shows that 1-  is the probability of no 
transition occurring within . Figure 4 shows this state transition diagram. 

 
Figure 4. Two-Component, Non-Repairable System with Comparable Components (in Terms of Transition Probabilities) 
In all of the examples presented so far, it is assumed that the system state can be expressed as the combinations of a 
component state. However, in some cases, the order of the events (failures, for example) is important. Suppose that each of 
these states has a different effect on system reliability and fail-safety. The probability of component A failing before component B 



fails and the probability of component B failing before component A fails must then be known. For this example, five system 
states (labeled S1, S2, S3, S4, and S5) exist. 

• S1. Component A is good, and Component B is good. (The system is good.)  
• S2. Component A is good, but Component B has failed. (The system is good.)  
• S3. Component B is good, but Component A has failed. (The system is good.)  
• S4. Component A has failed, and then Component B has subsequently failed. (The system has failed in mode 1.)  
• S5. Component B has failed, and then Component A has subsequently failed. (The system has failed in mode 2.)  

Figure 5 shows a state transition diagram of this system without considering repairs. Problems considering sequence cannot be 
solved using combinatorial models. 

 
Figure 5. Two-Component System, Sequence-Dependent Failure Modes 
The previous discussion shows that finding all of the system failure states may not always be simple. The following approach to 
constructing a state transition diagram is recommended: 

1. Understand the system and the behaviors that are going to be modeled, drawing each system state in the state 
transition diagram.  

2. Find the initial state of the system (which is generally where all components are in a good condition) and then classify 
each state (Good, Failed, etc.).  

3. Determine all events that can occur in each state (component failures, repairs, external events such as common cause 
failures, etc.).  

4. For each event that can occur in a state:  
o Find the state that corresponds to the event's occurrence. If this state already appears in the state transition diagram, then draw a transition 

from the current (initial) state to the succeeding (next) state. Otherwise, create a new state and then draw the transition.  
o Set the rate for this transition, which is the event occurrence rate (such as a failure rate or repair rate).  
o Classify the state (Good, Failed, etc.).  

5. Repeat steps 3 and 4 for each state. The state transition diagram is completed when all states are visited and there are 
no states left to create.  

After constructing the state transition diagram, adding the following information can be useful. 

• Initial condition. Generally the initial condition (state probability) is 1 for the perfect state of the system (which is where 
this example starts, and 0 for all other states).  

• Capacity. The throughput or reward of the system.  

The following information is also useful for constructing state transition diagrams: 

• Results from Failure Mode and Effects Analysis (FMEA) can help to identify all possible failures of a component.  
• An absorbing state is a state in which no events can occur. Once a system reaches an absorbing state, it cannot visit 

any other state. Therefore, there are no outward transitions from this state. Generally, all absorbing states are failed 
states.  



• Between one state and another, there can be only one transition. If multiple events make this transition, all transition 
rates between these two states should be added together and then this value assigned to the transition.  

• Similar states are generally merged to reduce the state space and keep the state transition diagrams neat and 
readable. Any two states having the same transitions going out from them are treated as if they had the same set of 
succeeding states and corresponding transitions rates.  

• All failed and absorbing states can be merged to a single state if there is no interest in analyzing individual failures, i.e., 
when all failed states are of the same type.  

• If the sequence in which failures occur is important to identifying the type of state (Good, Failed, etc.), states should not 
be merged based on the combination of component failures. Otherwise, states can be merged on this basis.  

Part 1 of this Technical Brief discusses how Markov analyses accurately model dynamic behaviors. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Analyze Failure Data Accurately with Weibull Analysis 

Handles a Broad Range of Applications, Industries, and Processes 

 

Among all of the distributions available for reliability calculations, the Weibull distribution is the only one unique to the 
engineering field. Originally proposed in 1937 by Professor Waloddi Weibull (1887-1979), the Weibull distribution is one of the 
most widely used distributions for failure data analysis, which is also known as life data analysis because life span 
measurements of a component or system are analyzed. 

A Swedish engineer and mathematician studying metallurgical failures, Professor Weibull pointed out that normal distributions 
require that initial metallurgical strengths be normally distributed, which is not necessarily the case. He noted the need for a 
function that could embrace a great variety of distributions, including the normal. 

