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Mixtures of Normals

In this chapter, I will review the mixture of normals model
and discuss various methods for inference with special attention
to Bayesian methods. The focus is entirely on the use of mix-
tures of normals to approximate possibly very high dimensional
densities. Prior specification and prior sensitivity are important
aspects of Bayesian inference and I will discuss how prior
specification can be important in the mixture of normals model.
Examples from univariate to high dimensional will be used
to illustrate the flexibility of the mixture of normals model as
well as the power of the Bayesian approach to inference for
the mixture of normals model. Comparisons will be made to
other density approximation methods such as kernel density
smoothing which are popular in the econometrics literature.

The most general case of the mixture of normals model
“mixes” or averages the normal distribution over a mixing
distribution.

p (y|τ ) =
∫

φ (y|µ,�)π (µ,�|τ ) dµd� (1.0.1)

Here π( ) is the mixing distribution. π( ) can be discrete or con-
tinuous. In the case of univariate normal mixtures, an important
example of a continuous mixture is the scale mixture of normals.

p (y|τ ) =
∫

φ (y|µ, σ )π (σ |τ ) dσ (1.0.2)

A scale mixture of a normal distribution simply alters the tail
behavior of the distribution while leaving the resultant distribu-
tion symmetric. Classic examples include the t distribution and
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double exponential in which themixing distributions are inverse
gamma and exponential, respectively (Andrews and Mallows
(1974)). For our purposes, we desire a more general form of mix-
ing which allows the resultant mixture distribution sufficient
flexibility to approximate any continuous distribution to some
desired degree of accuracy. Scale mixtures do not have sufficient
flexibility to capture distributions that depart from normality ex-
hibiting multi-modality and skewness. It is also well-known that
most scale mixtures that achieve thick tailed distributions such
as the Cauchy or low degree of freedom t distributions also have
rather “peaked” densities around the mode of the distribution. It
is common to find datasets where the tail behavior is thicker than
the normal but the mass of the distribution is concentrated near
the mode but with rather broad shoulders (e.g., Tukey’s “slash”
distribution). Common scale mixtures cannot exhibit this sort
of behavior. Most importantly, the scale mixture ideas do not
easily translate into the multivariate setting in that there are
few distributions on � for which analytical results are available
(principally the Inverted Wishart distribution).

For these reasons, I will concentrate on finite mixtures of
normals. For a finite mixture of normals, the mixing distribution
is a discrete distribution which puts mass on K distinct values of
µ and �.

p (y|π, {µk, �k}) =
∑
k

πkφ (y|µk, �k) (1.0.3)

φ( ) is the multivariate normal density.

φ (y|µ,�) = (2π)−d/2 |�|−1/2 exp
{−1/2 (y − µ)′ �−1 (y − µ)

}
(1.0.4)

d is the dimension of the data, y. The K mass points of the
finite mixture of normals are often called the components of the
mixture. The mixture of normals model is very attractive for
two reasons: (1) the model applies equally well to univariate and
multivariate settings; and (2) the mixture of normals model can
achieve great flexibility with only a few components.
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Figure 1.1. Mixtures of Univariate Normals

Figure 1.1 illustrates the flexibility of the mixture of normals
model for univariate distributions. The upper left corner of
the figure displays a mixture of a standard normal with a
normal with the same mean but 100 times the variance (the
red density curve), that is the mixture .95N(0, 1) + .05N(0, 100).
This mixture model is often used in the statistics literature as
a model for outlying observations. Mixtures of normals can
also be used to create a skewed distribution by using a “base”
normal with another normal that is translated to the right or left
depending on the direction of the desired skewness.

The upper right panel of Figure 1.1 displays the mix-
ture, .75N(0, 1) + .25N(1.5, 22). This example of constructing
a skewed distribution illustrates that mixtures of normals do
not have to exhibit “separation” or bimodality. If we position
a number of mixture components close together and assign each
component similar probabilities, then we can create a mixture
distribution with a density that has broad shoulders of the type
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Figure 1.2. A Mixture of Bivariate Normals

displayed in many datasets. The lower left panel of Figure 1.1
shows the mixture .5N(−1, 1) + .5N(1, 1), a distribution that is
more or less uniform near themode. Finally, it is obvious that we
can produce multi-modal distributions simply by allocating one
component to each desiredmodel. The bottom right panel of the
figure shows the mixture .5N(−1, .52) + .5N(1, .52). The darker
lines in Figure 1.1 show a unit normal density for comparison
purposes.

