
”If you master the principles of sword-fencing, when you freely beat one man, you beat any man in
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Abstract

Flow graphs are an abstraction used to represent elements traveling through a network of nodes. The

paths between nodes are directed edges in the graph, and the amount or transmission frequency of

elements that go through the paths are edge weights. If additional data is associated with the nodes,

we have attributed flow graphs (AFGs). This thesis defines heavyweight patterns, which are sub-sets

of attributes connected by edges found in a dataset of AFGs, and have a computed weight higher

than an user-defined threshold. The thesis also defines Heavyweight Pattern Mining, the problem

of finding heavyweight patterns in AFGs. It presents a new algorithm called AFGMiner, which

solves Heavyweight Pattern Mining and associates patterns with their occurrences in the dataset. In

addition, it describes HEPMiner and SCPMiner, two new program performance analysis tools that

apply AFGMiner and have as target users compiler and application developers respectively.
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Chapter 1

Introduction

1.1 Motivation

The process of optimizing computer systems, compilers, computer architecture and computer appli-

cations often involves the analysis of the dynamic behavior of an application. When this optimiza-

tion is performed off-line it involves the analysis of the runtime profile collected over a single, or

many, executions of an application. For many applications it is possible to identify hot-spots in the

application profile that consist of segments of the application’s source code that account for a larger

portion of the execution time. The effort to improve any part of the computer system that influences

the application performance can then easily focus on these hot-spots. However, there is a class of

computer applications that have no such hot-spots. Instead, the execution time is distributed over a

very large code base, with no method taking up significant execution time (i.e., no more than 2 or

3%). Such applications are said to have flat profiles.

The execution of such applications also generates very large profiles that are difficult to analyze

by manual inspection. An existing solution is to organize the profile data in spreadsheets or database

tables. The data is then either scanned by experienced developers for patterns of information about

the program execution or searched with specific queries written by developers based on their intu-

ition about potential data correlations. If the patterns found seem interesting enough, they are used

as a guide for performance analyses. Automating this process could save development time and

reveal opportunities that were not anticipated by developer’s intuition. In this thesis, we automate

the performance analysis process of flat-profile applications by using a novel algorithm that mines

datasets of attributed flow graphs.

Flow graphs are an abstraction used to represent items (e.g., data packets, goods, electric current,

airplanes, ships) that travel through a network of nodes (e.g., computers, physical locations, circuit

parts, airports, seaports) and are typically applied to model logistics problems. The paths between

nodes are represented as edges in the flow graph. The number of items that go through the paths

between nodes, or the frequency of transmission of such items between nodes, are represented as

edge weights. If additional data can be associated with the nodes, we have attributed flow graphs
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that can be mined to uncover relevant sets of nodes and relations between them. A flow graph is

shown in Figure 1.1.

As an example of flow graph application, consider the movement of goods between airports in

the world during a set period of time. These movements can be represented as a large attributed

flow graph in which the nodes are the airports, and directed edges represent goods that were sent

from one airport to the other by plane. Attributes associated with each node could be size of storage

location, population, weather conditions such as temperature and number of workers involved in

goods transportation at each airport location. Values (weights) would be associated with each one

of those attributes, and edge frequencies could be the total cost of goods moved between airports.

Considering this model, mining for relevant sub-graphs of the flow graph (say, those sub-graphs with

the highest node and edge weight values associated with them) would reveal insights about matters

such as what are the trends in goods distribution and what are the factors that affect distribution

volumes. A hypothetical flow graph for this particular example is shown in Figure 1.3, showing

only weather conditions and number of works for each airport location.

Algorithms that perform sub-graph mining exist in the literature (e.g., , [43] [35] [24] [19] [27])

but none of them are able to mine attributed flow graphs such as the ones discussed above. Existing

algorithms mine undirected, unweighted, labeled graphs with no node attributes, and find frequent

sub-graphs in them, i.e., sub-graphs that happen more than a certain number of times defined by

a threshold. An extension to gSpan [43] exists that presents possible methods to calculate support

values for sub-graphs mined in edge-weighted graphs (with undirected edges and no attributes) [28].

However, attributed flow graphs impose additional challenges to sub-graph mining:

1. Presence of multiple node attributes. The fact that such flow graphs may have a variable num-

ber of attributes per graph node and that the sub-graphs we are looking for are characterized

by such attributes makes it impossible, in principle, for algorithms in the literature to mine

them. One way to do that, which has not been described in previous works, is to transform

the attributed flow graph into an equivalent directed graph where each vertex v that has more

than a single attribute becomes a series of vertices, each vertex with a single attribute from

the original attribute set in v. Each vertex in the new graph will thus have a single attribute,

which is considered to be its label. Edges for the new series of vertices are also connected to

maintain an equivalence between the attributed flow graph and the new, transformed graph.

Figure 1.2 shows a transformed graph equivalent to the one in Figure 1.1.

Even after attributed flow graphs are transformed into a labeled directed graph, running the

sub-graph mining algorithms from the literature in such equivalent graphs is problematic. The

reason is that during the transformation process, the number of nodes and edges in the graph

grows exponentially with the size of the attribute sets in each vertex, because a new vertex and

appropriate edges must be created for each permutation of the attribute sets that can be mined.

As an example, when converting an attributed flow graph into a labeled directed graph and
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given an attribute set {a, b, c} in a vertex v of the original attributed flow graph, a sequence

of vertices in the labeled directed graph must be generated for each of the possible attribute

set permutations {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}. This is shown in Figure 1.2

as sequences of vertices whose weight is zero. Consider the node on the left of Figure 1.1

with node weight 4 and attributes {a(2), c(1)}. This single node becomes four nodes in the

transformed graph of Figure 1.2 to represent the three possible attribute sequences: a(2), c(1),

and {a(2), c(1)}. Zero-weight edges are inserted into the transformed graph, formed only by

single-attribute nodes, to enable this representation.

2. Weights in nodes and edges. The fact that the attributed flow graphs have weights in nodes

and edges makes it hard to directly apply existing mining algorithms from the literature, which

intend to simply find frequent sub-graphs by counting how many occurrences are found. In

order to account for the weights when mining for sub-graphs, the algorithms would need to

be modified and a way of defining the relevancy of a sub-graph according to its weights must

be developed.

This thesis presents the first algorithm able to perform sub-graph mining in attributed flow

graphs. It also applies this algorithm to the problem of profile-based program analysis (described

at Subsection 1.2.1 by building two performance analysis tools, HEPMiner and SCPMiner, used

respectively by compiler and application developers to find non-obvious performance bottlenecks

in the code of profiled programs. The DayTrader Benchmark running on WebSphere Application

Server [26] was used to test HEPMiner, and four benchmarks of the SPEC CPU2006 were used to

test SCPMiner. All programs tested were profiled on an IBM zEnterprise System 196 [25] main-

frame architecture, and results were analyzed by expert developers from IBM.

What follows is a more formal definition of the attributed flow graph mining problem.

Figure 1.1: Example of attributed flow graph.
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Figure 1.2: Attributed flow graph converted into a labeled directed graph

Figure 1.3: Attributed flow graph used to model mail routing between cities in Canada and the U.S.
Attributes are temperature and number of workers handling the mail at the airports, at the time the
snapshot was taken.

1.2 Problem Definition

We define an attributed flow graph G = {V,E,A,WE ,WV ,WA}. In G, weights from WV and

subsets of attributes from the set of existing attributes A are associated with the set of vertices V ,

weights from WE are associated with the set of edges E, and a weight from WA is associated with

each of the attributes in the vertices. G has a minimum of two vertices: one with no incoming edges

and at least one outgoing edge, called the source vertex; and another with no outgoing edges and at

least one incoming edge, called the sink vertex. All other vertices in G, if they exist, must have at

least one incoming and one outgoing edge. G is thus a single-entry, single-exit graph.
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A sub-graph of G is a directed graph g = {Vg, Eg, A,WE,g,WV,g,WA,g} where Vg is a subset

of vertices found in G with each vertex vg in Vg corresponding to one of the vertices v in V . Eg is

a subset of the edges in G that link vertices in Vg. A subset of the attributes in v are associated with

vg. All attributes belong to the set A of existing attributes. WV,g is the set of weights associated

with vertices in Vg, WE,g is the set of edge weights associated with the edges in Eg and WA,g is the

set of weights associated with each of the attributes present in vertices in Vg .

A pattern is a graph of attributes P = {VP , EP }, where Vp is a set of vertices with attributes

from A associated to them, but no weights. Ep is a set of directed edges with no weights associated

to them. The pattern is an abstraction in which the vertices are sets of attributes that represent

information relevant under some criteria (to be described), and the edges represent an ordering

between such information sets.

An instance gP of a pattern P is a sub-graph of G, as defined above, that matches P . The

instance gp matches P if and only if each vertex maps uniquely to a vertex in P and each edge in

gp. If there is more than one mapping between a set of nodes and edges in gP and P , each one of

the possible mappings is a distinct pattern instance.

From the definitions above, the Attributed Flow Graph Pattern Mining problem is defined

as follows. Given a threshold value T , find all patterns P for which F (P ) > T in a dataset DS

of attributed flow graphs. F (P ) is a function that receives a pattern P as input and outputs a sup-

port value. The support value indicates how relevant the pattern is, according to a criteria that is

application-dependent. In the applications described in this work, the importance of a pattern is

calculated using the weights of the nodes and edges of each of its instances: the higher the weights

associated with a pattern instance, the more relevant the instance is. For these applications, the

patterns for which F (P ) > T are called heavyweight patterns. This specific variation of the prob-

lem is called the Heavyweight Pattern Mining in Attributed Flow Graphs problem (for short,

heavyweight pattern mining).

1.2.1 The Profile-based Program Analysis Problem

The Profile-based Program Analysis (PBPA) problem is defined as follows. Given a profile Prof

obtained from an execution of a computer program, automatically discover operation patterns in

the execution of Prof that, in aggregation, account for a sufficiently large fraction of the program’s

execution time. In order to solve this problem, in this work we convert PBPA to a heavyweight

pattern mining problem, by modeling the program as an attributed flow graph named Execution

Flow Graph (EFG). The EFG is described in detail in chapter 2.

The work of Adam Jocksch et al. [30] was pioneer in its attempt to automate operation pattern

search, introducing a solution to the problem based on frequent sequential-pattern mining [38]:

FlowGSP, an algorithm that searches for sequential patterns that occur as sub-paths of EFGs. Its

core contributions were:
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1. The definition of Execution Flow Graph (EFG), an attributed flow graph over which mining

algorithms can run in order to search for operation patterns. EFGs are created for each profiled

method in the program and are similar to Control Flow Graphs (CFGs). An EFG contains

profiled information attached to each of its nodes and edges. However, what exactly the EFG

node represents varies according to the granularity level at which mining is performed: each

node may correspond to an instruction (as in the application of FlowGSP described in [30]),

to a basic block, or even to a whole method (in which case the edges would be akin to the call

edges of a program’s call graph). Therefore EFGs are flexible enough to be used by mining

algorithms other than FlowGSP, such as the one being presented in this thesis.

2. The development of FlowGSP by adapting the well-known sequential-pattern mining algo-

rithm Generalized Sequential Patterns(GSP) [38] to be run over a set of EFGs that represent

the program’s profiled methods.

3. The implementation of sequential, multi-threaded and distributed versions of FlowGSP, which

were tested on a benchmark application used by IBM, called DayTrader [26], on top of IBM’s

WebSphere Application Server running on a z10 architecture [41]. DayTrader is a typical

flat-profile application, and tests confirmed the usefulness of FlowGSP in the performance

analysis of such applications. FlowGSP was able to not only find patterns already expected by

compiler developers, but also was fundamental in the detection of a performance improvement

opportunity by making clear that the instruction EX (execute) in the z10 architecture was

taking up to 5% of total execution time when profiling DayTrader, and incurring significantly

more data cache and translation look-aside buffer (TLB) misses than necessary.

1.3 Contributions

This thesis describes AFGMiner, the first algorithm that performs heavyweight pattern mining in

attributed flow graphs. AFGMiner, when applied to solve the PBPA problem, is able to find not

only the same patterns as FlowGSP does, but also additional sequential-patterns (represented by

sub-paths in the EFGs) when they exist, and patterns that include multiple paths (represented by

sub-graphs in the EFGs). The thesis also describes two new tools, HEPMiner and SCPMiner, that

have AFGMiner as their mining algorithm and can be used by compiler and application developers,

respectively, when solving the PBPA problem.

Thus the main contributions of this thesis are as follows:

1. Definition of the problems of Attributed Flow Graph Mining and its more specific version,

Heavyweight Pattern Mining in Attributed Flow Graphs.

2. Development of AFGMiner, initially a modified version of gSpan that handles multiple at-

tributes, but still uses a sub-graph isomorphism detection algorithm by Cordella et al. [36] to
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find pattern matches. The algorithm by Cordella et al. requires the traversal of all nodes of

the EFGs multiple times.

3. Progressive improvement of the initial AFGMiner algorithm. The main improvements are:

(i) registering locations where parent pattern instances are found (embeddings [24]), and then

starting the search for child patterns from such locations; (ii) building child patterns of k-edges

by combining all distinct attributes found in the set of heavyweight patterns of (k− 1)-edges;

(iii) generating candidate patterns by following an approach we called breadth-first search

with eager pruning.

4. Development of HEPMiner, a tool that automates the analysis of hardware-instrumented pro-

files, and allows compiler developers to mine for operation patterns that indicate potential

compiler improvement opportunities (called execution patterns).

5. Development of SCPMiner, a tool that automates the analysis of profiled application source-

code, and allows application developers to mine for operation patterns that map to source-code

lines (called source-code patterns).

Other important contributions of this thesis are:

1. Implementation of a new approach to the problem of generating candidate sub-graph patterns.

This new approach builds child patterns of k-edges by combining all distinct edges from the

set of heavyweight patterns of (k − 1)-edges.

2. Development of a parallel version of AFGMiner, called p-AFGMiner, including a work-

distribution heuristic to maintain workload balance between threads running the algorithm.

3. Improvement of FlowGSP, by adding to it a similar registration of pattern locations as the

one implemented in AFGMiner. The registered locations are used to decrease the number of

nodes traversed while searching for child patterns.

4. Implementation of a scheme that maps patterns to pattern instances, for both FlowGSP and

AFGMiner. This mapping is essential for developers to have a better idea of why certain

operation patterns are heavyweight and what are the instructions that generate the patterns.

5. Detailed performance comparison between FlowGSP, FlowGSP with pattern location registra-

tion (FlowGSP-locreg), AFGMiner with pattern location registration (AFGMiner-locreg), the

version of AFGMiner that performs both pattern-location registration and pattern-growth by

combination of edges (AFGMiner-edgecomb) and p-AFGMiner. Tests were performed with

the DayTrader benchmark running on IBM’s z196 architecture, and using HEPMiner.

6. Quantitative and qualitative performance analysis of SCPMiner, running it on three bench-

marks of the SPEC CPU2006 suite [14].
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The rest of this thesis is presented as follows. Chapter 2 offers an overview of sequential-pattern

mining and sub-graph mining, as well as edge profiling, hardware performance counters and the

z196 architecture, all necessary for an in-depth understanding of both the optimized version of

FlowGSP and AFGMiner. Chapter 3 briefly describes FlowGSP as created by Adam Jocksch et

al. [30] and proceeds to explain the algorithm improvement. Chapter 4 fully describes AFGMiner,

as it was originally conceived and the improvements that led to the current algorithm. Chapters 5

and 6 introduce HEPMiner and SCPMiner, respectively, explaining how the tools work and present-

ing experimental data on their performance. Chapter 7 contrasts AFGMiner with other sub-graph

algorithms, making differences and similarities explicit. Finally, Chapter 8 summarizes our findings

and points out future directions for this research.
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Chapter 2

Background

2.1 Compiler Technology

Compilers parse (i.e., analyze syntactically and semantically) a program written in a given program-

ming language and convert the program into an intermediate representation (IR) that is compiler-

specific but typically independent of programming language. An Abstract Syntax Tree (AST),

shown in Figure 2.1, is the usual first language-neutral representation of the program obtained from

the parsing process. The program’s AST is then converted into a lower-level IR form in which each

method in the program is represented by a Control Flow Graph (CFG), described in the next section.

Code analysis and transformations are applied to the program at both the AST and CFG levels in

order to improve program performance in terms of both speed and memory consumption. After no

more transformations can be applied at the IR level, instruction scheduling, register allocation and

finally machine code generation are performed.