When delivering his hallmark American paper in 1951, A Statistical Distribution Function of Wide Applicability, Professor Weibull 
claimed that life data could select the most appropriate distribution from the broad family of Weibull distributions and then fit the 
parameters to provide reasonably accurate failure analysis. He used seven vastly different problems to prove that the Weibull 
distribution could easily be applied to a wide range of problems. 

The initial reaction to the Weibull distribution was generally that it was too good to be true. However, pioneers in the field of 
failure data analysis began applying and improving the technique, which resulted in the U.S. Air Force recognizing its merit and 
funding Professor Weibull's research until 1975. 

Today, Weibull analysis refers to graphically analyzing probability plots to find the distribution that best represents a set of life 
data for a given failure mode. Although the Weibull distribution is the leading method worldwide for examining life data to 
determine best-fit distributions, other distributions occasionally used for life data analysis include the exponential, lognormal, and 
normal. By "fitting" a statistical distribution to life data, Weibull analysis provides for making predictions about the life of the 
products in the population. The parameterized distribution for this representative sample is then used to estimate such important 
life characteristics of the product as reliability, probability of failure at a specific time, mean life for the product, and the failure 
rate. 

Advantages of Weibull Analysis 

Weibull analysis is extensively used to study mechanical, chemical, electrical, electronic, material, and human failures. The 
primary advantages of Weibull analysis are its ability to: 

• Provide moderately accurate failure analysis and failure forecasts with extremely small data samples, making solutions 
possible at the earliest indications of a problem.  

• Provide simple and useful graphical plots for individual failure modes that can be easily interpreted and understood, 
even when data inadequacies exist.  

• Represent a broad range of distribution shapes so that the distribution with the best fit can be selected.  
• Provide physics-of-failure clues based on the slope of the Weibull probability plot.  

Although the use of the normal or lognormal distribution generally requires at least 20 failures or knowledge from prior 
experience, Weibull analysis works extremely well when there are as few as 2 or 3 failures, which is critical when the result of a 
failure involves safety or extreme costs. WeiBayes, a distribution in the Weibull family, can even be used with no failures when 
prior engineering knowledge is sufficient. 
Weibull Probability Plots 
Weibull analysis studies the relationship between the life span of a component and its reliability by graphing life data for an 
individual failure mode on a Weibull probability plot. Weibull analysis is most often used to describe the time to failure of parts. 
These can be light bulbs, ball bearings, capacitors, disk drives, printers, or even people. Failure modes include cracks, fractures, 
deformations, or fatigue due to corrosion, excessive physical stress, high temperature, infant mortality, wearout, etc. 
When plotting the time-to-failure data on a Weibull probability plot, engineers prefer using median rank regression as the 
parameter estimation method. Median rank regression finds the best-fit straight line by using least squares regression (curve 
fitting) to minimize the sum of the squared deviation (regressing X on Y). Median rank regression is considered the standard 
parameter estimation method because it provides the most accurate results on the majority of data sets. 
Typically, the horizontal scale (X-axis) measures the component age, and the vertical scale (Y-axis) measures the cumulative 
percentage of the components that have failed by the failure mode under consideration. 



A Weibull probability plot has a linear/nonlinear time-scale along the abscissa and another nonlinear scale for the distribution 
function along the ordinate. These nonlinear scales are selected in such a way that the model used for data is an appropriate 
one. If the scales match the data, the graph turns out to be a straight line. Because of their simplicity and usefulness, probability 
graphs have been used for many years in statistical analysis. However, it must be noted that the probability plotting methods to 
derive distribution parameters are independently and identically distributed. This is usually the case for non-repairable 
components and systems but may not be true with failure data from repairable systems. 
In the following figure, the Weibull probability plot considers the times to failure for a unique failure mode. When a number of 
parts are tested under normal operating conditions, they do not all fail at the same time for the same cause. The failure times for 
any one cause tend to concentrate around some average, with fewer observations existing at both shorter and longer times. 
Because life data are distributed or spread out like this, they are said to follow a distribution. To describe the shape of a 
distribution, which tends to depend upon what is being studied, statistical methods are used to determine a formula. If the plotted 
data points fall near the straight line, the Weibull probability plot is considered reasonable. 