In the multivariate case, the possibilities are even broader. For
example, we could approximate a bivariate density whose con-
tours are deformed ellipses by positioning two or more bivariate
normalmixtures along the principal axis of symmetry. The “axis”
of symmetry can be a curve allowing for the creation of a density
with “banana” or any other shaped contour. Figure 1.2 shows a
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mixture of three uncorrelated bivariate normals that have been
positioned to obtain “bent” or “banana-shaped” contours.

There is an obvious sense in which the mixture of normals
approach, given enough components, can approximate any mul-
tivariate density (see Ghosh and Ramamoorthi (2003) for infinite
mixtures and Norets and Pelenis (2011) for finite mixtures). As
long as the density which is approximated by the mixture of
normals damps down to zero before reaching the boundary of
the set on which the density is defined, then mixture of normals
models can approximate the density. Distributions (such as
truncated distributions) with densities that are non-zero at the
boundary of the sample space will be problematic for normal
mixtures. The intuition for this result is that if we were to
use extremely small variance normal components and position
these as needed in the support of the density then any density
can be approximated to an arbitrary degree of precision with
enough normal components. As long as arbitrarily large samples
are allowed, then we can afford a larger and larger number of
these tiny normal components. However, this is a profligate and
very inefficient use of model parameters. The resulting approx-
imations, for any given sample size, can be very non-smooth,
particularly if non-Bayesian methods are used. For this reason,
the really interesting question is not whether the mixture of
normals can be the basis of a non-parametric density estimation
procedure, but, rather, if good approximations can be achieved
with relative parsimony. Of course, the success of the mixture of
normals model in achieving the goal of flexible and relatively
parsimonious approximations will depend on the nature of
the distributions that need to be approximated. Distributions
with densities that are very non-smooth and have tremendous
integrated curvature (i.e., lots of wiggles) may require large
numbers of normal components.

The success of normal mixture models is also tied to the
methods of inference. Given that many multivariate density ap-
proximation situations will require a reasonably large number of
components and each component will have a very large number
of parameters, inference methods that can handle very high
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dimensional spaces will be required. Moreover, the inference
methods that over-fit the data will be particularly problematic
for normal mixture models. If an inference procedure is not
prone to over-fitting, then inference can be conducted for mod-
els with a very large number of components. This will effectively
achieve the non-parametric goal of sufficient flexibility with-
out delivering unreasonable estimates. However, an inference
method that has no method of curbing over-fitting will have to
be modified to penalize for over-parameterized models. This will
add another burden to the user—choice and tuning of a penalty
function.

1.1 Finite Mixture of Normals Likelihood Function

There are two alternative ways of expressing the likelihood
function for the mixture of normals model. This first is simply
obtained directly from the form of the mixture of normals
density function.

L (π, {µk, �k, k = 1, . . . , K } |Y ) =
∏
i

∑
k

πkφ (yi |µk, �k)

(1.1.1)

Y is a matrix whose ith row is y′
i . A useful alternative way of

expressing the likelihood function is to recall one interpretation
of the finite mixture model. For each observation, an indicator
variable, zi , is drawn from a multinomial distribution with K
possible outcomes each with probability πk. yi is drawn from
the multivariate normal component corresponding to outcome
of the multinomial indicator variable. That is, to simulate from
the mixture of normals model is a two-step procedure:

zi ∼ MN(π)
yi ∼ N

(
µzi , �zi

)
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Using this representation we can view the likelihood function as
the expected value of the likelihood function given z.