The compilation process can be static (ahead-of-time, AOT) or dynamic (just-in-time, JIT).

Static compilers, such as the ones used to compile software written in the C and C++ programming

languages, are the most common and convert a program’s entire source-code into native executable

code before the program is executed. In a JIT compiler, typically all procedures start execution

in interpretation mode where the program representation is converted to machine code during exe-

cution. When a method is determined to be executed frequently enough, the system will compile

that method and all future invocations of the method will run this compiled version - thus the name

”just-in-time” compilation. In order to decide which parts of the program should be converted into

native code and which should be interpreted, run-time profiling techniques are used to identify which

program methods are more frequently executed (i.e., are hot-spots), and those are compiled [17].

What follows are descriptions of aspects of compiler technology that are relevant to this thesis:

CFGs, profiling, and feedback-directed optimization (FDO).
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Figure 2.1: Example of an abstract syntax tree (AST) [3].

2.1.1 Control Flow Graphs

The execution flow of a program can be represented as a set of Control Flow Graphs. Formally,

a Control Flow Graph (CFG) is a single-entry, single-exit flow graph G = {V,E, FE} where V

is a set of vertices, E is a set of directed edges that link vertices in V and FE is a function that

maps edges in E to integer values that indicate how often that edge was traversed during program

execution. The fact that CFGs are flow graphs means that the sum of frequencies of the incoming

edges of any vertex must be equal to the sum of the frequencies of the outgoing edges of that vertex,

with the exception of the source and sink vertices (described in chapter 1 for attributed flow graphs).

Each CFG typically represents a single method or procedure in the program, and compilers may

perform analysis and code transformations whose scope is a single CFG (intra-procedural), an entire

compilation unit composed of several CFGs (inter-procedural) or the whole program (global).

2.1.2 Profiling

Profiling is a form of dynamic program analysis. It is used to measure aspects of program execution,

such as memory consumption, how often certain methods or particular instructions are executed,

and what is the flow of control for a given set of inputs. In order to collect such measurements, a

tool called profiler is typically utilized to instrument the program source-code or its binary form;

the instrumented version of the program is then run and raw data about its run-time behavior (or

summary information in case post-processing occurs) is logged into a separate file called a profile.

Well-known profiling techniques are presented next.

Edge and Path Profiling

In edge profiling, a frequency value is associated with each edge, which indicates how often that edge

was traversed during execution. The accuracy of this profiling technique depends on the sampling
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rate of the profiling tool, i.e., the time interval between measurements performed.

In path profiling, instead of associating frequency values with edges, frequency values are asso-

ciated with entire paths taken during program execution. Thus path profiling is much more precise

than edge profiling. However, for large programs, or long periods of execution, paths profiling be-

comes increasingly impractical because it requires an exponential amount of storage space due to

the explosion in the number of possible paths.

HEPMiner uses edge profiling to collect dynamic information about the application to mine. We

opted to use edge profiling, instead of path profiling, because it is more practical in terms of storage

requirements and because it incurs less time overhead during profile collection.

Hardware-instrumented Profiling

In contrast to the software-based techniques described in the previous section, profiling can be

hardware-based. In such a case, detailed information about program execution is collected using

performance counters. Performance counters are special-purpose registers built into processors to

store the counts of hardware-related activities such as branch mispredictions, address-generation

interlocks, L1 and L2 cache misses and many others. The performance counters available vary ac-

cording to the hardware architecture underlying the application being profiled, and each counter can

be programmed to monitor different hardware-related events.

The main advantage of hardware-instrumented profiling is that, in comparison to software-based

profiling, it provides access to finer-grained information about the computer system while the pro-

filed program is running, as well as a lower overhead cost. However, it is necessarily imprecise

because: (i) the low-level performance metrics must be mapped back to assembly instructions; (ii)

performance counters present sampled hardware events and not all the hardware events of a cer-

tain type that occurred; (iii) the fact that processors can schedule and execute multiple instructions

at the same time may cause events to be associated with incorrect instructions. Furthermore, the

limited number of registers to store hardware events may require that the user run the application

several times in order to capture all event types necessary for an adequate performance analysis of

the program.

Interval-based Instruction Profiling

In SCPMiner, we use a type of profiling which we named interval-based instruction profiling. It is

so called because sampling ticks are directly associated with instructions, but instead of ticks being

dependent on CPU cycles as in hardware-instrumented profiling, they occur at a fixed rate that is

dependent on the profiling tool.

To perform interval-based instruction profiling, we use a tool called tprof, popularly utilized for

system performance analysis. tprof uses a sampling technique that works the following way: (i) the

system is interrupted periodically, with this interruption being called a tprof tick; (ii) the address,
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process identification number and thread identification number of the instruction that was interrupted

are recorded; (iii) control returns to the interrupted instruction, which is executed normally. After

this trace of interrupted instructions is collected, the number of times a certain instruction was in-

terrupted becomes the number of ticks associated with it. A report containing the profiled data in

an organized fashion is then produced by tprof in any of a number of formats, including XML [8].

This XML report is the one that is processed in SCPMiner to extract the ticks to be associated with

each EFG node (see Chapter 6 for details).

2.1.3 Feedback-Directed Optimization

Feedback-Directed Optimization (FDO), also known as Profile-Directed Feedback (PDF), is the

process of using profile information from a previous execution of a certain program, so as to make

optimization decisions during subsequent compilations of the program. In this thesis “optimization”

actually mean heuristic-based code transformations and not provably optimal transformations, as no

such notion is applied to compilers. The profile information is collected via instrumentation hooks

(in the case of static compilers) or online instrumentation (in the case of JIT compilers).

For static compilers, data collected during profiling is stored to disk after execution is completed,

and then fed back into the compiler via command-line parameters when recompiling the program.

This profile data is then used to aid the optimization phase. In the case of JIT compilers, profile

data is collected during program execution and used when optimizing the same run, because the

same methods can be recompiled multiple times with the goal of incrementally improving program

performance at each recompilation.

2.2 WebSphere Application Server

The WebSphere Application Server is a Java Enterprise Edition (JEE) server developed by IBM and

written in Java [26]. This server is used in this thesis as the platform for testing HEPMiner, because

it has a flat profile. In other words, its execution time is spread relatively evenly over hundreds

of methods, which is a typical characteristic of large business applications and other middleware.

As an example, while no method in WebSphere Application Server occupies more than 2% of to-

tal execution time, instruction-cache misses make up 12% and if we want to capture 75% of all

instruction-cache misses we must aggregate roughly 750 methods [33].

Optimizing WebSphere Application Server thus constitutes a challenge because altering any sin-

gle method is not likely to impact the overall application performance significantly. It is necessary

to look beyond the scope of a single method when searching for performance improvement oppor-

tunities. However, optimizing the application globally is unfeasible because of its size. A tool such

as HEPMiner is therefore necessary to give compiler developers insights into operation patterns that

take up significant execution time even if pattern instances are spread throughout the code.
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2.2.1 Profiling WebSphere Application Server

WebSphere Application Server is compiled with IBM’s own JIT compiler. As explained in Sec-

tion 2.1, JIT-compiled applications start execution being interpreted and then parts of it are compiled

into native code as needed at run-time. Therefore, to ensure that proper profile data is obtained, it

is necessary to wait for the proper amount of burn-in time to pass before the collection process can

start. When testing HEPMiner, the profile data collected was always from the post-burn-in phase of

WebSphere Application Server execution.

2.3 IBM System z

The IBM System z is a generation of mainframe products by IBM that includes older IBM eServer

zSeries, the IBM System z9 models, the IBM System z10 models, and the newer IBM zEnterprise.

The “z” of System z stands for zero downtime because the systems are built with spare components

to ensure continuous operations.

2.3.1 z10 Architecture

The z10 model is an in-order super-scalar CISC mainframe architecture invented by IBM [41].

It is a pipelined machine where multiple instructions are, at any moment during application run-

time, at different stages of decoding or execution. The goal is to increase instruction throughput.

Each core in the z10 has its own associated pipeline which is optimized so that register-register,

register-storage and storage-storage instructions share the same pipeline latency. Because z10 is an

“in-order” architecture, there is no hardware reordering of instructions during program execution.

The original work on FlowGSP tested the algorithm with the DayTrader benchmark running on

WebSphere Application Server, using a z10 mainframe as underlying architecture.

2.3.2 z196 Architecture

The IBM zEnterprise System, or z196 model, is a CISC mainframe architecture with a superscalar,

out-of-order pipeline and 100 new instructions relative to the z10 model. It was introduced in July

2010 and IBM claimed it to be the fastest microprocessor in the world [25]. Each core in z196

has six RISC-like execution units, including two integer units, two load-store units, one binary

floating-point unit and one decimal floating-point unit. The z196 microprocessor can decode three

instructions and execute five operations in a single clock cycle.

The fact that the z196 is an out-of-order architecture and decodes and executes multiple instruc-

tions per cycle has implications in how profiled data should be interpreted. More specifically, events

captured during hardware-instrumented profiling are not associated directly to the instruction i that

triggered them, but to the first of the instructions in the instruction group to which i belongs. Instruc-

tion groups are composed of three instructions. More details on how we deal with this architectural
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issue are given in chapter 5.

2.4 Parallel Processing

Parallel processing or parallel computing is the simultaneous usage of two or more processors or

processor cores to execute the same program. In order to divide the program computation among

different cores or processors, the operating system uses execution threads that operate indepen-

dently. Each thread contains their own private (thread-local) data, but may share data belonging

to the process that spawned them. A multi-threaded program may run in a machine that does not

have multiple processors or cores; in such a case, the operating system alternates between thread

executions (pre-emptive multi-tasking) or each executing thread eventually yields the execution to

another thread (cooperative multi-tasking).

The idea behind parallel computing is to make programs run faster. Typically, the performance

of an application is measured by its raw execution time, but for parallel applications the number

of parallel components of the program being executed is also considered. The metric by which the

performance of parallel programs is measured is the speedup, i.e., how quickly program execution

time decreases as the amount of parallelism is increased [30]. The speedup speedupp represents

the execution time ts of the program’s sequential version relative to its execution time tp when p

parallel processing elements are used. It can be calculated as follows: speedupp = ts
tp

. A value of

speedupp = p indicates linear speedup, that is, the run-time of the application decreases propor-

tionally to the increase in cores or processors. As an example, if the number of cores or processors

doubles, the run-time decreases in half. That means perfect scalability and is harder to achieve as p

becomes higher, due to overheads in thread communication and memory management. In most pro-

grams there are portions that cannot be parallelized, and with the aforementioned overheads added

to that, speedups are typically sub-linear. However, it is even possible to obtain super-linear speedup

in specific cases where the main performance bottleneck of a program is actually memory, e.g., the

dataset being manipulated by the application does not fit entirely into a single processor cache, but

when using multiple processors, the whole data fits into all their caches.

Another performance metric for parallel applications is efficiency. The efficiency of a program

using p processing elements is calculated as: efficiencyp =
speedupp

p . It is usually a value between

zero and one that measures how well-utilized the different processing elements are when executing

the program, relative to how much effort is wasted in thread and memory synchronization and com-

munication.

Thread synchronization, also called thread serialization, is the application of mechanisms that

impede the simultaneous execution of certain parts of an application. If one thread is executing that

part of the program, any other thread must wait for the first thread to finish its execution. If thread

synchronization is not used, multiple threads or processes that depend on a shared state (e.g., data

available in shared memory) may end up inconsistent. Such a situation, in which a shared state is

14



modified by at least one of the threads or processes accessing it simultaneously, while others either

read or modify that state, is called a race condition. The parts of the program where race conditions

may happen, if a synchronization mechanism is not used, are called critical sections, and they should

be accessed in mutually exclusive order. The most common thread synchronization mechanism is

locking. Locks are typically available through hardware-level instructions implemented as higher-

level language constructs, such as the synchronize keyword in the Java language.

There are two ways a thread can wait for another to execute. One is busy-waiting, also called

spinning, in which the thread repeatedly checks if the lock on a certain variable has been released,

and once it is, the thread stops waiting and executes. While the lock is not released, the thread does

nothing except checking, and thus busy-waiting wastes processor cycles. The other, more efficient

way of waiting for a lock to be released is simply for the thread to “sleep” or become inactive (also

called block) until it receives a signal that the lock it has been waiting for has been released and

it can start working. Many languages have built-in wait mechanisms that enable threads to block.

In Java there are methods such as wait() and notify(), used for thread blocking and to wake up

a thread respectively. They were used in the implementation of the parallel version of AFGMiner,

which uses the concepts of one master thread that spawns multiple slave threads (also called worker

threads) to do parallel tasks and blocks while waiting for them to finish.

2.5 Execution Flow Graphs

The essential data structure in this work is an attributed flow graph called Execution Flow Graph

(EFG). An EFG G = {v,E,A, F,W} that belongs to a dataset DS of EFGs is defined as fol-

lows [30]:

1. V is a set of vertices.

2. E is a set of directed edges (va, vb) where va, vb ∈ V , and the edge goes from va to vb .

3. A(v)→ {α1, ..., αk} is a function mapping vertices v ∈ V to a subset of attributes

{α1, ..., αi, ..., αk}, αi ∈ α, 1 ≤ i ≤ k

where α is the set of all possible attributes.

4. F (e) → [0, 1] is a function assigning a normalized frequency to each edge e ∈ E, i.e.,

Σe∈EDS
F (e) = 1 where EDS is the set of edges from all EFGs that belong to DS.

5. w(v) → [0, 1] is a function assigning a normalized weight to each vertex v ∈ V , i.e.,

Σv∈VDS
w(v) = 1 where VDS is the set of nodes from all EFGs that belong to DS.

6. G is a flow graph, and from that follows: Σ(x,v0)∈EF ((x, v0)) = Σ(v0,y)∈EF ((v0, y)).

7. Each attribute αi ∈ α that a vertex v ∈ V contains, has a weight w(αi) ≤ w(v).
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8. Every v ∈ V has a label L(v). Each label uniquely identifies v among all vertices in DS.

9. There must be an order between labels L(v) for all v ∈ V , so that vertices and edges of an

EFG can be sorted according to this order.

10. By definition, an edge (v0, v1) is forward if L(v0) < L(v1) and backward (also called back-

edge) if L(v0) ≥ L(v1).

11. For any edge (v0, v1), v0 is the edge’s from-node and v1 is the edge’s to-node.

The string representation of an EFG of n edges is (edge0)(edge1)...(edgen). Each edge is

represented by the following string:

([L(v0) : (α0)(α1)...(αm)][L(v1) : (α0)(α1)...(αp)]), where m and p are the number of at-

tributes present in the edge’s from-node and to-node, respectively, and both are lower than the num-

ber of possible attributes.

Figures 2.2 and 2.3 show an EFG node and an example of a very simple EFG.

Figure 2.2: Schematic view of an EFG node.

Figure 2.3: A simple EFG.

2.5.1 Execution Flow Graphs in HEPMiner

HEPMiner (described in chapter 5) employs a pre-processing phase that queries a relational database

to gather profile information at the assembly instruction-level and compose EFGs. EFG nodes are
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created from queried data such as the name of the instruction sampled, its execution time, its associ-

ated instruction address, opcode and operands, the hardware events connected to it, and the number

of tick counts for which each one of its events is true. Queries should be as efficient as possible, and

consist of joins and selections of columns of multiple tables. The raw amount of data for a profile

of only a few minutes of execution of a program can be very large, e.g., multiple gigabytes.

In order to create EFGs, HEPMiner combines CFG information coming from compiler listing

files, that provide tick information for nodes and edges, and hardware-instrumented profile data

(described in section 2.1.2), that provides attribute-related information. If an instruction is present

in one of the basic blocks of the CFG, it exists in the EFG as a node of its own. Edges are added

between every node in the EFG, and they are equivalent to the incoming edges of those basic blocks

to which instructions represented by such EFG nodes belong.

It is possible for certain EFG nodes to never receive any ticks from the profiler during their

execution due to problems inherent to the profiling process, as explained in section 2.1.2. Those

EFG nodes that contain no tick (and therefore, no attribute) information even though they executed

(i.e., have non-zero frequency values attached to their incoming and outgoing edges) are referenced

in this thesis as “dummy nodes”.

2.5.2 Execution Flow Graphs in SCPMiner

In SCPMiner, EFGs have a single attribute whose assigned value is always the EFG node weight.