 
NOTE: Although the Y-axis values are probabilities that go from 1 to 99, the distances between the tick marks on this axis are 
not uniform. Rather than being based on point changes, the distances between tick marks on both the Y and X axes of the 
Weibull probability plot are based on percentage changes. Known as a logarithmic scale, the distance from 1 to 2, which is a 
100 percent increase, is the same as the distance from 2 to 4, which is another 100 percent increase. A logarithmic scale 
provides for apple-to-apple comparisons of several series. In addition to offering more insight into the problem, this visual 
representation helps to identify the distribution method that best fits a straight line to the data set. 
While the above figure plots occurrences, it is very common to plot the age of components at failure. In these cases: 

 
Uses for Weibull Analysis 
Weibull analysis has traditionally be used for analyzing failure data for: 

• Development, production, and service.  
• Quality control and design deficiencies.  
• Maintenance planning and replacement strategies.  
• Spare parts forecasting.  
• Warranty analysis.  
• Natural disasters (lightning strikes, storms, high winds, heavy snow, etc.).  

New applications of Weibull analysis include medical research, instrument calibration, cost reduction, materials properties, and 
measurement analysis. 
 

 

 



FMEAs Promote Improved Product Reliability 

Anticipate Problems and Minimize Their Occurrence and Impact 

 

Failure Modes and Effects Analysis (FMEA) is one of the most widely used and effective tools for developing quality designs, 
processes, and services. 

NOTE: When criticality is considered, a FMEA is often times referred to as a FMECA (Failure Modes, Effects, and Criticality 
Analysis). In this document, the term FMEA is used in a general sense to include both FMEAs and FMECAs. 

Developed during the design stage, FMEAs are procedures by which: 

• Potential failure modes of a system are analyzed to determine their effects on the system.  
• Potential failure modes are classified according to their severity (FMEAs) or to their severity and probability of 

occurrence (FMECAs).  
• Actions are recommended to either eliminate or compensate for unacceptable effects.  

When introduced in the late 1960s, FMEAs were used primarily to assess the safety and reliability of system components in the 
aerospace industry. During the late 1980s, FMEAs were applied to manufacturing and assembly processes by Ford Motor 
Company to improve production. Today, FMEAs are being used for the design of products and processes as well as for the 
design of software and services in virtually all industries. As markets continue to become more intense and competitive, FMEAs 
can help to ensure that new products, which consumers demand be brought to market quickly, are both highly reliable and 
affordable. 
The principle objectives of FMEAs are to anticipate the most important design problems early in the development process and 
either to prevent these problems from occurring or to minimize their consequences as cost effectively as possible. In addition, 
FMEAs provide a formal and systematic approach for design development and actually aid in evaluating, tracking, and updating 
both design and development efforts. Because the FMEA is begun early in the design phase and is maintained throughout the 
life of the system, the FMEA becomes a diary of the design and all changes that affect system quality and reliability. 
Types of FMEAs 
All FMEAs focus on design and assess the impact of failure on system performance and safety. However, FMEAs are generally 
categorized based on whether they analyze product design or the processes involved in manufacturing and assembling the 
product. 

• Product FMEAs. Examine the ways that products (typically hardware or software) can fail and affect product operation. 
Product FMEAs indicate what can be done to prevent potential design failures.  

• Process FMEAs. Examine the ways that failures in manufacturing and assembly processes can affect the operation 
and quality of a product or service. Process FMEAs indicate what can be done to prevent potential process failures prior 
to the first production run.  

Although FMEAs can be initiated at any system level and use either a top-down or bottom-up approach, today's products and 
processes tend to be complex. As a result, most FMEAs use an inductive, bottom-up approach, starting the analysis with the 
failure modes of the lowest level items of the system and then successively iterating through the next higher levels, ending at the 
system level. Regardless of the direction in which the system is analyzed, all potential failure modes are to be identified and 
documented on FMEA worksheets (hard copy or electronic), where they are then classified in relation to the severity of their 
effects. 
In a very simple product FMEA, for example, a computer monitor may have a capacitor as one of its components. By looking at 
the design specifications, it can be determined that if the capacitor is open (failure mode), the display appears with wavy lines 
(failure effect). And, if the capacitor is shorted (failure mode), the monitor goes blank (failure effect). When assessing these two 
failure modes, the shorted capacitor would be ranked as more critical because the monitor becomes completely unusable. On 
the FMEA worksheet, ways in which this failure mode can either be prevented or its severity lessened would be indicated. 
Approaches to FMEAs 
Product and process FMEAs can be further categorized by the level on which the failure modes are to be presented. 