L (π, {µk, �k} |Y ) = E [L (z, µk, �k)]

= E
[∏

i

∑
k

I (zi = k)φ (yi , |µk, �k)
]
(1.1.2)

The likelihood function for the finite mixture of normals
model has been extensively studied (see, for example, McLachlan
and Peel (2000)). There are several unusual features of the mix-
ture of normals likelihood. First, the likelihood has numerous
points where the function is not defined with an infinite limit
(for lack of a better term, I will call these poles). In a famous
example given by Quandt and Ramsey (1978), the likelihood
for a mixture of two univariate normals can be driven to any
arbitrary value by taking one of the means to be equal to yi and
letting σ for that mixture component go to zero.

lim
σ→0

1
2πσ

exp
{

−1/2

(
yi − µk

σ

)2
}

|µk=yi = ∞

This means that there are poles for every y value in the data set.
Figure 1.3 plots the likelihood function for a mixture of two
univariate normals and shows the log-likelihood surface around
values of µ close to a particular yi . This sort of feature may make
it difficult for standard optimizers to explore the likelihood
surface.

However, it is not poles that present the most difficult
problem for exploring the likelihood surface using conventional
optimizers that use local derivative information. The mixture of
normals likelihood function has K ! modes, each of equal height.
These modes correspond to all of the possible ways to reorder
the labeling of the likelihood normal mixture component pa-
rameters. That is, there is no difference between the likelihood
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Figure 1.3. Pole in the Likelihood Function

for µ1 = µ∗
1, µ2 = µ∗

2, σ1 = σ ∗
1 , σ2 = σ ∗

2 and the likelihood for
µ1 = µ∗

2, µ2 = µ∗
1, σ1 = σ ∗

2 , σ2 = σ ∗
1 . Moreover, there are sad-

dle points between these symmetric modes. Figure 1.4 shows
what appears to be a saddle point in the likelihood of a mixture
of two normals. The likelihood is only depicted in the µ1, µ2
space conditional on the values of the standard deviations para-
meters. The figure shows two local maxima near the points (2,4)
and (4,2). However, if you constrain the means to be equal, there
is a local maximum at the top of the saddle point near the point
(1.5,1.5). This means that any standard optimizer that begins at
the point of equal means (not an unreasonable starting point,
for example, to start at the mean of the data for all µ parameters)
will converge to local maximum that is not the global.

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 



February 20, 2014 Time: 10:27am chapter1.tex

Mixtures of Normals 9

Figure 1.4. Saddle Points in the Likelihood Function

1.2 Maximum Likelihood Estimation

Given the existence of both poles and saddle points, the maxi-
mization of themixture of normals likelihood (1.1.1) is challeng-
ing. Standard quasi-Newton optimizers will have to be started
from points close to one of the K ! global optima in order to
work well. If the mixture is designed to approximate a density
in high dimensions (5 or more) and a relatively large number
of components are desired for flexibility, then the number of
parameters in the likelihood can be very large.

nparm = K − 1 + K
(
d (d + 1)

2

)
+ Kd = o

(
d2) (1.2.1)
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d is the dimension of the data and K is the number of com-
ponents in the mixture. The first term in (1.2.1) represents
the number of parameters in π , the second from the set of
normal component variance-covariance matrices (�k), and the
third from the normal component mean vectors. For example,
a modest problem with d = 5 and K = 10 would feature 209
unique parameters. The sheer number of parameters does not
present a computational challenge in and of itself. However, the
irregular features of the mixture likelihood make high dimen-
sional optimization difficult. Not only are the parameters large
in number, but there are constraints on the parameter space
imposed by the condition that all of the component covariance
matrices must be positive definite symmetric. The nature of
these constraints do not facilitate direct input into standard
non-linear programming methods which allow for constrained
optimization. Instead, it would be advisable to reparameterize to
enforce symmetry and positive definiteness.

�k = U ′
kUk

Uk = f (λk, θk) (1.2.2)

f (λk, θk) =


eλk,1 θk,1 · · · θk,d−1

0 e . . . ...
... . . . . . . θk,(d−1)d/2
0 · · · 0 eλk,d


However, even with this reparameterization, the mixture of
normals likelihood remains a severe challenge for standard opti-
mization methods, particularly for cases where the dimension of
the data is greater than one.