This makes the mining process more efficient, because the matching process between candidate

patterns and possible pattern instances is faster. However, summarizing all the attributes of source-

code fragments represented by EFG nodes as a single attribute is in itself a time-consuming process,

because we perform cluster analysis for that. More details about EFG modeling in SCPMiner and

source-code mining, which inspired the tool, can be found in Chapter 6 and Section 2.7 respectively.

2.6 Data Mining

Data Mining is an interdisciplinary field in Computing Science that has as its goal the discovery of

previously unknown relationships between data contained in large databases. In order to discover

these relationships, it is typical in the field to utilize unsupervised learning techniques more fre-

quently associated with Machine Learning. Unsupervised learning deals with finding structure in

unlabeled data. In other words, without any previous information about the data except what is avail-

able in the database, Data Mining algorithms try to organize large amounts of data by discovering

patterns inherent to the data.

Tasks in which Data Mining algorithms can be used vary. Two of the tasks of interest in this

work are frequent itemset mining and its extension, sequential-pattern mining. The other task of

concern is sub-graph mining. All of these pattern-mining tasks have as their two main challenges:

(i) candidate pattern generation, which tends to be very memory and time-consuming, with different
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generation methods potentially decreasing the number of useless candidates; (ii) the search process,

because different search methods may enable extensive search-space pruning. In the Sequential-

Pattern Mining subsection that follows, both frequent-itemset mining and sequential-pattern mining

are explained along with GSP, the algorithm on which FlowGSP is based. In the Sub-graph Mining

subsection, sub-graph mining is also briefly described, together with gSpan, the algorithm that was

the initial inspiration for AFGMiner.

Clustering is another classical data mining approach and it is used in this work as a pre-processing

step for SCPMiner (chapter 6). More specifically, a hierarchical clustering algorithm is used to group

EFG nodes that are similar enough to each other and label them as part of clusters. After that, AFG-

Miner is applied to the EFGs, considering the cluster label associated with each EFG node as the

unique attribute of that node. This process is described in detail in chapter 6, and the basics of

clustering and hierarchical clustering are explained in subsection 2.6.3.

2.6.1 Sequential-Pattern Mining

Consider a transactional database. A transaction in such database is composed of items, and the

group of items that together compose a transaction is called an itemset. In frequent-itemset mining,

the more frequent an itemset is in the database, the more interesting the itemset is considered to be.

The frequency of an itemset is related with the number of transactions whose items are a (proper)

superset of those in the itemset. Such measure of interestingness is called support value, and the

goal of frequent-itemset mining algorithms is to find all itemsets in the database that have a support

value higher than a given threshold.

A transaction may also be composed of a sequence of itemsets S = I1, . . . , Ik, . . . , In, where

n > 0 is the number of itemsets in the sequence, Ik = (x0, ..., xik)k is the kth itemset in the

sequence, xik is an item, and ik > 0 is the length of the Ik(in number of items). An algorithm

that performs sequential-pattern mining must find all the sequences of itemsets that have a support

value higher than a specified threshold. A sequence to be searched is called a candidate pattern, and

a candidate pattern P = {I1, I2, ..., In} matches a sequence of records S = {R1, R2, ..., Rn} in a

transaction if [1]:

1. ∀x ∈ Ii, x ∈ Ri, for 1 ≤ i ≤ n

2. For each Ri, i < n, Ri precedes Ri+1

GSP (acronym for Generalized Sequential Patterns) uses the basic ideas of sequential-pattern

mining described above. Initially, it generates candidate sequences of length one (only one itemset,

with one item) and searches for matching sequences in the database, calculating the frequency of

each candidate (in this case, just the number of times the candidate appears in the database). The

algorithm then keeps only candidates whose frequency is above the minimum support value provided

by the user. What allows GSP to do that is the principle of anti-monotonicity introduced by the
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frequent-itemset mining algorithm A-priori [39]. The a-priori principle affirms that if support values

for sequences are defined in such a way that, given a sequence S, all of its sub-sequences have

support higher than or equal to the support of S, it is possible to prune the mining space because any

superset of an infrequent sequence will also be infrequent. In other words, algorithms such as GSP,

based on a-priori principle, are dependent on the way support values are defined: it is a requirement

that, as a sequence grows, its support value never increases.

After keeping the frequent sequences of length one, GSP joins such sequences, generating se-

quences of length two. The length in this case refers to the total number of items in the sequence,

and not to the number of itemsets, which may vary. For example, given two sequences of length one,

S1 = {(x)} and S2 = {(y)}, joining them will produce both S3 = {(x), (y)} and S4 = {(x, y)},

which are formed by two itemsets and one itemset, respectively, but contain two items. The algo-

rithm then searches for matches to the candidate sequences of length two, keeps only those that are

frequent enough, and joins them to generate candidate sequences of length three. It proceeds in this

fashion until either no more frequent sequences are found, or a user-provided limit on the length of

frequent sequences is reached.

GSP uses the concepts of gap and window, which are also present in FlowGSP. The gap specifies

the allowed distance (in nodes) between records Ri and Ri+1 when matching a candidate sequence

to a sequence recorded in the database. The window specifies the maximum number of records being

considered together when trying to match an item in the candidate sequence to items in a recorded

sequence. In other words, an itemset Ii has a match in the database if, for a window w and recorded

itemsets Ri, Ri+1, ..., Ri+w: ∀x ∈ Ii, x ∈ Ri ∪Ri+1 ∪ ... ∪Ri+w [30].

2.6.2 Sub-graph Mining

Graph mining is an important sub-field of Data Mining because many large, domain-specific, sets

of data can be better represented by graphs; thus it becomes crucial to extract useful patterns of

information out of such graphs in time and space-efficient ways. Discovering frequent sub-graphs

(also called sub-graph patterns) is one of the main tasks in graph mining: given a dataset formed

by either a single, large graph, or many relatively small graphs, candidate patterns are generated and

then searched for in the dataset. The search attempts to match each candidate pattern to sub-graphs

of graphs in the dataset. The support value for a candidate is a combination, usually the sum, of the

support value of each subgraph that matches the candidate. Those candidates that have a support

value higher than a given threshold are output as result.

In sub-graph mining the size of a sub-graph is typically defined as the number of edges that the

sub-graph contains. In addition, a sub-graph g0 is said to be a parent sub-graph of a sub-graph g1

(and g1 is a child sub-graph of g0) if g1 was created by an incremental change in g0. This change is

usually the addition of an edge, or an edge and a new node, to the parent sub-graph.

Typically, sub-graph mining algorithms are created to be as generic as possible. Thus, they
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should be adapted to the characteristics of graphs of specific domains if performance is an issue.

The algorithms usually assume that the dataset is composed of undirected, unweighted and labeled

graphs, and the support value for a sub-graph pattern is simply the number of times the sub-graph is

found in the dataset [43] [35] [19] [27] [24].

The next sections describe some of the challenges to solve the sub-graph mining problem, and

reviews existing approaches for each of these challenges; present a brief explanation of how gSpan

works; review sub-graph isomorphism detection, exposing the problem of sub-graph matching in

the context of sub-graph mining and gSpan specifically; and discuss sub-graph mining in bounded

treewidth graphs, concluding that frequent connected sub-graph mining in EFGs has incremental

polynomial time complexity because EFGs have bounded treewidth [22] [40].

Challenges of Sub-graph Mining

Sub-graph mining is an extensively explored area of Data Mining. Many algorithms exist that ap-

proach the problem from different angles. All of them, however, can be viewed as giving different

solutions to the three main challenges of sub-graph mining [32]:

1. Graph representation has strong influence on the performance of sub-graph mining algo-

rithms in practice, given that it determines how fast a dataset can be traversed and how quickly

individual nodes and edges can be accessed. The same algorithm can be implemented with

different graph representations under certain limits, but some existing algorithms such as Gas-

ton [35] count on specific data structures for their superior performance [32], as will be de-

tailed in the chapter on Related Work.

Apart from Gaston, other algorithms compared against AFGMiner in the Related Work chap-

ter, such as FSP [19], AGM [27], AcAGM [27] and gSpan itself [43] use adjacency lists to

represent graphs. An adjacency list is simply a list of nodes in the graph with each node con-

taining a list of pointers to nodes they are adjacent to, or to edges in case edge information is

needed. The main advantage of adjacency lists is the fact that they are more space-efficient to

represent sparse graphs than adjacency matrices, another common graph representation. On

the downside, adjacency lists have slower time complexity than adjacency matrices for queries

that require adjacency information. That is because, in the worst case, the whole graph must

be traversed. As is shown in the comparative analysis between FlowGSP and AFGMiner,

FlowGSP’s naive usage of adjacency lists to represent EFGs, although reasonable given that

EFGs are sparse, turns out to be one of the causes of its slower performance in comparison to

AFGMiner. AFGMiner, similarly to Gaston even though not based on it, utilizes a combina-

tion of adjacency lists and hash-tables to obtain more efficient query times. Hash-tables are

particularly suited to representing large graphs (as may be the case of EFGs) because of their

O(1) retrieval time [32].
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2. Sub-graph generation has influence on the algorithm’s complexity, and is one of the bottle-

necks of sub-graph mining. In order to perform sub-graph mining, similarly to what happens

in sequential-pattern mining, it is necessary to generate an initial set of candidate patterns by

following some rules that vary according to the domain and specifics of the dataset. After

each of the candidate sub-graph patterns in the initial set is searched for, those not frequent

are eliminated. A second generation of sub-graphs is then created from the first one, and the

process is repeated until there are no more candidate sub-graphs to be found. The basic rules

for generating candidates vary, but can be classified into three types: generation by level-wise

search [32] [22], by extension (method better known as pattern-growth) [19] [32], and by

merging [32].

Generation by level-wise search creates all candidate patterns of same size (in number of

edges) before searching for them in the dataset, in a very similar manner to the a-priori

approach in sequential-pattern mining. Generation by pattern-growth creates candidates by

adding a certain number of new edges to the parent sub-graph, or a combination of edges

and nodes. Typically, a single edge is added by either: (i) connecting two nodes from the

parent sub-graph; or (ii) connecting the new edge to both a node from the parent sub-graph

and to a new node. The third method of candidate generation is merging. In this method,

parent sub-graphs (of same or different sizes) are connected to form new candidates, in a

manner analogous to joining frequent (k − 1)-sequences to generate candidate k-sequences

in sequential-pattern mining. The difference, however, is that not necessarily sub-graphs of

same size are joined, and thus the sizes of merged sub-graphs vary. Of course, the three gener-

ation methods may be mixed according to the algorithm, and this classification is not exactly

clear-cut.

Independently of the sub-graph generation method used, generating sub-graphs is a bottleneck

for mining because the number of candidate patterns can greatly impact memory consumption

and the number of dataset searches, which makes it important to try to minimize the number

of redundant and known-to-be-infrequent generated patterns. Redundant patterns are those

that end up being generated more than once by the algorithm, even in cases in which, each

time they are generated, their parent sub-graph is a different one. Example: 1-edge sub-graphs

g0 = [(v0, v1)] and g1 = [(v0, v2)], in case they are frequent, can both be used to generate

g2 = [(v0, v1), (v0, v2)] if the generation process is by pattern-growth. Ideally, however, g2

would not be generated twice; even if generated, at a minimum it should not be searched for

in the dataset twice, i.e., the redundancy should be detected before actual mining takes place.

The generation of known-to-be-infrequent patterns requires the use of information available

about the dataset, and the application domain, to detect when it is unnecessary to search for a

certain pattern. This is closely related to the sub-graph search challenge, as seen below.
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3. Search of sub-graphs in the dataset consists in finding mappings between all nodes and

edges of the candidate-subgraph and one or more sets of nodes and edges in the graphs being

mined. The mapping must obey the adjacency relation between nodes in the candidate pat-

tern. It is noteworthy that for general graphs, the mapping between a candidate pattern and

any instance of such pattern in a graph is not necessarily unique. In other words: because

sub-graph mining algorithms in the literature tend to focus on unweighted, undirected and

labeled graphs, and the problem of matching a graph of this kind to any sub-graph in a larger

graph of the same kind can only be solved by utilizing a sub-graph isomorphism detection

algorithm [36] [12], the choice of such an algorithm is crucial to good performance in general

sub-graph mining. In the case of EFG mining, as is demonstrated in subsection 2.6.2, the

fact that EFGs represent methods of structured programs makes the sub-graph isomorphism

detection incrementally polynomial instead of exponential.

Another crucial aspect is that the search for sub-graphs may be based on embeddings [24],

which are records of where instances of each sub-graph g have been found in the dataset. The

mining algorithm can then search for the children of each g by looking up g’s embeddings

instead of traversing the entire dataset again.

The order in which candidate sub-graphs are searched for in the dataset also represents an

important part of the search strategy for sub-graph mining algorithms [32], and overlaps with

the sub-graph generation methods described above. If all candidates of same size are gener-

ated before non-frequent ones get pruned and frequent ones are grown, the search is said to

be breadth-first (BFS). If the algorithm chooses a certain sub-graph to search for, evaluates if

it is frequent, then generates the first of its children, searches for this first child in the dataset,

evaluates the child’s frequency and repeats this process recursively (i.e., after the first child of-

fers no more descendants, performs the search process with the second child, etc.) the search

is said to follow depth-first order (DFS). BFS has the advantage of not producing redundant

sub-graphs, because all sub-graphs of certain size are known before pattern-growth is applied

to them. On the downside, it consumes more memory because all candidates of the same

size must be kept in memory simultaneously. The advantage of DFS is that it consumes less

memory than BFS and can be faster in cases where finding patterns with certain characteris-

tics (e.g., a determined number of edges, or that contain certain attributes etc.) is enough to

interrupt the mining process before the entire search space is traversed. However, it produces

redundant candidate patterns if a redundancy detection scheme is not used.

The gSpan Algorithm

Yan and Han discovered the first algorithm to apply DFS in sub-graph mining [43]. As was men-

tioned above, the problem with DFS as a search strategy is that redundant candidate patterns may

be generated. Consequently, any sub-graph mining algorithm utilizing such strategy must detect if

22



a generated candidate pattern is redundant, and if so discard the pattern instead of trying to find

its matches on the dataset. gSpan is able to quickly detect redundancies by employing a canonical

labeling system to the generated sub-graphs. Different canonical labeling systems are used by other

DFS-based algorithms (all inspired by the one used in gSpan), but the abstract principles are the

same for all these systems. The idea is to map each sub-graph to an identifier string called DFS

Code. DFS Codes can be lexically ordered in such a way that, if two sub-graphs are isomorphic to

each other, they will provably have the same minimum DFS Code [43] [20]. The rules that define

how to sort a DFS Code vary in complexity according to the algorithm, and depend on the types of

graphs being mined.

Yan and Han present the example of DFS Codes used in gSpan, for isomorphic sub-graphs,

shown in Figure 2.4 [43]. Each one of the DFS Codes presented, if sorted according to gSpan-

specific rules [20], have the same canonical (minimum) code. The code is simply a representation

of each of the edges of a sub-graph. If an edge e connects nodes vi and vj , its representation will be

(i, j, L(vi), L(e), L(vj)), with L(v) being the label associated with an arbitrary node and L(e) the

label associated with an arbitrary edge.

Therefore, in gSpan, a hash-table (or similar structure) is used to keep track of the canonical DFS

Codes of those sub-graphs whose matching process (search in the dataset) has already occurred.

Every time a new candidate sub-graph is generated, its DFS Code is calculated and then sorted in

order to obtain the corresponding canonical DFS Code. This canonical DFS Code is then looked up

in the hash-table. If it already exists there, that means the candidate sub-graph is redundant and must

be discarded. If not, the sub-graph is processed and its canonical DFS Code is stored in the hash-

table. However, storing DFS Codes of all distinct sub-graphs ever generated by the algorithm may

be very memory-consuming depending on how “varied” the dataset being analyzed is (the higher

the number of existing distinct sub-graphs in it, the more varied the dataset). Therefore, in practice

a degree of redundant matching processes is allowed as a trade-off. Different trade-off strategies

may be explored by different algorithms, allowing more redundancy or more memory consumption.

AFGMiner uses the same hash-table idea as gSpan but a different canonical labeling system to

achieve a reasonable trade-off between storage requirements and processing time.

Gs pan’s search-space can be seen as a tree, which the gSpan authors call the DFS Tree [43] [20].