• Functional FMEAs. Focus on the functions that a product, process, or service is to perform rather than on the 
characteristics of the specific implementation. When developing a functional FMEA, a functional block diagram is used 
to identify the top-level failure modes for each functional block on the diagram. For a heater, for example, two potential 
failure modes would be: "Heater fails to heat" and "Heater always heats." Because FMEAs are best begun during the 
conceptual design phase, long before specific hardware information is available, the functional approach is generally 



the most practical and feasible approach by which to begin a FMEA, especially for large, complex products or 
processes that are more easily understood by function than by the details of their operation. When systems are very 
complex, the analysis for functional FMEAs generally begins at the highest system level and uses a top-down approach.  

• Interface FMEAs. Focus on the interconnections between system elements so that the failures between them can be 
determined and recorded and compliance to requirements can be verified. When developing interface FMEAs, failure 
modes are usually developed for each interface type (electrical cabling, wires, fiber optic lines, mechanical linkages, 
hydraulic lines, pneumatics lines, signals, software, etc.). Beginning an interface FMEA as soon as the system 
interconnections are defined ensures that proper protocols are used and that all interconnections are compliant with 
design requirements.  

• Detailed FMEAs. Focus on the characteristics of specific implementations to ensure that designs comply with 
requirements for failures that can cause loss of end-item function, single-point failures, and fault detection and isolation. 
Once individual items of a system (piece-parts, software routines, or process steps) are uniquely identified in the later 
design and development stages, FMEAs can assess the failure causes and effects of failure modes on the lowest level 
system items. Detailed FMEAs for hardware, commonly referred to as piece-part FMEAs, are the most common FMEA 
applications. They generally begin at the lowest piece-part level and use a bottom-up approach to check design 
verification, compliance, and validation.  

Variations in design complexity and data availability will dictate the analysis approach to be used. Some cases may require that 
part of the analysis be performed at the functional level and other portions at the interface and detailed levels. In other cases, 
initial requirements may be for a functional FMEA that is to later progress to an interface FMEA, and then finally progress to a 
detailed FMEA. Thus, FMEAs completed for more complex systems often include worksheets that employ all three approaches 
to FMEA development. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Use Relex Weibull to Minimize Downtime or Overall System Cost 

Optimize Replacement Strategies Based on Block of Time or Age Maintenance Policies 

 

 

Block of Time Replacement Strategy 

With this strategy, components are replaced at a predetermined, non-moving interval of time. For instance, a component might 
be replaced on the first of every month, regardless as to whether or not it has been recently replaced due to failure. Although 
this strategy is very simple to implement, it results in more replacements. 

The block of time replacement strategy is optimized using a renewal function, which is an exact solution. It varies the block of 
time starting at a user-defined minimum block and increases the block of time to the user-defined maximum block. If cost is 
being optimized, the strategy then picks the minimum total cost. 

Example 

Let us assume that the optimal replacement strategy for an industrial hydraulic valve is to be determined using a block of time 
replacement strategy that minimizes the costs incurred from replacements. Let us also assume that unplanned replacements are 
10 times more expensive than planned replacements, and that the block of time is to be at least 1 month but no more than 12 
months. 

At one month, the Relex Weibull module will have determined that the component has not failed, as pictured below: 

 

Let us assume that the Relex Weibull module then increases the time to 2 months (although in practice it would use a much 
smaller increment than this). Even though an unplanned failure occurs between the first and second months, the planned 
replacement still occurs at two months as shown in the next figure: 

 



After a number of iterations, the Relex Weibull software module would calculate: 

[Cost of Planned Replacement] * [Cost of Unplanned Replacement]*[Renewal Function] 
Time  

Age Replacement Strategy 

With this strategy, components are replaced at a given age on a sliding time scale. For instance, a component might be replaced 
one month after its last replacement. Although this strategy is more difficult to implement, it results in fewer replacements 
occurring at more ideal times. 