1.2.1 E-M Algorithm

Most agree that the only reliable way to compute maximum
likelihood estimates for the mixture of normals model is to
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employ the E-M algorithm. The E-M algorithm is particularly
appropriate for those problems which can be characterized as
an incomplete data problem. An incomplete data problem is
one in which what we observe in our sample can be viewed
as a subset of “complete” data. As we have seen, the mixture
of normals model can be viewed as a sampling mechanism in
which draws are made from a latent (unobserved) indicator vec-
tor, z, which indicates which of the K normal components each
observation is drawn from. The complete data is then (z, y). The
likelihood for the observed data is the complete data likelihood
with the unobserved component integrated out. In the mixture
of normals case, the integration simply consists of weighting
each component by the mixing or multinomial probability and
adding the components up. The E-M algorithm is an iterative
procedure consisting of an “E-step” and an “M” or maximization
step. Given the model parameters, the “E-step” consists of taking
the expectation of the unobserved latent indicators and the
“M-step” consists of maximizing the component density parame-
ters in the expectation of the complete data likelihood function
(see, for example, McLachlan and Peel (2000), section 2.8). As is
well-known, the E-M algorithm provides a method by which an
improvement (or at least no decrease in the likelihood) can be
achieved at each step. This means that the E-M method provides
a reliable, if somewhat slow, method of climbing to a local
maximum in the mixture of normals likelihood.

The complete data log-likelihood can be written conveniently
for application of the E-M method as follows:

log (Lc (H, �)) =
n∑

i=1

K∑
k=1

hik
(
log (πi ) + logφ (yi |µk, �k)

)
(1.2.3)

hik is a matrix of indicator variables. hik = 1 if observation i is
from component k. � is the collection of all of the mixture
parameters: π, {µk, �k} k = 1, . . . , K . The E-M method starts
from an initial value, �0 , of �.
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E-Step: Take the expectation of the complete data log-
likelihood with respect to the unobserved hik values. The expec-
tation is taken given �0.

E
[
log (Lc (H, �))

] =
n∑

i=1

K∑
k=1
E
[
hik|�0] (log (πi )

+ logφ (yi |µk, �k)
)

(1.2.4)

E
[
hik|�0] = τk

(
yi |�0)

τk
(
yi |�0) = π0

kφ
(
yi |µ0

k, �
0
k
)
/

K∑
j=1

π0
j φ

(
yi |µ0

j , �
0
j
)

(1.2.5)

M-Step: Maximize the expectation of the log-likelihood com-
puted in 1.2.4 to form new estimates of the component mixture
parameters, �1.

max�Q (�|y)=
n∑

i=1

K∑
k=1

τk
(
yi |�0) (log (πi )+ logφ (yi |µk, �k)

)
(1.2.6)

The solutions to the maximization problem are simply weighted
averages of means and covariance matrices:

π1
k =

n∑
i=1

τk
(
yi |�0) /n (1.2.7)

µ1
k =

n∑
i=1

τk
(
yi |�0) yi/ n∑

i=1
τk
(
yi |�0) (1.2.8)

�1
k =

n∑
i=1

τk
(
yi |�0) (yi − µ1

k
) (

yi − µ1
k
)′

/

n∑
i=1

τk
(
yi |�0)

(1.2.9)
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Thus, the E-M method is easy to program and involves only
evaluating the normal density to compute the probability1
that each observation belongs to each of the K compo-
nents (1.2.5) and simple updates of the mean and covariance
matrices.

The E-M method is not complete without advice regarding
the choice of a starting point and a method for computing an
estimate of the sampling error. Given that the E-M method can
be very slow to converge, it is important to choose reasonable
starting points. Some advise clustering the data using standard
clustering methods and then using the cluster proportions,
means, and covariance matrices as a starting point. Regarding
the computation of standard errors for the parameter estimate,
it appears the most practical approach would be to start a Quasi-
Newton optimizer from the last E-M iterate value and use the
Hessian estimate to form an approximate information matrix
value which can be used for the standard asymptotic normal
approximation to the sampling distribution of the MLE.