Yan and Han presented as an example the DFS Tree shown in Figure 2.5. Every node s in the tree

is a sub-graph to be searched for in the dataset, and all other sub-graphs that are created from s are

in the sub-tree rooted at s. If a sub-graph s′ is generated after s and is isomorphic to s, s and s′

have the same canonical DFS Code, this redundancy is detected by the hash-table scheme explained

above and s′ is discarded. Not only s′ is pruned but also the whole sub-tree rooted at s′, because all

the children that s′ can possibly generate are the same as the ones generated by expanding s. Those

sub-graphs that are not frequent are similarly not processed, thus their sub-trees are also pruned

from the search-space. This reduction in search-space is what causes gSpan, AFGMiner (which
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follows the exact same approach) and other DFS-based algorithms to be faster than BFS-based ones.

AFGMiner does not traverse the tree in depth-first fashion exactly, but in an iterative depth-first way

instead (as is explained in the AFGMiner chapter) that we named breadth-first search with eager

pruning. Therefore, the DFS Tree is simply called Search Tree.

Figure 2.4: DFS Codes for a series of isomorphic sub-graphs. [43]

Figure 2.5: DFS Tree. [43]

The actual gSpan algorithm is shown in Algorithm 1 and Algorithm 2, transcribed from its

original paper [43]. The algorithm is shown here because it is useful to understand how it works and

compare to AFGMiner.

In the GraphSet Projection function, the database D is scanned and the frequency of each dis-

tinct node (0-edge sub-graphs) and edge (1-edge sub-graphs) is calculated. Those that are not fre-

quent are pruned, and the remaining ones are relabeled. The relabeling process is essential to keep

consistency with the canonical labeling system. All 0-edge and 1-edge sub-graphs are part of the

output set S at this point, but only 1-edge sub-graphs need to be extended. After relabeling, all

frequent 1-edge patterns are lexicographically sorted. Next, in line 8, for each 1-edge sub-graph

s a database projection is performed. In other words, only those graphs that contain s are to be

examined for any of its children, which greatly diminishes graph traversal costs. The graphs that

contain s are recorded in the s.D set.
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In line 9, recursive function Subgraph Mining is called to process the DFS sub-tree rooted at

the k−edge sub-graph s. The Subgraph Mining function works by first checking for redundancy in

the hash-table, in lines 1 and 2. min(s) is a function that checks if s is present in the hash-table by

calculating the Minimum DFS Code of s and verifying if it is present in the hash-table already. If not,

then s is not redundant, and it is inserted into output set S and extended following a rightmost edge-

by-edge pattern-growth scheme (described below). Children of s have their frequency calculated

and compared against the support threshold. If the frequency of a child is above the threshold,

Subgraph Mining is recursively called to grow the child.

gSpan follows a specific pattern-growth scheme. Sub-graphs composed of a set of nodes V =

{v0, v1, ..., vn}, in which vn is the most recently added one, are extended edge-by-edge in one of

two ways: (i) by adding an edge to connect two nodes that already exist in the sub-graph, in which

case the edge must necessarily come from vn and connect to any other vi 6= vn; (ii) by adding an

edge that comes from any node vi belonging to the sub-graph’s rightmost path to a new node. A

rightmost path is the shortest path that goes from v0, the sub-graphs’s entry node, to vn [43]. New

nodes are only connected to the rightmost path in order to avoid redundancies when growing the

pattern.

The pattern-growth scheme depends on an ordering between nodes. This order can be established

by node labels, as was the case for the set of nodes V shown previously. Although other orderings

could be used, both gSpan and AFGMiner use a DFS traversal ordering for the nodes: each node

receives an index (e.g., v0, v1, etc.) according to the order in which it was visited by a depth-first-

search traversal of the sub-graph. Every time a sub-graph is grown, it must be re-traversed so that

all nodes receive correct indices according to their possibly new visit order.

Line 4 of Subgraph Mining is where a sub-graph isomorphism detection algorithm is needed

for gSpan, because that is when sub-graphs are enumerated (matched) in the dataset. The next two

sub-sections discuss the sub-graph isomorphism problem and why, depending on how similar to

a tree the graph being mined is, detecting sub-graph isomorphism may have a lower asymptotic

complexity.

Sub-graph Isomorphism Detection

Yan and Han state that a sub-graph isomorphism-checking algorithm should be used to match a sub-

graph pattern to its instances in the dataset [20]. Although any isomorphism-checking algorithm

would do, the authors recommend using [12]. Nauty is one of the fastest graph isomorphism check-

ers available [18], and is based on a set of transformations that reduce graphs to a canonical form.

Once the graphs are in a canonical form, it is simpler to test for isomorphism. The idea of using a

canonical form is therefore carried on to gSpan, and consequently, to AFGMiner, as the best method

to reduce the complexity of sub-graph matching.

However, AFGMiner does not use Nauty as its isomorphism-checking algorithm. Although
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Algorithm 1 GraphSet Projection(D)
1: sort the labels in D by their frequency
2: remove infrequent vertices and edges
3: relabel the remaining vertices and edges
4: S1 ← all frequent 1-edge graphs in D
5: sort S1 in DFS lexicographic order
6: S ← S1

7: for each edge e ∈ S1 do
8: initialize s with e, set s.D to graphs which contain e
9: Subgraph Mining(D, S, s)

10: D ← D − e
11: if |D| < minSup then
12: break
13: end if
14: end for

Algorithm 2 Subgraph Mining(D,S, s)
1: if s 6= min(s) then
2: return
3: end if
4: S ← S ∪ {s}
5: enumerate s in each graph in D and count its children
6: for each c, c is s’ child do
7: if support(c) ≥ minSup then
8: s← c
9: Subgraph Mining(s.D, S, s)

10: end if
11: end for
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Nauty is fast, its implementation is fairly complex and another algorithm that is easier to implement,

VF2 [36], is faster for graphs that are relatively regular, large in number of nodes and whose nodes

have small valency [18]. EFGs may be large depending on what they are representing. If each

node represents an instruction in the profiled application, although typically profiled methods do not

contain a large number of basic blocks, each basic block is composed of many instructions. Thus,

it is not at all unusual for EFGs that represent methods at instruction-level to contain thousands of

nodes. In addition, EFG nodes that represent CFGs (as in both applications of AFGMiner shown in

this thesis) have low valency because the structure of EFGs closely resembles that of a CFG. The

valency of an EFG is even lower than the valency of the corresponding CFG because in an EFG

each node stands for an instruction. Because of the aforementioned characteristics of the EFGs from

the applications to which AFGMiner was designed, we chose VF2 as its isomorphism detection

algorithm.

VF2 produces a mapping M between nodes in a sub-graph g and nodes in a graph G, where

G contains at least as many nodes as g. M is expressed as a set of pairs {n,m}, where n ∈ g

and m ∈ G are nodes. The mapping is said to be an isomorphism if M is a bijective function

that preserves the branch structure of both g and G; it is represented as a state s of a State Space

Representation (SSR) [36]. This state, which we call a miner state, goes from empty (no mapping

between nodes in g and nodes in G) to a goal state (all nodes in g mapped to respective nodes in

G) during the process of finding M . A state transition between any miner state s1 and its successor

s2 represents the addition of a new pair {n,m} to the collections of known pairs that compose M .

A transition also means that the algorithm is potentially closer to reaching the goal state, though

a dead-end may be reached (e.g., it may find a mapping for several of g’s nodes but not all). The

addition of new pairs only occurs if n and m are a feasible pair. Feasibility is decided upon rules

that vary according to the type of graphs being compared.The complexity of VF2 depends on the

feasibility rules. These rules, in turn, depend on the type of graphs that are being checked by VF2.

The AFGMiner chapter describes feasibility rules used for EFGs.

Algorithm 3 presents the general VF2 algorithm. In all versions of AFGMiner the basic scheme

for this algorithm, including the miner-state concept, is used for sub-graph matching. However,

only in the case of AFGMiner-iso all nodes in G are repeatedly traversed; in AFGMiner-locreg and

AFGMiner-edgecomb, only a subset of all nodes are checked at each iteration of the algorithm.

Sub-graph Mining in Bounded Treewidth Graphs

AFGMiner is meant to find heavyweight patterns in profiled methods of structured programs. A

heavyweight pattern is a sub-graph pattern that has support value higher than a threshold, with the

support value calculated from weights in the pattern instances. A structured program is one that

combines sub-programs to compute a function, and does so by using any combination of three

fundamental control structures: (i) sequential execution of sub-programs; (ii) selective execution
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Algorithm 3 Match(s, g,G)
1: if M(s)covers all the nodes of G then
2: return M(s)
3: else
4: Compute the set P (s) of candidate pairs for inclusion in M(s)
5: for p ∈ P (s) do
6: if the feasibility rules succeed for the inclusion of p in M(s) then
7: Compute the state s′ obtained by adding p to M(s)
8: Match(s′)
9: end if

10: end for
11: restore data structures
12: end if

of certain sub-programs instead of others by evaluating boolean variables; and (iii) executing a sub-

program repeatedly until a boolean variable is true. More specifically, a structured program is free of

goto-clauses, and the classic work of Bohm and Jacopini shows that any program using goto can be

converted into a goto-free form [10]. This conversion is done by (e.g., C and C++) compilers as part

of the transformation from source-code to any compiler-specific and language-agnostic Intermediate

Representation Language (IR).

Thorup showed that graphs representing the control flow of structured programs (i.e., Control

Flow Graphs) have tree-width of at most six [40]. Therefore, CFGs of structured programs have

small tree-width, or, more generally, bounded tree-width. Tree-width is a measure of how similar

to a tree a graph is. It is a very useful property because several NP-hard problems on graphs be-

come tractable for the class of graphs with bounded tree-width, including sub-graph isomorphism

detection and, as a consequence, frequent sub-graph mining of connected graphs [22].

Horvarth and Ramon discovered a level-wise sub-graph mining algorithm that lists frequent

connected sub-graphs in incremental polynomial time in cases in which dataset graphs being mined

have their tree-width bounded by a constant [22]. They define the Frequent Connected Sub-graph

Mining Problem (FCSM) as follows:

“Given a class G of graphs, a transaction database DB of graphs from Ω (i.e., a multiset of graphs

from Ω), and an integer threshold t > 0, list the set of frequent connected sub-graphs, that is, the set

of connected graphs that are sub-graph isomorphic to at least t graphs in DB.”

Then they prove that the algorithm that solves FCSM for bounded tree-width graphs does so

in incremental polynomial time. In other words, considering that the set S of frequent sub-graphs

to be output by the algorithm has cardinality N, its elements s1, ..., sN are listed in incremental

polynomial time if “s1 is printed with polynomial delay and the time between printing s1 and si+1

for every i = 1, ..., N − 1 is bounded by a polynomial of the combined size of the input and the set

{s1, ..., si}” [22].

From the fact that CFGs have bounded tree-width and that the FCSM problem can be solved

in incremental polynomial time, follows that Execution Flow Graphs representing CFGs also have
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bounded tree-width, because they are equivalent to CFGs in terms of their topological structure.

Therefore, an algorithm can be developed that solves the mining problem posed in this thesis, be-

cause this problem is fundamentally the FCSM problem with additional characteristics such as the

weights in nodes and edges, and nodes that may contain attributes. AFGMiner is such an algorithm.

2.6.3 Clustering

Cluster analysis or clustering groups objects in such a way that, according to a certain similarity

criteria, objects in the same group are more similar to each other than they are similar to objects

in other groups. Such groups are called clusters. Many algorithms exist that perform clustering

and they differ significantly in how they define what is a cluster and how to find clusters among

presented data. For instance, depending on the application and on the algorithm used, a cluster can

be a group of objects that have distances among them whose distances are below a certain threshold,

or the objects located in an area of the search space that is considered dense enough, or an area

that has a particular statistical distribution. In order to properly find data clusters that make sense

to the user of the cluster algorithm, parameters related to the algorithm should be set, such as the

distance function to use, the linkage criteria, the number of expected clusters, the density threshold.

The specific parameters depend on the algorithm and their values depend on the target application.

For example, a parameter for k-means clustering is the number of expected clusters, while density

threshold is used in density-based clustering algorithms such as DBSCAN. [4].

The next section explains the concepts of distance function and linkage criteria, which are the

two parameters used in hierarchical clustering. SCPMiner uses hierarchical clustering to group EFG

nodes representing basic blocks according to their similarity. Similarity is defined in terms of the

features of the source-code lines that form the basic blocks.

Hierarchical Clustering

Hierarchical clustering is also known as connectivity-based clustering, and is based on the idea that

objects closer to each other according to a distance metric or distance function are more related

than objects farther away. At different distances, different clusters are created, and the set of all

clusters and the relations between them are represented using a dendrogram. A dendrogram is a

tree where a directed edge goes from cluster A to B if A is contained in B, and each tree level h

contains all clusters with h members, starting from level 1 that has clusters that contain a single

member, i.e., the objects themselves, and going up to level n, where n is the total number of objects

to be clustered. Hierarchical clustering receives its name from the fact that the dendrogram shows

a hierarchy of clusters that merge with each other at certain distances: the y-axis in a dendrogram

marks the distance at which clusters merge, while the objects are placed along the x-axis such that

the clusters do not overlap. [4]

Hierarchical clustering can be agglomerative (bottom-up) or divisive (top-down). In the agglom-
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erative case, smaller clusters are grouped into larger ones, starting with clusters that have a single

element. Divisive hierarchical clustering starts with a single cluster that contain all elements and di-

vide them into progressively smaller clusters. In SCPMiner, an agglomerative hierarchical clustering

algorithm is used [4]:

Algorithm 4 Cluster(S)
1: start with each object in the set of objects S as a cluster of its own
2: insert all single-element clusters into a set of clusters C
3: calculate the distances between all pairs of single-element clusters in C
4: insert all cluster pairs in a priority queue Q
5: while Q.size() > 1 do
6: get CP, the head element of Q (cluster pair with lowest distance between its elements)
7: merge the two elements in CP as a single cluster M
8: delete CP from Q and the elements of CP from C
9: calculate the distance between M and all the other clusters in C

10: insert M into C and cluster pairs between M and all other clusters into Q
11: end while

Algorithm 4 is greedy and produces a dendrogram of nested clusters. In order to calculate the

distances between cluster elements, a distance function must be used. In SCPMiner, we opt to use the

squared Euclidean distance: for any two objects (in the case of SCPMiner, EFG nodes representing

basic blocks) that have feature vectors ~A and ~B respectively, the distance between the two objects is

|| ~A− ~B||2.

A linkage criteria must also be chosen. The linkage criteria determines the distance between

clusters as a function of the pairwise distances between cluster elements. SCPMiner uses the Ward’s

method as linkage criteria [4]. Ward’s method performs agglomerative clustering, with each initial

cluster containing a single element. The distances between such initial clusters are calculated with

squared Euclidean distance, and from that point on, as the sum of squares starts at zero and grows

with the merging of clusters, the methods keeps this distance growth as small as possible by trying

to join together pairs of clusters that have the smallest distance between their center points. In other

words, it tries to minimize the in-cluster variance between cluster elements.

In addition, the method tries to keep the number of elements per cluster as uniform as possi-

ble, in order to avoid that certain clusters have too few or too many elements. It does so by giving

preference to joining clusters with small number of elements, artificially increasing the distance be-

tween clusters as their number of elements increase, and artificially decreasing the distance between

clusters as their number of elements decrease. This is done by a factor that multiples the squared

Euclidean distance and is computed by using the number of elements of both clusters that are being

considered for joining. Thus, for any clusters C1 and C2, the distance between them according to

Ward’s method is:

∆(C1, C2) = nC1nC2

nC1+nC2
|| ~mC1 − ~mC2||2

In the formula above, ni is the number of elements in cluster i and ~mi is the center point of

cluster i. The center point of a cluster can be one of the existing elements in the cluster or it can be a
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feature vector calculated from the feature vectors of all cluster elements. In SCPMiner, the center of

a cluster is its centroid vector. The centroid vector is the sum of the feature vectors of all elements

in a cluster, divided by the number of elements in the cluster.

Ward’s method is used in SCPMiner because it is the best linkage criteria to keep clusters from

growing too much in size during the tool’s cluster analysis phase. In SCPMiner, it is desirable

for basic blocks joined together in clusters to be fine-grained in terms of the functionality they

represent through their source-code features, instead of having large clusters that group together

basic blocks with only loosely related functionality. This is also a way of compensating for the

adoption of potentially non-distinguishing features among the ones we collected and associated

with basic blocks.