The age replacement strategy is optimized using a residual life time function, which is an approximation.  

Example 

An example failure graph is shown below for a case where the component is replaced exactly one month after the previous 
failure. Calculations are performed similarly to the block of time calculations. 

 

Conclusion 

Within the Relex Weibull module, the Optimal Replacement Wizard makes determining the optimal replacement strategy easy. 
You simply select a failure distribution and then complete the Optimal Replacement Data dialog box: 



 

1. Select your replacement objective.  
2. Specify the minimum and maximum value for the time interval.  
3. Select the Age or Block of Time replacement strategy.  
4. If the Block of Time strategy is selected, indicate the maximum number of replacements that occur due to failure in the 

replacement time interval in the field that becomes available. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Using Fault Trees to Identify Potential Faults in Critical Systems 

Visualize the Events that Lead to Component Failure 

 

Fault Tree Analysis (FTA) is well recognized worldwide as an important tool for evaluating safety and reliability in system design, 
development, and operation. For more than 40 years, FTA has been used in the aerospace, nuclear, and transportation 
industries to translate the failure behavior of a system into a visual diagram that displays system relationships and root cause 
failure paths. A fault tree provides a concise, visual representation of the various combinations of possible occurrences within a 
system that can result in a predefined and undesirable event. FTA is most often used for: 

• Identifying safety critical components.  
• Verifying product requirements.  
• Certifying product reliability.  
• Assessing product risk.  
• Investigating accidents/incidents.  
• Evaluating design changes.  
• Displaying the causes and consequences of events.  
• Identifying common-cause failures.  

FTA is a deductive analysis method that begins with a general conclusion (a system-level undesirable event) and then attempts 
to determine the specific causes of this conclusion. Based on a set of rules and logic symbols from probability theory and 
Boolean algebra, FTA uses a top-down approach to generate a logic model that provides for both qualitative and quantitative 
evaluation of system reliability. 
The undesirable event at the system level is referred to as the top event. It generally represents a system failure mode or hazard 
for which predicted availability data is required. The lower level events in each branch of a fault tree are referred to as basic 
events. They represent hardware, software, and human failures for which the probability of failure is given based on historical 
data. Basic events are linked via logic symbols (gates) to one or more undesirable top events. 
Computerized FTA 
Small fault trees have fewer than 100 events, medium fault trees have from 100 to 1,000 events, and large fault trees have more 
than 1,000 events! Today, computerized FTA can be used to analyze very complex systems as well as very complex 
relationships between hardware, software, and humans. Using good FTA software, you can cut, copy, paste, rearrange, and 
delete events and gates to various fault tree branches to quickly and easily compare different hardware configurations. An 
example of a computer-generated fault tree follows.* 



 
* Generated in Relex Fault Tree. Click the image to view a full-size version.  
In the above figure, "Passenger Injury Occurs in Elevator" is defined as the top event. The reasons why passenger injury in an 
elevator could occur have been determined to be either that the box free falls or that the door is open at an inappropriate time. 
After determining all possible causes for each event identified, the events and gates for connecting them to higher-level events 
are added to the fault tree. Any faults that can be further developed to determine causes are then added as lower-level events 
and connected by the appropriate gates. 
The lowest-level events that terminate fault tree paths are called basic events or primary events. They are either component-
level events that cannot be further resolved or external events. For example, in the first level of possible events for the free fall of 
the box, "Cable off Pulley" and "Broken Cable" are basic events. Because these events are primary faults, they are not 
developed any further in the fault tree. 
Fault Tree Construction 
To construct a useful fault tree, the analyst must fully understand the system as an integrated interaction of subsystems. In 
addition to having a logical mind and the ability to visualize the logic structure and interaction of a system and its subsystems, 
the analyst must have knowledge of the dependencies between the components, their reliability parameters, and the conditions 
that determine the components that are considered to have failed. Thus, good analysts are generally experts in mechanical, 
structural, electrical, and control systems and also have an understanding of human interactions, procedural implications, and 
even chemical interactions. 
The most common errors in constructing fault trees include: 

• Using too wide of a scope for the top event, which results in a large, complex, and unfocused fault tree.  
• Using inconsistent nomenclature for the same events, which prevents you from finding events that occur in multiple 

branches of the fault tree.  
• Using the same nomenclature for similar but different components, thereby identifying the same failure for several 

scenarios when these failures are actually caused by different components.  
• Breaking the fault tree into branches by electrical, mechanical, and structural subsystems, thereby failing to take the 

interface and integration of the system into account.  