In many applications, the mixture of normals density ap-
proximation will only be one part of a larger model where
the emphasis will be on inference for other model parameters.
For example, suppose we are to use mixture of normals as
the distribution of a regression error term. In that case, our
interest is not regarding the error term density parameters but on
parameters governing the regression function. Having an MLE
procedure (however reliable) for the density parameters is only
useful as part of a more general estimation procedure.

Even if our goal is simply to estimate the density of the data,
the asymptotic distribution of the MLE for mixture of normal
parameters is not directly useful. We will have to compute the
asymptotic approximation to the density ordinates.

p
(
y|�̂MLE

)
= f

(
�̂MLE |y

)
1Note that this is the posterior probability of component membership

conditional on the normal mixture parameters.
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Either the parametric bootstrap or the delta method would be
required to obtain an asymptotic approximation to the distribu-
tion of the density ordinate and this asymptotic approximation
would have to be computed for each potential value of the
density ordinate.

Another major problem with a maximum likelihood ap-
proach is that the likelihood function will always increase as
K increases. This illustrates the “greedy” nature of the MLE
approach in which estimators are chosen via minimization of
a criterion function (log-likelihood), namely that any increase
in flexibility will be rewarded. At its most ridiculous extreme,
a mixture of normals that allocates one component to each
observation will have the highest likelihood value. In practice,
this property of the MLE results in over-fitting. That is, the MLE
will attempt to allocate components to tiny subsets of the data
in order to fit anomalous values of the data. This propensity
of m-estimators for chasing noise in the data is well-known. In
order to limit this problem, procedures are used to either “test”
for the number of components or to penalize models that offer
slight improvements in fit at the expense of many additional
parameters. In the mixture of normals literature, both the AIC
and BIC criteria have been proposed to help keep the number of
components small and to choose among models with differing
numbers of components. The BIC criteria has been derived as an
approximate Bayes Factor using asymptotic arguments.

In summary, the mixture of normals model provides a formi-
dable challenge to standard inference methods. Even though
there is a well-defined likelihood, maximization of this like-
lihood is far from straightforward. Even abstracting from the
practical numerical difficulties in fitting high dimensional mix-
ture of normals models, the problem of over-fitting still must
be overcome. Ad hoc criteria for selecting the number of mix-
ture components do not solve the over-fitting problem. What
would be desirable is an inference procedure that is numerically
reliable, not prone to over-fitting, provides accurate and easy
to compute inference methods, and can be easily made a part
of a more complicated model structure. The Bayesian methods
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discussed in the next section of this chapter provide a solution to
many of these problems.

1.3 Bayesian Inference for the Mixture of
Normals Model

The likelihood function for the mixture of normals presents
serious challenges for any estimator based on minimization of
a criterion function (such as the MLE). Not only is it difficult
to find roots of the score function, but in the normal mixtures
problem the parameters, in most cases, do not have a direct
meaning. Rather the model is fit with an interest in making
inferences regarding an unknown joint density of the data. In
a Bayesian setting, the “density estimation” problem is viewed as
the problem of computing the predictive distribution of a new
value of y. That is, we have an observed data set, Y (the matrix of
observations, a n × d matrix). We assume that these observations
are iid draws from a common but unknown distribution. Infer-
ences are desired for the distribution of a y value drawn from the
unknown population distribution given the observed data. The
predictive density requires that we integrate over the posterior
distribution of the unknown parameters, θ .

p (y|Y ) =
∫

p (y|θ) p (θ |Y ) dθ (1.3.1)

1.3.1 shows that the parameters are merely devices for imple-
menting a solution to the density estimation-inference problem.
What is desired is a method that will allow us to make inferences
regarding the posterior distribution of the joint density at any
particular value of y. It turns out that mixture of normals model
is a model which is particularly well-suited to computationally
tractable and accurate approximations to the posterior distrib-
ution of density ordinates. Simulation-based methods will be
used to navigate the parameter space and avoid the problems
associated with derivative-based procedures.
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