2.7 Source-code Mining

Source-code mining is the application of data-mining techniques to software-engineering challenges,

such as increasing productivity in software development and code quality [31]. A few of the chal-

lenges in which source-code mining can be used are: automatic bug detection, search of usage pat-

terns when interacting with code libraries (in order to determine better ways of using the libraries),

and clone detection.

When using source-code mining to detect bugs, the idea is to analyze large amounts of data about

a program, including its source-code, to uncover dominant behavior patterns. If a piece of source-

code represents behavior that deviates from the dominant patterns, it is considered a potentially

bugged code.

Source-code mining is utilized to analyze interaction between application code and code from

third-party libraries. This interaction is typically performed through APIs (application programming

interfaces), and using those APIs often requires following certain patterns, e.g., calling certain func-

tions or performing certain checks in a given order. After detecting API usage patterns by mining

the application source code, it is possible to point out parts of the code where the API is not being

used correctly or in the most efficient and safe manner.

Clone detection is important to automatically recognize the reuse of code fragments by software

developers. Copying and pasting of code is done by developers to reduce programming efforts and

to shorten development time. Cloned code fragments may be slightly modified when copied. Code

cloning also tends to increase productivity when the original code has been previously tested and

shown to have no defects. However, cloning causes code maintenance issues: when one of the

code fragments requires change, be it due to a modification of requirements or features that must be

added, all code fragments similar to it may need to be changed. In addition, if a bug is found out in

a code fragment, then all of its clones have the same bug and must be fixed. Searching for all similar

code fragments is a time-consuming task, and as a consequence automatic clone detection becomes

a crucial task for productive software development.

31



Source-code mining algorithms, all derived directly from more general data mining algorithms,

are used to detect clones and follow a number of approaches, including simply matching the con-

stituent texts of two code fragments; viewing code fragments as sequences of program tokens and

comparing those; representing the program as an abstract syntax tree (AST, see Section 2.1) and

then mining for matching sub-trees that represent code fragments; modeling the program as a graph

and mining for isomorphic sub-graphs that represent cloned code fragments [37]. The matching

between two code fragments may be exact, in the sense that the fragments are visually the same, or

approximate. In approximate matching, code fragments are considered clones even if they are not

visually or functionally identical. A common requirement, however, is a level of similarity typically

determined by comparing the feature vectors of both fragments. These feature vectors describe code

characteristics that are deemed relevant in deciding whether two code fragments are clones. More

details about clone detection algorithms can be found in Chapter 7.

As described in Chapter 6, ideas found in the clone detection literature were used as inspiration

to build SCPMiner as a tool that mines for source-code patterns that take up significant execution

time when all pattern instances are considered in aggregation.
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Chapter 3

FlowGSP

FlowGSP is a modified version of the GSP algorithm, adapted to mine Execution Flow Graphs.

We improved FlowGSP, which is a single-threaded algorithm, and modified some of its character-

istics in order to make it more comparable to AFGMiner. More specifically, to AFGMiner-locreg,

which as we found out experimentally, is the single-threaded version of AFGMiner with best perfor-

mance. The focus of our comparative analysis is verifying whether one algorithm is better than the

other, thus the implementations must be as similar as possible in terms of algorithm improvement

techniques they use. The improvements are: (i) adding registration of pattern locations (embed-

dings), which makes the mining process faster, and (ii) not using the differential support threshold

(described below), only the maximum support threshold, when deciding if a pattern is heavyweight.

Other modifications to FlowGSP made by this work in order to make the algorithm more comparable

to AFGMiner are described in section 3.2.

FlowGSP adapts the sequential-pattern mining problem to the problem of mining EFGs as fol-

lows.

1. Sequential-pattern mining finds the instances of a certain pattern (i.e., the occurrences of a

candidate sequence) in each transaction available in the database, but the pattern instance

should not repeat in the same transaction. In the case of mining EFGs, the database (or

dataset) is the set of EFGs associated with an application’s profiled methods, and each EFG

node is a transaction in this database. However, when searching for pattern instances, the fact

that the same pattern appears more than once in an EFG should be accounted for, and means

that the pattern is more relevant.

2. Because EFGs are weighted graphs, the usual way (adopted by GSP and other traditional

mining algorithms) of calculating pattern relevancy, which is to simply count the number of

pattern occurrences, is not useful. Instead, another support value policy must be used.

Jocksh et al. adopted a conservative policy in which separate support values for node weight

(called simply weight) and edge weight (called frequency) are calculated [30]. These values

are Sw and Sf respectively. Sw is calculated as follows. Suppose you have a pattern instance

33



P , composed of a certain number of nodes and edges of an EFG. We have to find the attribute

with minimum weight value, out of all attributes available in P , i.e., considering the attributes

in all nodes of P . SW (S), the weight support value of candidate pattern S, is the addition of

such minimum attribute weight over all instances of pattern S found in the database. Sf (S),

the frequency support value of candidate pattern S, is calculated similarly: among the EFG

edges covered by an instance P of pattern S, choose the one that has minimum frequency.

Sf (S) is the addition of the minimum edge frequency over all instances of S found in the

database. Sw(S) is then divided by Sw(DS), the sum of node weights over all nodes in the

database, and Sf (S) is divided by Sf (DS), the sum of edge frequencies over all edges in the

database. This normalization is required so as to keep between zero and one the value bound-

aries of Sw(S) and Sf (S) for any candidate sequence, and thus allow the mining support to

be obtained from a combination of Sw(S) and Sf (S).

Finally, with Sw(S) and Sf (S) calculated, we pick the maximum between the two values,

SM (S) = max{Sw(S), Sf (S)} (called maximum support value), and compare it against a

threshold SMthresh. If SM (S) is higher than SMthresh then pattern S is considered heavy-

weight (simply frequent in the original FlowGSP work).

In the original FlowGSP work, another value called differential support threshold, SDthresh,

was compared against a differential support value SD(S) = |Sw(S)− Sf (S)|. The idea was

to prune patterns with a lower-than-allowed difference between how often they are executed

(i.e., how high their Sf (S) is) and how long is their total execution time (i.e., how high their

Sw(S) is). By doing this additional pruning, we are left only with those patterns that are

heavyweight and that present the unusual behavior of either taking a high number of ticks to

execute even if not frequently called, or being frequently called but not taking a high number

of ticks to execute. Such a scheme makes it easier to find patterns with unexpected behavior.

However, as will be explained in the Improvements to FlowGSP subsection, we eliminated

the calculation of differential support from the algorithm so that we can find all heavyweight

patterns, including but not limited to those that represent unexpected behavior.

3. In the application of FlowGSP described by Jocksh et al., attributes in each node are events

captured by hardware performance counters during profiling, such as whether a cache miss or

an address generation interlock occurred when the instruction (node) was being executed. If

an event happened, we have the information on how many tick counts the event happened for,

which should be less than or equal to the tick counts associated with the node itself (because

the total tick count of a node is the total time the instruction spent executing). Thus, in the

mapping between sequential-pattern mining and EFG mining, node attributes are items and

tick counts associated with each attribute are the weights of such attributes.

Moreover, from this mapping, an itemset is an ordered set of attributes. Such attributes must
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be located in adjacent nodes within a window (even if not all need to be in the same node),

and the whole series of itemsets should be found inside this same window. Also, itemsets

that come right before or right after each other should not be separated by more nodes than

allowed by the gap value. Example: suppose we have a simple EFG with three successive

nodes, v0 → v1 → v2. The sequences we are looking for are S0 = {(x, y), (z)} and S1 =

{(x, y, z)}. Items x and y are in v0 and item z is in v2. If the window is one or two, neither

sequence will be found because the attributes of interest in the EFG are located along three

nodes. If the window is three or higher, it all depends on the gap value. If the gap is zero, none

of them will be found because: (i) for S0, the first itemset (x, y) is located in v0, therefore

the first (and only in this case) item of the second itemset (z) should be located either in v0

or v1; (ii) for S1, the third item of itemset (x, y, z) should necessarily be in v1, because items

must be located in directly successive nodes. Finally, if the gap is one or higher, v2 will also

be examined, so S0 will be found but still S1 will not, due to the same reason as in (ii).

Before FlowGSP is used to mine a dataset of EFGs, a pre-processing phase assembles such EFGs

out of database tables that contain profiled data. EFG data comes from both compiler-based profiling

and hardware instrumentation-based profiling. Pre-processing this data can take an extensive amount

of time if the dataset is large. Profiles from a program execution that lasts only a few minutes

typically collect information on thousands of methods and occupy gigabytes of space. Thus, the

data structures generated by this phase must be preserved for good algorithm performance.

Algorithm 5, Algorithm 6 and Algorithm 7 are reproduced from [30]. We modified Algorithm 5

to show the improvements we made to the original algorithm. In order to better understand the three

functions, below is a description of each of the variables:

1. DS: The database of EFGs. It is assembled during the pre-processing phase.

2. gmax: Maximum gap allowed, i.e., the maximum number of consecutive nodes in a sub-path

that can be skipped when looking for the next itemset in a sequence of itemsets.

3. wmax: Maximum window allowed, i.e., the maximum number of consecutive nodes in a sub-

path that can be examined to find a sequence of itemsets.

4. ngen: Maximum length (number of items) that candidate sequences may have. All candidates

of the same length, even if they have different number of itemsets, are generated and mined in

the same algorithm iteration, and this pool of candidates is called a generation.

5. SMthresh : Support value threshold.

6. α: Set of attributes mined by the algorithm. The attributes can be given by the user or a

list of initial attributes may be composed during the pre-processing, or even both. The set of

attributes may be both hardware events and opcodes of instructions executed. An instruction
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opcode necessarily has associated to it the total node weight, while a hardware event has

associated to it a weight corresponding to the number of ticks for which the event was true,

which should be less than, or equal to, the total node weight.

7. n: Current generation being processed by the algorithm.

8. Cn: Pool of candidate sequences of length n.

9. G: EFG belonging to DS.

10. S: A candidate sequence in Cn.

11. L: List of nodes in an EFG from where a search for a candidate sequence can start (instead of

necessarily starting from the EFG’s entry node).

12. supports: List of support value tuples (Sw, Sf ). There is one for each pattern instance of

candidate sequence S.

13. (Sw, Sf ): Support value tuple for an instance of candidate sequence S. Sw is the weight

support, Sf is the frequency support.

14. H: Hash tree built out of a generation of candidate sequences. Used to more easily find

candidates that contain the attributes of a given EFG node.

15. Q: Worklist of EFG nodes. It is a queue.

16. v: Node in an EFG.

17. gremain: Gap remaining. Used when searching for itemsets. When gremain = 0 and there are

still itemsets to be found, the sequence of itemsets is considered not found.

18. firstSet : True if the first itemset of a sequence is the one being searched for.

19. startOfFirstSet : True if the first item of the first itemset of a sequence is the one being

searched for.

20. alreadySeen: List of nodes already visited in a same iteration of the algorithm. Each node

must be visited at most once per candidate sequence, in each iteration of the algorithm.

21. sleft : The part of candidate sequence S that is yet to be found.

22. sfound : The part of candidate sequence S that has already been found.

23. S[i, j]: A segment of sequence S that goes from its i − th to its j − th item. A sequence of

length k goes from element 0 to element k − 1.

24. k: The lenght of candidate sequence S.
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Algorithm 5 FlowGSP locreg(DS, gmax, wmax, ngen, sMthresh, α)
1: C1 ← Create F irst Generation(α)
2: n← 1
3: H ← Create Hash Tree(C1)
4: for G ∈ DS do
5: v0 ← Entry vertex of G
6: Q.push(v0)
7: alreadySeen← ∅
8: while Q 6= ∅ do
9: v ← Q.pop()

10: alreadySeen← alreadySeen ∪ v
11: Creduced ← H.get candidates(v)
12: for S ∈ Creduced do
13: supports← Find Paths(S, v, 0, true, gmax, wmax)
14: for (Sw, Sf ) ∈ supports do
15: Sw(S)← Sw(S) + Sw

16: Sf (S)← Sf (S) + Sf

17: end for
18: end for
19: for v′ ∈ children(v) do
20: if v′ 6∈ alreadySeen then
21: Q.push(v′)
22: end if
23: end for
24: end while
25: end for
26: for S ∈ C1 do
27: if SM (S) ≤ SMthresh then
28: C1 ← C1 \ S
29: end if
30: end for
31: if n < ngen − 1 then
32: C2 ←Make Next Gen(C1)
33: end if
34: n← n+ 1
35: while Cn 6= 0 and n < ngen do
36: for G ∈ DS do
37: for S ∈ Cn do
38: L← S.get starting points(G)
39: supports← ∅
40: for v ∈ L do
41: supports← supports ∪ Find Paths(S, v, 0, true, gmax, wmax)
42: for (Sw, Sf ) ∈ supports do
43: Sw(S)← Sw(S) + Sw

44: Sf (S)← Sf (S) + Sf

45: end for
46: end for
47: end for
48: end for
49: for S ∈ Cn do
50: if SM (S) ≤ SMthresh then
51: Cn ← Cn \ S
52: end if
53: end for
54: if n < ngen − 1 then
55: Cn+1 ←Make Next Gen(Cn)
56: end if
57: n← n+ 1
58: end while
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Algorithm 6 Find Paths(S, v, gremain, firstSet, gmax, wmax)
1: supports← Find Set(S[0], ∅, S, v, wmax, firstSet, firstSet, gmax, wmax)
2: if supports 6= ∅ then
3: return supports
4: end if
5: if gremain ≤ 0 then
6: return ∅
7: end if
8: for v′ ∈ children(v) do
9: supports′ ← Find Paths(S, v′, gremain − 1, false, gmax, wmax)

10: for (Sw, Sf ) ∈ supports′ do
11: Sw ← min{Sw,W (v)}
12: Sf ← min{Sf , F ((v, v′))}
13: supports← supports ∪ {(Sw, Sf )}
14: end for
15: return supports
16: end for

25. A(v): The attributes associated with EFG node v.

The next section describes the algorithm and explicits the improvements implemented by us. The

subsequent section describes some modifications to the original implementation that were required

in order to make a fair comparison with AFGMiner.

3.1 Improvements to FlowGSP

Algorithm 5 describes the improved version of FlowGSP and FlowGSP-locreg (location registra-

tion). The new algorithm works the same way as the original FlowGSP for the first generation (lines

1 to 33 of Algorithm 5). In line 1, an initial generation is created out of a list of possible attributes.

Each candidate pattern of this initial generation is simply an itemset of a single item, one for each

of the possible attributes. These are built into a hash tree H , and for each EFG G in the dataset DS,

each of the nodes in G is considered as a starting point to search each of the candidate sequences.

H is used to more promptly find those candidate sequences that start with the node being visited.

The search itself is performed in the Find Paths and Find Set functions, which are mutually

recursive. While Find Paths defines which paths in the EFG should be taken next, Find Set is

responsible for verifying that the attributes can be found within wmax and gmax. As each sequence

is progressively found, their support values are calculated. When the search has completed for all

candidate sequences and for all EFGs in the dataset, sequences that are not heavyweight are pruned

and the second generation is composed out of the first (lines 26 to 33 of Algorithm 5). Generations

are composed out of a previous one by joining sequences [30], as shown in Algorithm 8.