Top Event Definition 
Because the top event sets the tone for the series of questions that are considered when constructing the fault tree, the analyst 
should use the system definition to construct a clear and concise top event. If a top event is vaguely stated, the fault tree is likely 
to be large, complex, and unfocused. To generate a useful fault tree, the top event must be precisely stated and be narrow in 



scope. Specifying the specific mission phase or portion of the mission to which a top event applies in the description of the top 
event often helps to generate a very concise fault tree. 
Event Nomenclature 
During fault tree creation, consistently applying the appropriate nomenclature to events is critical to identifying the same event in 
multiple fault tree branches. If, for example, you give an event a different name in another branch of the fault tree, cutset 
analysis, which is described in the "Fault Tree Analysis" section, identifies multiple events leading to different failures (rather 
than the same event leading to different failures). If you do not realize that nomenclature errors exist, you may not recognize an 
event as a major contributor to the top event and thereby fail to recommend improvements or controls for it. Similarly, when two 
identical components are installed in different locations within a system, you must be sure to identify that they are physically 
different components by using reference designators in the nomenclature. Otherwise, cutset analysis identifies how the same 
component failure contributes to several scenarios when the failures are actually caused by different components. 
Branch Arrangement 
Because engineering groups so often function autonomously, fitting each piece of hardware together in a system tends to be an 
afterthought. Organizations that regularly categorize work by engineering disciplines tend to arrange the branches of a fault tree 
by subsystems. However, such an arrangement limits FTA to considering only component failures. When engineering groups fail 
to properly coordinate and implement a design as a team, interfaces and interactions are most often the areas in which the 
system breaks down. When fault tree branches are arranged by subsystems, these areas are never even addressed. 
When scenarios that lead to the top event are used to arrange fault tree branches, the analyst can place faults under the cause 
for a component failure. Causes can include not only hardware failures but also interface and integration problems due to design 
flaws, software, human errors, operation and maintenance errors, and environmental influences on the system. Fault trees 
arranged by scenarios often uncover complex relationships and interactions of systems, components, and actions that are 
believed to be unrelated. For example, such an FTA can reveal a single-point component failure that can fail two supposedly 
redundant or independent systems. 
Fault Tree Analysis 
After properly identifying all failures, events, and conditions that can lead to the occurrence of the top event, you can compute 
the probability of the top event and measure the relative impact of a design fix. The traditional analysis process is to generate 
the system minimal cut sets, apply the basic event probabilistic data, and then determine the probability of the top event. 
The qualitative analysis of fault trees is based on determining the minimal cutsets for the top event. Cutsets identify the sets of 
events that cause the top event to occur. A cutset can be a single-point failure or event or can be a set of many events. Different 
cutsets can include different combinations of the same event. A minimal cutset is the smallest group of events that cause the top 
event to occur. In large trees, the events that cause the top event to occur are often buried deep within the system and are not 
easily discovered without performing cutset analysis. 
The basic events that belong to a cutset provide such information as single-point failures and the relative contributions of each 
cutset. Generally, the cutsets that have the highest probability of occurrence are the ones that have the fewest number of 
events. Thus, the minimal cutset information obtained during qualitative analysis can be used for computing the unavailability 
and unreliability values of the system during quantitative analysis. (Unavailable and unreliability values are calculated by FTA 
because fault trees are organized around system failures rather than system successes.) For quantitative analysis, reliability and 
maintainability information such as failure probability or repair rate is used to determine or quantify the probability of occurrence 
of the top event. 
Conclusion 
Because FTA is an event-oriented analysis, it can identify more possible failure causes than structure-oriented FMEAs (Failure 
Modes and Effects Analysis) and RBDs (Reliability Block Diagrams), which allow only hardware failure considerations. When 
performed correctly, FTA often identifies system problems that other design and analytical methods would overlook. 
 
 
 