In the original FlowGSP, the same process described above for the first generation of candi-

dates is repeated for all generations, in a while-loop. The algorithm has exponential complexity on

the number of nodes, because the number of candidates may grow, from generation to generation
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Algorithm 7 Find Set(sleft, sfound, S, v, wremain, firstSet, startOfFirstSet, gmax, wmax)
1: supports← ∅
2: k ← |S|
3: if sleft ≤ A(v) then
4: if k = 1 then
5: supports = {(W (v), 0)}
6: return supports
7: end if
8: for v′ ∈ children(v) do
9: supports′ ← Find Path(S[1, k − 1], v′, gmax, false, gmax, wmax)

10: for (Sw, Sf ) ∈ supports′ do
11: Sw ← min{Sw,W (v)}
12: Sf ← min{Sf , F ((v, v′))}
13: supports = supports ∪ {(Sw, Sf )}
14: end for
15: end for
16: return supports
17: else
18: if startOfFirstSet and A(v) ∩ sleft = ∅ then
19: return ∅
20: end if
21: if firstSet and sfound ⊆ A(v) then
22: return ∅
23: end if
24: if wremain ≤ 0 then
25: return ∅
26: end if
27: Sleft ← sleft \A(v)
28: Sfound ← sfound ∪ (A(v) ∩ sleft)
29: for v′ ∈ children(v) do
30: supports′ ← Find Set(sleft, sfound, S, v′, wremain − 1, firstSet, false, gmax, wmax)
31: for (Sw, Sf ) ∈ supports′ do
32: SW ← min{Sw,W (v)}
33: Sf ← min{Sf , F ((v, v′))}
34: supports← supports ∪ {(Sw, Sf )}
35: end for
36: end for
37: return supports
38: end if
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Algorithm 8 Make Next Gen(S)
1: R← ∅
2: for each sequence of itemsets s1 ∈ S do
3: for each sequence of itemsets s2 ∈ S do
4: if s1.length() = 1 and s2.length() = 1 then
5: snew1 ← sequence consisting of s1 itemset followed by s2 itemset
6: snew1.set starting points(s1.get found points())
7: if s1 = s2 then
8: R← R ∪ {snew1}
9: end if

10: snew2 ← sequence consisting of s1 itemset followed by the first element of s2 itemset
11: snew2.set starting points(s1.get found points())
12: R← R ∪ {snew1, snew2}
13: end if
14: snew ← sequence consisting of all but the first item of the first itemset of s1, followed by
15: all but the last item of the last itemset of s2
16: snew.set starting points(s1.get found points())
17: R← R ∪ {snew}
18: end for
19: end for
20: return R

(though eventually decreasing), and every node in the entire dataset must be visited as a search start-

ing point for each of the candidate sequences. Our change to this particular part of the algorithm

greatly improved its running time, and works as follows. Every new sequence Snew is a join of two

other sequences, say S1 as its first half and S2 as its second half. This modified FlowGSP, called

locreg, stores in a list of starting points L start each node where an instance of a sequence begins.

Thus, to create Snew the algorithm only starts searching from nodes where S1 begins instead of

visiting every single node in the dataset again (lines 6, 11 and 16 of Algorithm 8). The algorithm

repeats this process for the following generations: every time it successfuly finds an instance of

Snew in the dataset, it adds the initial node where such instance was found to a list of “found points”

of Snew, Lfound. Thus the list Lfound of a sequence stores the initial node of each instance that

matches the sequence. The nodes in Lfound are then used as the search starting points for all new

patterns in the next generation that use Snew as their first half-sequence.

A question worth asking is why to record in Lfound the starting node where each of the instances

of Snew occur, instead of recording the node where the last attribute of Snew was found. Recording

this last node would mean visiting an even lower number of nodes, because the algorithm would only

need to verify if nodes following from the last one contain attributes corresponding to the second

half of the sequence. However, FlowGSP uses the concepts of gap, window and “dummy nodes”,

which make controlling a search starting from the second half of a sequence a complex task. It

would be a complexity worth adding if patterns typically spread along many nodes. However, from

experiments performed by Jocksh [30] and confirmed by our research work, that is not the case.

The locreg change trades memory consumption for run-time performance, because locreg makes it
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necessary to store two lists of nodes, Lstart and Lfound, for each candidate sequence.

Another improvement to FlowGSP was the elimination of the differential support value calcula-

tion. The usage of differential support is interesting because it allows the pruning of those patterns

that do not have the characteristic of very different Sw and Sf values. In other words, using differ-

ential support eliminates those patterns that have both high edge frequency and high tick counts, and

also a similar value for both of them. In the applications of FlowGSP and AFGMiner described in

this thesis, however, it is enough to consider that a pattern is interesting by examining its maximum

support value only. In addition, when using solely the maximum support value, the set of frequent

patterns found necessarily includes those patterns that would be found by using the differential sup-

port value calculation.

3.2 Adaptation to FlowGSP for Comparisons

In order to fairly compare FlowGSP-locreg with the different versions of AFGMiner, it was nec-

essary to make two modifications to design choices in the FlowGSP implementation of [30]. The

goal is to restrict the comparison to the performance of the algorithms and to the choices of data

structures. Therefore, it is necessary to eliminate external factors that affect total pattern-mining run

time.

The first modification was to store the whole dataset in memory. In the original implementation,

each EFG was loaded and re-loaded from disk just before being traversed, i.e., only a single EFG

was stored in memory at a time. Although this greatly diminishes the possibility of memory overflow

when the dataset is large, it makes communication with the database and the pre-processing phase

a bottleneck, and it does not solve the memory overflow problem completely. Candidate sequences

may still occupy more space in memory than the amount available. Other, more efficient, approaches

can be used to avoid memory overflow, and the same can be said for AFGMiner.

The second modification was to the way FlowGSP handles “dummy nodes”. The original ver-

sion of FlowGSP takes an optimistic approach to the issue by simply skipping dummy nodes and

proceeding with pattern search as if the dummy nodes had never been there. Such an approach

accepts the potential overestimation of sequence support values that comes from “jumping” nodes.

However, we changed the approach to a more conservative one, also adopted in AFGMiner: stop-

ping the search for a pattern instance when a dummy node is found, and then skipping the dummy

node and restarting the search by re-attempting to match from the first item in the pattern. The

consequence of adopting the more conservative approach is that less patterns are found.
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Chapter 4

AFGMiner

AFGMiner was created to solve the problem of mining for sub-graph patterns in Execution Flow

Graphs (EFGs). EFGs are directed graphs whose nodes have an identifier label and zero or more

attributes each. The patterns to be discovered should be groupings of attributes structured in sub-

graph format that may include split and join nodes.

The algorithm is based on gSpan. It adapts the following core ideas of gSpan: (i) a canonical

labeling system that facilitates sub-graph enumeration and search-space pruning; (ii) edge-by-edge

pattern-growth; and (iii) the use of sub-graph isomorphism detection to match candidate patterns

to actual pattern instances in the dataset. It also adapts the following ideas from FlowGSP: (i) the

anti-monotonic support value policy; and (ii) the candidate itemset generation procedure, in order to

generate 0-edge sub-graphs and the new nodes that can be attached to candidate sub-graphs.

There are currently three versions of the algorithm. AFGMiner is used to refer to all of them,

and they all find the same patterns when run over the same dataset and same parameters (explained

in Chapters 5 and 6. The first, and most general one, named AFGMiner-iso, consumes less memory

than the other two versions, but is more time-consuming, to the point of being impractical for the

large datasets the algorithm was created to mine. However, this version could be used in smaller

datasets. It utilizes a sub-graph isomorphism detection algorithm by Cordella et al. [36] and does

not memorize locations in the dataset where pattern instances are found. Therefore, all nodes in the

dataset must be traversed at each sub-graph search.

The second version is AFGMiner-locreg. It memorizes the nodes in the dataset where each

instance of a candidate pattern p starts. If p is deemed frequent, child patterns c are generated by

growing one edge and one node or by growing a single edge that connects two nodes that already

exist in p. The same steps are followed by AFGMiner-iso. However, it already knows the nodes

that compose p’s instances, thus instead of searching for all nodes of each child pattern again, it

only needs to evaluate the instances of p (embeddings). The algorithm checks, for each c, if the part

added to p in order to generate c has a correspondence in the surrounding nodes and edges of p’s

instances.

The third version of AFGMiner is AFGMiner-edgecomb (AFGMiner with edge combination). It
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is similar to AFGMiner-locreg, but the difference is that AFGMiner-locreg grows a pattern of size k

edges by generating new nodes that combine the distinct attributes that were part of the set of nodes

composing patterns of (k-1) edges. In contrast, AFGMiner-edgecomb grows patterns of size k by

choosing from the pool of edges that composed patterns of size (k-1). These edges are known to be

frequent according to the a-priori principle.

4.1 Calculating Support Values

In order to prune the search-space, AFGMiner must have an anti-monotonic support-value policy

that allows sub-graphs known to not be heavyweight to be discarded together with all of its descen-

dants. Similarly to the support values in sequential-pattern mining, the support value of a sub-graph

g must be defined in such a way as to never be higher than the support value of any ancestor sub-

graph of g in the Search Tree. For unweighted graphs, such as the ones mined by gSpan, counting the

number of times a sub-graph happens preserves anti-monotonicity. However, for weighted graphs

such as EFGs, the definition of what makes a sub-graph frequent is not as straightforward as simply

counting the number of occurrences. Thus a more sophisticated policy should be used.

Jiang et al. describe three possible support policies for edge-weighted graphs [28]. They can

be adapted to graphs that have weights in edges and nodes alike: Average Total Weighting (AWT),

Affinity Weighting (AW) and Utility-Based Weighting (UBW). Although such policies are anti-

monotonic, it is quite cumbersome to adapt them to nodes with multiple attributes, and they are

not conservative. A support policy is conservative if a sub-graph’s support value is always a lower

bound, meaning that if the sub-graph is deemed frequent according to the policy, it is for sure

frequent. Having a conservative support-value policy is important because it limits the number

of patterns found and increases the certainty that the patterns are indeed of interest to users of

AFGMiner. As a test, we adapted AWT to EFGs and ran AFGMiner with it on a small profile

with non-flat behavior, i.e., from an application with well-known hot-spots, enabling the option to

only find sequential-patterns (maxFwdEdges = 1 in Algorithm 12). As expected, the number

of sequential-patterns found was significantly higher than those found by FlowGSP, but they were

not of interest to compiler developers. The reason is that patterns found by AFGMiner with the

AWT policy did not clearly indicate those instructions and associated hardware events known, by

the developers, to be part of hot-spots in the profiled application.

The policy adopted for AFGMiner was thus as similar as possible to FlowGSP’s, in order to

guarantee anti-monotonic, conservative behavior and to find interesting patterns. For any candidate

sub-graph g, we have that the support of g is the maximum between Sw and Sf , the weight and

frequency supports respectively. Sw is the sum of w over all instances of g, where the w of an

instance loc of g is the minimum attribute weight considering all nodes of loc. Sw is normalized by

dividing it by the total weight of all nodes in the dataset, in order to be a sound value between 0 and

1. Analogously, Sf is the sum of f over all instances found of g, where f of an instance loc of g
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is the minimum edge frequency considering all edges of loc. Sf is normalized by dividing it by the

total frequency of all edges in the dataset, so that the value is kept between 0 and 1. Algorithm 9

describes the support calculation procedure step by step.

Algorithm 9 support(g)
1: Sw ← 0
2: Sf ← 0
3: for loc ∈ g.get found locations() do
4: w ← inf
5: for v ∈ loc.node set() do
6: w ← min{w, v.get min attr weight()}
7: end for
8: Sw ← Sw + w
9: f ← inf

10: for e ∈ loc.edge set() do
11: f ← min{f, e.freq()}
12: end for
13: Sf ← Sf + f
14: end for
15: Sw ← Sw ÷ total dataset weight()
16: Sf ← Sf ÷ total dataset freq()
17: SM ← max{Sw, Sf}
18: return SM

4.2 Labeling System

The canonical labeling system in AFGMiner has the same purpose as in gSpan: facilitating the detec-

tion of candidate patterns that were generated previously and, as a consequence, pruning the search-

space. In such labeling system, the string representation of a sub-graph (shown in Section 2.5) is

its DFS Code. DFS Codes have this name in AFGMiner specifically because, as is detailed later

on, every node of a sub-graph receives an identifier that comes from a DFS-like traversal of the

sub-graph.

The labeling system also employs a hash-table H that stores the DFS Codes of all those sub-

graphs considered frequent. Keeping only frequent sub-graphs in H is a reasonable strategy for the

memory-consumption issue described in Section 2.6.2, and was created for AFGMiner but is also

usable in gSpan and other algorithms. It is a good strategy because storing only frequent sub-graphs

consumes significantly less memory, due to the fact that frequent patterns are usually a minority of

all patterns generated.

A string representation was chosen over representations based on more complex data structures

because: (i) using a string makes it easier to understand what is the sub-graph associated with each

DFS Code (improvement in readability of output frequent patterns) and (ii) a string is more compact

in terms of memory consumption than having separate data structures to represent each edge, node

and attribute of a sub-graph, and storing all of them in H . Considering that the number of frequent
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sub-graphs may be high, making H as small as possible is essential.

If two sub-graphs are isomorphic, they should have the same DFS Code, and if they are not

isomorphic, they should have different DFS Codes. In order for a newly-generated sub-graph to be

considered redundant and thus discarded, its DFS Code should be already present in H , in which

case it is not enumerated (searched for in the dataset). Line 10 of Algorithm 15 and line 4 of

Algorithm 16, respectively, show how the process of redundancy detection works.

In order to properly characterize sub-graphs by using strings, it is a requirement to uniquely label

edges and nodes. Using the attribute set of a node as label is not possible because multiple nodes may

contain the same attributes. Thus, AFGMiner uses identifier numbers for each node instead. Still,

identifier numbers cannot be arbitrarily associated with nodes. For example, simply incrementing a

node counter id whose value is associated, during pattern-growth, with each node that is added to a

sub-graph does not work. The reason is that sub-graphs that are actually isomorphic may be spanned

by different parent sub-graphs, and thus their nodes will be created in a different order, leading to

different identifier numbers being associated with each node. As a consequence, the DFS Codes of

such sub-graphs will not be the same even though they are isomorphic. As a solution to this issue,

every time a candidate sub-graph is generated and just before the algorithm checks for its existence

in H , it produces its DFS Code by traversing all of its nodes in a specific fashion. Then each node is

given an identifier number that corresponds to the order in which it was visited during the traversal.

Algorithm 10 shows the traversal procedure, which is similar to a pre-order depth-first traversal

that would be performed in a tree. A stack is used to keep track of each of the sub-graph nodes, but

the nodes are only considered visited after they are on top of the stack for the first time. When a

node v is visited for the first time, an id is associated to v, the id counter is incremented and the first

non-visited child node of v, to which v is connected by a forward edge, is pushed onto the stack.

Only child nodes connected to v by a forward edge are pushed onto the stack (i.e., visited) because

otherwise cycles would happen and we need to label each node only once. Every time an already-

visited node is on top of the stack, one of its unvisited child nodes gets pushed onto the stack, until it

has no more unvisited children. A node with no unvisited children is simply popped out of the stack.

This simple procedure is useful to quickly label sub-graphs independently of how the sub-graphs are

generated, and is thus what makes DFS Codes a canonical representation of patterns in AFGMiner.

4.3 Pattern-Growth Scheme

In this section we use an example of AFGMiner running over a dataset of two EFGs, in order to

show how the algorithm works. In particular, we differentiate the behavior of AFGMiner-iso and

AFGMiner-locreg. Then in each subsequent subsection we describe the functions of AFGMiner

that are common to all of its three versions, and how AFGMiner-iso and AFGMiner-locreg handle

edge-by-edge pattern growth. In the AFGMiner with Edge Combination section, we describe the

particularities of pattern-growth in AFGMiner-edgecomb, so there is no need to do so in this section.
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Algorithm 10 LexSort(g)
1: stack ← ∅
2: stack.push(g.entry node())
3: id← 0
4: new node set← ∅
5: while stack 6= ∅ do
6: v ← stack.peek()
7: if v.visited() = false then
8: v.set id(id)
9: v.set visited(true)

10: new node set← new node set ∪ {id, v}
11: id← id+ 1
12: end if
13: canPop← true
14: for c ∈ v.get fwd children() do
15: if c.visited() = false then
16: canPop← false
17: stack.push(c)
18: break
19: end if
20: end for
21: if canPop = true then
22: stack.pop()
23: end if
24: end while
25: g.set node set(new node set)

Figure 4.1 shows the dataset DS, with the EFG on the left being named G1 and the EFG on

the right G2, with Wtotal = 46 being the sum of weights over all nodes in DS and Ftotal = 42

the sum of frequencies over all edges in DS. The existing attributes in this particular dataset are

{a, b, c, d, e}, and the threshold is T = 2/46, i.e., patterns should have a support value over 2/46 to

be considered heavyweight patterns.

Below are the steps involved in the pattern-growth scheme.

1. Figure 4.2. For both AFGMiner-iso and AFGMiner-locreg, the first step is to search for each

one of the existing attributes in DS, present in the attribute set A0. In such a case, each

attribute is actually a 0-edge candidate sub-graph pattern p, with p having a single attribute in

its attribute set. Search is done by traversing all nodes of DS. When a pattern instance is found

(i.e., a node in DS that has the single attribute in p as one of its attributes), the weight support

w is calculated for the instance. In the case of an instance of a 0-edge sub-graph pattern that

has a single attribute, such as p, w is simply the weight of the attribute being searched for and

present in the pattern instance. There is no frequency support f to be calculated in this case,

because no edges are involved. Then, for each pattern instance found, w values are summed

up. The sum is divided by Wtotal, and the resulting division is the support value of p, Sw,p.

If Sw,p is higher than T , p is considered a heavyweight pattern and its single attribute is
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Figure 4.1: Dataset for the running example.

included in the initially empty set A, p is included in hash table H that records its DFS Code

to detect redundancies and p is also inserted into the output set to be returned to the user

later. A is the attribute set where attributes identified as heavyweight (because they are part of

heavyweight patterns) are placed to be used in later candidate pattern generation process.

In Figure 4.2, we see that only attributes {a, b, c, e} are heavyweight and that attribute d has

been discarded. As a consequence, A is different from A0: it is composed only of {a, b, c, e},

the heavyweight attributes.

AFGMiner-locreg, when finding each one of the instances of p, keeps track of them by creat-

ing a mapping Mp = {{L(vx)}1, ..., {L(vy)}i} where i is the number of instances of p and

L(v) is the unique label of a node that matches p as an instance.

Figure 4.2: Mining for 0-edge patterns.

2. Figure 4.3. All heavyweight 0-edge sub-graph patterns that have an attribute set of size one

have been found. We need now to find those 0-edge sub-graph patterns that have an attribute
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set bigger than one, by combining in pairs those heavyweight attributes present in A and

searching for such attribute pairs in DS. The combinations two by two of the attributes in A

shown in Figure 4.3 are {a, b}, {a, c}, {a, e}, {b, c}, {b, e}, {c, e}. They are the new 0-edge

candidate sub-graph patterns the algorithm should mine for.

Both AFGMiner-iso and AFGMiner-locreg, at this point, mine for candidate patterns by again

traversing all nodes in DS. For each candidate pattern p′, AFGMiner checks if the EFG node

v being visited has both attributes of p′ as a subset of its own attributes. If so, w is calculated

for the pattern instance found. w in such a case is the weight of the attribute with minimum

weight out of the two attributes in v that correspond to the attribute pair in p′.

In Figure 4.3, only the 0-edge sub-graph pattern with attribute set {a, c} is found to be heavy-

weight. As a consequence, there is no way to generate more 0-edge candidate patterns (of

attribute set size bigger than two), which would require that at least two distinct attribute pairs

be heavyweight. If such condition held, we would be able to generate at least one new attribute

set by combining distinct attributes three by three, and would have to mine for it. Suppose

we found at least two heavyweight 0-edge sub-graph patterns with distinct attribute sets of

size three, then we would combine the distinct attributes four by four and mine for the new

generated candidate pattern. This logic is followed by the algorithm until no more sufficient

patterns of attribute set size k can be found to generate candidate patterns of attribute set size

(k + 1). Each heavyweight pattern is inserted into output and also into H as it is found, so

that if any candidate pattern is generated redundantly they are not mined for again.

Figure 4.3: Mining for 0-edge patterns with attribute set size bigger than one.

3. Figure 4.4. After all heavyweight 0-edge sub-graph patterns have been found, A is emptied

and filled with the distinct attributes present in such patterns. Now we need to find 1-edge sub-

graph patterns that are heavyweight, but first we generate the appropriate candidate patterns.

Each one of the 0-edge patterns is extended by adding a new edge that connects to the single

node the patterns are composed of (such candidate patterns are not shown in the figures), and

by adding a new edge and node. For the latter case, every heavyweight pattern p spans a
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number of child candidate patterns p′ when we add to them a new node v. At first, each v

added to p and that spans a p′ contains a single attribute from A.

Figure 4.4 depicts candidate sub-graphs spanned from the 0-edge heavyweight patterns from

Figure 4.3. Support value calculations are shown for all candidates that have a as the attribute

set in their parent pattern. For each instance of a 1-edge candidate pattern p′, w is the minimum

weight out of all attributes present in the instance (i.e., considering attributes in every node),

and it is summed up over all instances and divided by Wtotal to obtain Sw,p′. Likewise, for

each one of the instances, f is the minimum edge frequency out of all edges present in the

instance. In the case of 1-edge pattern instances there is only a single edge to be taken into

account. f is summed up over all pattern instances and divided by Ftotal to obtain Sf,p′. The

maximum value between Sw,p′ and Sf,p′ is then compared against T , and if higher, p′ is a

heavyweight pattern that can be extended to generate 2-edge candidate patterns.

AFGMiner-iso searches for the 1-edge candidate patterns by checking the entire dataset DS

for sub-graphs isomorphic to the patterns. By isomorphic in this case we mean with the same

topology as the candidate pattern and with corresponding attribute sets that are supersets of

the attribute sets that the candidate pattern is composed of.

AFGMiner-locreg follows a different mining procedure. Consider that each candidate pattern

p′ is extended from its parent pattern p by connecting a new edge to one of its nodes vp, called

a pivot node. Then the algorithm finds, by consulting Mp, those nodes v that correspond to

vp in each of the recorded instances of p. If p′ is extended from p by adding only an edge to

vp, the algorithm needs only check if there is a corresponding edge going out of v. If p′ is

extended from p by adding an edge that connects vp to a new, target node vp′, the algorithm

checks if such edge and node have corresponding matches among the outgoing edges and

child nodes of v. Whenever there are matches, an instance has been found and the support

value can be calculated.

Figure 4.4: Mining for 1-edge patterns.
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4. Figure 4.5. From the heavyweight 1-edge patterns shown in Figure 4.4, we obtain the heavy-

weight attributes that fill A after it has been emptied at the end of the previous step of the

algorithm. We use such attributes to generate 1-edge patterns whose added node has attribute

set size bigger than one. The idea is, similarly to the 0-edge sub-graph case, to first search for

candidate patterns p′ whose nodes v have attribute sets of size one, and then increase the size

of the attribute sets added to each p. This increase in attribute set size is done by combining

those attributes that are present in patterns p′ that were considered heavyweight when mined.

Figure 4.5 shows the 1-edge heavyweight patterns that have a node with a single attribute, a,

as pivot.

Figure 4.5: Mining 1-edge patterns with attribute size bigger than one.

5. Figure 4.6. After all 1-edge heavyweight patterns are found, similarly to previous steps, A is

emptied and then filled with all distinct attributes present in such patterns. 1-edge heavyweight

patterns p are then used to generate 2-edge sub-graph patterns. For each pattern p, every node

in p is used as a pivot to which either only an edge or a new edge and node are connected,

spanning multiple child candidate patterns p′ from p. The new node v, connected to p in order

to generate a candidate p′, comes from using the attributes in A to compose attribute sets of

increasing size. The mining process is the same as described in the previous step.

Figure 4.6 shows 2-edge candidate patterns extended from one of the heavyweight 1-edge

patterns. From the support value calculations, none of the candidates is itself heavyweight.

Since there is no pattern to be extended after all 2-edge candidates are mined, th algorithm

returns the output set of heavyweight patterns to the user.
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Figure 4.6: Mining for 2-edge patterns.

4.3.1 AFGMiner Function

AFGMiner (Algorithm 12) requires as input the variables listed below.

(a) DS: the set of EFGs to be mined.

(b) A0: initial set of attributes being searched for.

(c) maxEdges: maximum number of edges in any given pattern.

(d) maxAttrs: maximum number of attributes that can be associated with a single node.

(e) maxFwdEdges: number of distinct {edge, node} pair additions that AFGMiner can

attempt on a single pattern.

(f) maxBackEdges: number of distinct edge-only additions that AFGMiner can attempt

on a single pattern.

(g) minSup: minimum support value to be compared against SM (introduced in the Calcu-

lating Support Values section) when it is calculated for a candidate pattern.

Algorithm 12 starts by calling function Find Freq Nodes, which searches for all 0-edge

sub-graphs (nodes) in the dataset that have a combination of one or more of the attributes

present in A0 and an SM higher than minSup. It then enqueues in Q the set S of frequent

0-edge sub-graphs, and the output set receives S as well. A, initialized in line 4, is a hash set

that holds the distinct attributes that occur in at least one of all frequent sub-graphs of size k.

AFGMiner uses A to guide the generation of candidate sub-graphs of size (k + 1): any new

node added to a sub-graph of size k in order to span a child sub-graph of size (k + 1) must

contain a combination of one or more attributes from A. When all candidate sub-graphs of

size (k + 1) have been generated and tested, A is cleaned of all of its elements and receives
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the distinct attributes from the set of frequent sub-graphs of size (k + 1), which will be used

to generate the candidates of size (k + 2). The procedure thus repeats. Restricting candidate

nodes to only have attributes from smaller sub-graphs that are already known to be frequent

is safe because no frequent pattern is missed in the process. It also makes it possible for the

algorithm to narrow down the number of nodes that must be generated and attached to parent

sub-graphs, decreasing the number of candidate sub-graphs to be mined.

H is the hash-table that holds DFS Codes of frequent sub-graphs, and is initialized in line 5

to the DFS Codes of elements in S. After that, a loop is initiated. Q serves as a worklist in

AFGMiner: every sub-graph that gets inserted into it is guaranteed to be frequent, and when a

sub-graph g becomes head of the queue, (i) its child sub-graphs are generated and tested in the

Expand Subgraph function (Algorithm 14) and then (ii) g is removed from Q. Furthermore,

children sub-graphs of g that are considered frequent (set C) are inserted into output (line

16), and if g.size() can still be grown (line 17) then its children are inserted at the tail of Q

(as shown in line 18). Each child sub-graph of g is only processed after all sub-graphs that

have the same size as g are extended. By doing this, AFGMiner is effectively traversing the

Search Tree in a breadth-first fashion, i.e., level-by-level, but still it prunes sub-trees rooted at

sub-graphs that are not heavyweight before checking all sub-graphs on the same level. This

traversal technique, which we call breadth-first with eager pruning, increases performance by

avoiding recursion and simultaneously works around the downsides of a purely breadth-first

traversal, because it prunes sub-trees that are not heavyweight as soon as possible.

Parameters maxEdges, maxAttrs, maxFwdEdges and maxBackEdges are all defined

by the user and serve to customize the mining process and narrow down the search-space.

Our implementation of AFGMiner has flags that control which of the parameters are actually

enabled. If a parameter is not enabled, then the algorithm works without the limits imposed

by the parameter. In other words:

(a) If maxEdges is not enabled, then frequent sub-graphs are expanded no matter how

many edges they have, as long as they are frequent.

(b) If maxAttrs is disabled, any grouping size of attribute combinations is allowed when

generating new nodes.

(c) If maxFwdEdges is disabled, all possible node additions for a parent sub-graph are

attempted, i.e., every possible node is connected to each node of the parent sub-graph

and searched for in the dataset.

(d) If maxBackEdges is not enabled, the algorithm tries to connect every pair of nodes

already present in the parent sub-graph, provided that there is no edge connecting them

in the parent sub-graph.
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4.3.2 Find Freq Nodes Function

This function receives a dataset DS, the set of initial attributes A0, and the parameters:

maxEdges, maxAttrs and minSup. The idea is to generate a new candidate 0-edge sub-

graph g by calling Gen Attributed Nodes and then to search for it in the dataset by calling

Graph Match. If any match is found, all graphs G belonging to DS where instances of g

were located are inserted into a list g.DS. This list is a database projection, i.e., it represents

the part of DS that should be mined when evaluating the sub-tree rooted at g in the Search

Tree. Algorithm 13 shows the procedure, step by step, for AFGMiner-locreg and AFGMiner-

edgecomb. For AFGMiner-iso, the only difference is that another version of Graph Match

is called instead (the one displayed in Algorithm 19), which does not utilize the concepts of

pivot node and target node introduced below.

A sub-graph is grown by inserting a new edge from a pivot node (already in the sub-graph) to a

target node. The target node may be either a new node generated by Gen Attributed Nodes

or a node in the existing sub-graph. In Find Freq Nodes of AFGMiner-locreg, we are

only looking for 0-edge sub-graphs g. Because those are composed of a single node, we

pass g.entry node() as both the pivot node and the target node needed by Graph Match

(Algorithm 20). g.entry node() returns the only node of a sub-graph that has no incoming

edges; for a 0-edge sub-graph, that always corresponds to the node itself.

4.3.3 Gen Attributed Nodes Function

The generation of new nodes works by considering that each node carries an itemset of at-

tributes. Inputs to the function are itemsetSize, indicating the number of attributes in the

nodes to be generated, and A, the set of attributes that can be part of itemsets. Algorithm 17

gives a high-level description of the procedure.

The initial item set size is one, thus each generated node has as its only attribute one of the

elements in A, so the number of nodes generated is the size of set A. For itemsets of size two,

those nodes with one attribute each that are frequent have their attributes permuted in distinct

groups of two attributes; for itemsets of size three, the nodes with itemsets of size two are

used, and so on until either maxAttrs is reached or, in case maxAttrs is disabled, no nodes

with itemset of a certain size are frequent.

In the Attach New Node function (Algorithm 15), Gen Attributed Nodes works the same

way, but the logic is that nodes only have their attributes permuted to generate itemsets of

larger size if the sub-graph to which they are attached turns out to be frequent.
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4.3.4 Attach New Node Function

Attach New Node (Algorithm 15) receives as input a sub-graph g to be expanded; the hash-

table H where DFS Codes are held; a set of attributes A that can be grouped and associated

with a new node; pivotNode, the node in g to which the new {edge, node} pairs are to be

attached; maxAttrs to control the itemset size associated with new nodes; and minSup, the

minimum support threshold which should be compared against the calculated support values

of generated candidate sub-graphs.

The procedure works the following way: i represents the size of itemsets being associ-

ated with new nodes, and starts with value one, i.e., one attribute for each node. i is used

only as an identifier number for set Ci, the set of frequent sub-graphs whose newly added

nodes have i attributes. Thus, while i does not reach maxAttrs, the set Ci is initially com-

posed only of new 0-edge sub-graphs, each one with i attributes. Ci is generated by calling

Gen Attributed Nodes.

The targetNode for a 0-edge sub-graph g′ is the entry node of g. A new sub-graph g′ is

then created by calling Grow Subgraph. Grow Subgraph copies g and creates its child

sub-graph by attaching a directed edge that points from pivotNode to targetNode, thus

extending g by attaching targetNode to it.

In line 8 of Algorithm 15, the child sub-graph g′ of g has its DFS Code composed, and in line

10 we check if g′ is redundant by verifying if its DFS Code already exists in H . If it does, the

function simply moves on to the next newly created sub-graph. If it does not, then for each

dataset graph G where parent sub-graph g was found, Graph Match is called to search for

g′ in G. If matches are found, G is added to g′.DS, which is the list of dataset graphs that

will be mined when looking for any child of g′.

After all matches of g′ are found, its support is calculated and compared against he minimum

support minSup in line 20. If g′ does not have enough support, it is removed from Ci;

otherwise, its DFS Code is inserted into H and the whole loop repeated after incrementing i.

Finally, Ci is added to C, the set of heavyweight child sub-graphs of g.

Instance locations of sub-graphs are not recorded in AFGMiner-iso. Therefore, line 14 of

Algorithm 15 is specific for AFGMiner-locreg and AFGMiner-edgecomb. In addition, sim-

ilarly to what happens in Find Freq Node, in AFGMiner-iso the version being called of

Graph Match is Algorithm 19 and not Algorithm 20.

4.3.5 Attach Edge Only Function

Attach Edge Only (Algorithm 16) is used to create a new sub-graph g′ that extends its

parent sub-graph g by adding a directed edge to g that goes from pivotNode to targetNode.
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Both pivotNode and targetNode are nodes already in g, but the edge must not exist in

g previously. However an edge from targetNode to pivotNode (i.e., the same edge but

opposite direction) may pre-exist in g.

The function, once g′ is created, works exactly as the Attach New Node procedure for

mining a single sub-graph in the dataset. Attach Edge Only returns an empty set if the

g′ generated is redundant or not heavyweight (lines 5 and 15), and returns g′ itself if g′ is

heavyweight(line 19). Line 3 of Algorithm 16 does not exist in AFGMiner-iso because in-

stance locations are not available in that version of AFGMiner. Likewise, in AFGMiner-iso

the Graph Match version called is the one displayed in Algorithm 19.

4.3.6 Expand Subgraph Function

Expand Subgraph, depicted in Algorithm 14, controls the process of pattern-growth for

any input sub-graph g. It receives as input the sub-graph g to be expanded and H , A,

maxAttrs, maxFwdEdges, maxBackEdges and minSup, all with the same semantics

as in the AFGMiner function.

In line 1 of Expand Subgraph, a set C of children of g to be generated is initialized as

empty. A special case is handled in lines 2 to 4: if maxFwdEdges is one, each node in

the sub-graph can have at most one outgoing edge. As a consequence, for maxFwdEdges,

we specifically choose to only test connections to g’s exit node, defined as the first visited

node in the labeling traversal (described in the Labeling System section) that has no outgoing

edges. Such an option effectively causes AFGMiner to only search for sequential-patterns

when maxFwdEdges = 1, in similar manner to FlowGSP.

From lines 6 to 14, different pivotNode’s are chosen from g.node set().

Attach New Node is called to complete the generation and to process all possible children

of g that have their respective new {edge, node} pairs connected to pivotNode.

In lines 15 to 24, a pivotNode and a targetNode are chosen from g.node set() to be the

from-node and to-node of the new edge to be added to g. All combinations of pivotNode and

targetNode may be attempted but only those edges going from pivotNode to targetNode

that do not already exist in g are actually tested in Attach Edge Only.

After adding all heavyweight child sub-graphs in C, C is returned to the AFGMiner func-

tion.

4.4 AFGMiner with Isomorphism Detection

AFGMiner-iso was the first version of AFGMiner devised by us. It uses the same procedures

described in previous sections of the present chapter, but without registering locations where
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pattern instances are found.

Algorithm 19 describes how sub-graph matching works in AFGMiner-iso.

A miner state is created just before Graph Match is called by one of the following functions:

Find Freq Node, Attach New Node or Attach Edge Only. This minerState variable

records all needed information to start and proceed with the matching of sub-graph g over a

dataset graph G, i.e., pointers/references to both g and G, and a mapping between nodes in g

and in G, which initially starts out empty.

Graph Match is recursive and returns only when either the goal state is reached or a dead

end is found (lines 1 and 6 respectively). The goal state is to have all nodes in g mapped

to a set of (potentially non-unique) nodes in G. A dead end represents a case in which the

algorithm has already found a partial mapping between nodes in g and G, but cannot find a

new pair of nodes to proceed with the mapping construction. If the goal is reached, Sw and

Sf are calculated for the instance of g that has just been found and a value one is returned, to

increment the numMatches variable (line 14). On the other hand, if a dead end is reached, a

value of zero is returned.

numMatches is the number of instances of g found in G, and is the value returned by

Graph Match. It is used by functions that call Graph Match to know if they should include

G in g.DS or not.

In lines 10 to 14, we choose a pair {n,m} of candidate nodes for mapping, coming from g

and G respectively. The choice is made by iterating over their node sets and simply picking

the first pair that has not been tested yet. It is, thus, an O(Vg ∗ VG) loop, with Vg the number

of nodes in g and VG the number of nodes in G. Then, if the pair is feasible (as defined in

the VF2 algorithm description in the section 2.6), we: (i) copy the current miner state to a

new state recState to retain the mapping information already obtained; (ii) add the new pair

to recState; and (iii) call Graph Match again with recState as argument, incrementing

numMatches with the result of such recursive call.

The feasibility rules for a pair {n,m} in AFGMiner are only two:

(a) Attributes of m should be a proper superset of attributes in n.

(b) Edge structure between n and m should be kept. This implies checking all incoming

and outgoing edges of both nodes and making sure the other nodes to which such edges

connect obey rule 1.

Unfortunately, although AFGMiner-iso is correct under an algorithmic point of view, it does

not present satisfying results in terms of performance when tested in large datasets such as the

ones we are interested in. Repeatedly visiting all nodes in the dataset to check if they are a

feasible match to each n of each pattern searched for makes the algorithm slow. Although not
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a problem for smaller datasets that typically do not have many candidate sub-graphs, this fact

makes it impractical to mine profiles of large business applications, as is our intention.

4.5 AFGMiner with Location Registration

Due to low performance issues in AFGMiner-iso, we improved the algorithm by allowing

more memory to be consumed during mining. The central idea is to register all places where

a sub-graph g is found, by keeping a list of such locations for each of the graphs G in g.DS.

Each pattern instance location is represented simply as a miner state. The mapping contained

in each miner state is used to associate nodes vg in g to nodes vG in G to which they corre-

spond. Therefore, recording every miner state makes it trivial to directly find those nodes that

should be evaluated when mining for any of g’s children sub-graphs g′.

Algorithm 20 shows the improved sub-graph matching function described above. The loca-

tions where the parent sub-graph of g was found (with g being the current sub-graph to be

mined) are iterated over, as shown in line 2. For each of the miner states s that represent a lo-

cation, Find Candidate Nodes is called with s, pivotNode and targetNode as arguments.

Sub-graph g contains pivotNode because it is an extension of its parent sub-graph.

What we want, at first (line 3), is to get node v, which belongs to the dataset graph G refer-

enced by s. G is one of the graphs where the parent of sub-graph g was found. v corresponds

to pivotNode in the mapping represented by s. This is done in Algorithm 21, line 1. In

lines 2 to 4 of Find Candidate Nodes, if pivotNode and targetNode are the same node,

that means the pattern being search for is a 0-edge sub-graph and so v itself should be re-

turned and tested for feasibility. Otherwise (lines 5 to 6), the child nodes of v are returned to

Graph Match as a set C.

The next step is, for each node in C (which in Graph Match is called set V ), to check if such

node v can be paired up with targetNode. targetNode is the to-node of the new edge that

was connected to g’s parent in order to create g, or pivotNode itself in case we are mining

for a 0-edge sub-graph pattern. The call to s.is feasible pair() in Algorithm 20, line 5, only

checks if v has the same or a superset of attributes in targetNode. In other words, it uses

only the first of the two feasibility rules mentioned in the previous subsection, which causes

a high performance increase specially considering how attribute checking between nodes was

implemented in AFGMiner(as detailed in section 4.8).

If targetNode and v are feasible, an sDerived miner state is created as a copy of s, the pair

{targetNode, v} is added to this miner state and support values for the particular instance of

g that has just been found are calculated. There is no need to test whether a goal state has

been reached because the only goal is precisely to find a node corresponding to targetNode,

among the children of those nodes that correspond to pivotNode.
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Finally, in line 11, sDerived is added to the list of locations where g was found, and the

number of matches numMatches is incremented. Just like in Graph Match for AFGMiner-

iso, numMatches is the returned value here.

In line 9 of Algorithm 15 and line 3 of Algorithm 16, when a g′ sub-graph is created by

extending a sub-graph g, the locations where g was found are inserted into the list of parent

locations of g′. And the whole procedure described above is repeated for g′.

4.6 AFGMiner with Edge Combination

One of the main properties of AFGMiner is that its anti-monotonic support policy allows new

candidate patterns to be made from “pieces” of heavyweight patterns from the previous gen-

eration, because all of such “pieces” are heavyweight. Moreover, if a “piece” is not present

as part of such heavyweight patterns, it will not be present in the current generation of heavy-

weight patterns either. The “pieces”, or “building blocks” for the patterns, are attributes in the

case of AFGMiner-iso and AFGMiner-locreg, but need not be so. Instead of considering dis-

tinct attributes that appear among the heavyweight patterns of a certain generation as “pieces”,

we can instead consider all distinct nodes, or all distinct edges, and combine them as appro-

priate with the heavyweight patterns to create the candidates for a new generation. Below we

compare the three approaches, by describing the process of spanning candidate patterns for

any generation:

(a) When using attributes as “pieces”, we first generate a set of nodes S that contain one dis-

tinct attribute each. The attributes are selected from the set A of heavyweight attributes

from the previous generation (or A0, the set of attributes of interest, if we are spanning

the first generation). A is cleaned up, in order to receive the heavyweight attributes of

the generation being spanned. After that, we attach each node to all heavyweight pat-

terns p from the previous generation (possibly using several pivot nodes for every one of

them), and mine for each created candidate pattern c. If c is heavyweight, the attribute

of its newly added node (the node that belongs to S) is included in A. Then all attributes

included in A are combined two by two to generate a new set of nodes S with two dis-

tinct attributes each, which are then attached to the same heavyweight patterns p of the

previous generation, and the created candidate patterns are mined. The process repeats

until no more attribute combinations can be made that result in new heavyweight pat-

terns being found. We then use the same A set to start the spanning of candidate patterns

for the next generation.

(b) When using nodes as “pieces”, we do the same as described above for the very first

generation (the one found by calling Algorithm 13), but not for the others. Instead, all 0-

edge sub-graphs found in the first generation are stored in a set S of heavyweight nodes.
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For the following generations, candidates are formed by picking each node of S and

connecting with all heavyweight patterns p of the previous generation (possibly using

several pivot nodes for every one of them), thus creating new candidate patterns to be

mined. After all candidate patterns are mined and a new set of heavyweight patterns q is

found, S is cleaned of its contents and all distinct nodes from patterns in q are included

in S. The set S will then be used to start the spanning of candidate patterns for the next

ganeration.

(c) When using edges as “pieces”, we do the same as described for the case of attributes

being used as “pieces” for the first and second generations (0-edge and 1-edge sub-

graphs, respectively), but not for the others. For any following generation, after all

heavyweight n-edge sub-graphs p are found, we break such sub-graphs down into their

constituent edges and store all distinct edges into a set S. For the next generation,

candidate patterns are spanned by connecting each edge in S with every sub-graph p

of heavyweight sub-graphs from the previous generation. The candidate patterns are

then mined for, and the process continues.

We decided to implement a version of AFGMiner that uses edges as “pieces”, explained above,

and called the version AFGMiner-edgecomb. We opted to implement AFGMiner-edgecomb

instead of the version that uses nodes as “pieces” because we wanted to check if there would

be a significant run-time difference between using attributes and using something radically

different from that as blocks for pattern construction. Combining edges to generate new pat-

terns is intuitively a more radical approach than combining nodes into patterns.

Performance comparisons between AFGMiner-locreg and AFGMiner-edgecomb, shown in

Chapter 5, demonstrate that AFGMiner-edgecomb is only marginally better than AFGMiner-

locreg in those cases where the number of patterns found is in the hundreds, but much worse

when the number of patterns found is in the order of thousands. The reason is that, in

AFGMiner-edgecomb, as support threshold decreases (i.e., the number of patterns found be-

comes higher), the number of distinct edges to be combined becomes higher than the num-

ber of attribute combinations that AFGMiner-locreg must do. In other words, AFGMiner-

edgecomb generates a higher number of spurious candidate patterns than AFGMiner-locreg.

4.7 Parallel AFGMiner

The usage of multi-core processors is ubiquitous today, and to fully use the available com-

puting power in machines where developed applications are deployed, it is necessary to par-

allelize such applications. After creating and testing the sequential version of AFGMiner

described in previous sections, we redesigned the algorithm to work in both single and multi-

threaded environments. This redesign required the definition of: (1) what are the tasks in
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sequential AFGMiner that can be performed in parallel with a minimum of thread synchro-

nization; (2) what are the variables shared between threads; and (3) which of those shared

variables, if any, needs to be accessed synchronously in order to avoid race conditions.

AFGMiner is composed of a loop that, while the queue Q of heavyweight patterns to be

expanded is not empty, executes the following steps: (i) collect all distinct heavyweight at-

tributes that belong to the patterns in Q with the same number of edges, and insert them into

a set A; (ii) expand the patterns to generate a set of heavyweight child sub-graphs C that have

one additional edge in comparison to patterns already in Q; (iii) add elements from C into

the output set to be returned to the user; and (iv) add elements from C into Q. Patterns of

k edges, one by one, become head-of-queue, and thus go through the steps described above,

when all patterns of (k−1) edges have been similarly processed and removed from the queue.

In addition, we define that a pattern p is dependent on a pattern q if p it is extended from q,

and as such, q needs to be mined and its support value determined before p is processed.

The set of patterns that have the same size (in number of edges) forms a generation, and there

are no dependencies among patterns of the same generation, because each pattern depends

only upon its parent pattern and upon the set A of distinct attributes from the previous gen-

eration. Therefore, the processing of patterns belonging to the same generation can be safely

divided amongst different threads.

The parallel implementation of AFGMiner follow these steps: (i) fork to start the process-

ing of a new generation; (ii) distribute heavyweight patterns to process among threads; (iii)

synchronize by joining when all threads have finished generating candidate child patterns and

mining for such child patterns; (iv) unify those child patterns that were found heavyweight by

each thread into a single heavyweight pattern set S representing the next generation; and (v)

start next generation processing, if S is not empty.

Most of the sets used in the AFGMiner algorithm described in Algorithms 12 to 21 need not

be shared between threads. Each thread can keep thread-local versions of those sets and only

when threads are joined the sets are unified. The only exceptions are Q, A, and DS (the entire

dataset of EFGs), because they are needed by all patterns from the same generation. However,

as shown in Algorithm 22, there is actually no need to synchronize the access to these variables

because we changed the algorithm in such a way as to have Q (called setToProcess in

Algorithm 22) and A as read-only variables by the threads. The new patterns and attributes

that, in the sequential version of AFGMiner, would be written to Q and A are written to

thread-local sets (say, childPatterns and childA) instead. When the threads are joined,

setToProcess and A have all their elements from the previous generation removed and are

assigned the union set of thread-local childPatterns and childA for each thread. DS is only

ever read by the threads, never written, thus there is no need to keep a thread-local version of
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DS.

Algorithm 22 shows the outline for parallel AFGMiner, which we call p-AFGMiner. The

algorithm shown is run by the master thread. p-AFGMiner was only implemented using

AFGMiner-locreg as a basis, but it is straightforward to use any other version of AFGMiner

with it, instead of locreg. For p-AFGMiner, we use a class called Miner, which encapsulates

all sub-graph mining functionality. The entry point for the functionality in the Miner class

is a modified version of Algorithm 12, which is run by the slave threads. In this modified

version, newly found child patterns in C are not inserted into Q, instead they are simply kept

in C itself. Thus the algorithm AFGMiner, triggered by the Miner class when calling the

threadExec.execute() function, stops when all heavyweight patterns assigned to a thread-

local Q have been processed. In other words, when all patterns from a certain generation, that

have been assigned to the instance of Miner being executed by a thread, have been expanded

and generated their own heavyweight child patterns.

Below is a list of variables of interest in Algorithm 22:

(a) output: The output set of heavyweight patterns to be returned to the user.

(b) gen: Number of generations that have been processed.

(c) setToProcess: The set of heavyweight patterns that should be expanded to originate

the next pattern generation.

(d) threadExec: A pool of threads with encapsulated functionality.

(e) blockSize: When distributing the patterns to be processed among the different threads,

the patterns are divided in fixed-size blocks, and each block is assigned to a thread. This

variable represents the size, in number of patterns, of each block.

(f) blockTail: Remainder of the division of the number of patterns by the number of

threads.

(g) startIdx: Position of the first pattern to be processed by a certain thread in the set of

heavyweight patterns to be expanded.

(h) endIdx: Position of the last pattern to be processed by a certain thread in the set of

heavyweight patterns to be expanded.

In lines 1 to 4 of Algorithm 22, variables are initialized. setToProcess is assigned A0 be-

cause, for the first generation, work is divided between threads by giving an equal number of

attributes for each thread to mine (constituting the search for 0-edge heavyweight sub-graphs).

In line 5, a thread pool is initialized with a given number of threads. The generation process-

ing loop appears from lines 6 to 26. In that loop, while gen hasn’t reached the maximum

number of allowed edges in a sub-graph (maxEdges), p-AFGMiner does the following:
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(a) Lines 7 and 8: calculate blockSize and blockTail using the size of setToProcess.

(b) Lines 9 and 10: calculate the limits startIdx and endIdx of the block of patterns to be

assigned to the first thread.

(c) In line 11: use a heuristic, explained in the next sub-section, to reorganize setToProcess

in such a way as to more fairly distribute the mining workload among threads. The pat-

tern block limits for each thread are calculated solely based on blockSize, blockTail

and the thread identifier t.

(d) From lines 12 to 16: start executing each thread in line 13, after setting the necessary

parameters of patterns to be processed, heavyweight attributes from the previous gen-

eration (or A0 if we are starting the first generation) and startIdx and endIdx for the

current thread. Then startIdx and endIdx are computed for the next thread.

(e) From lines 17 to 19: block the master thread until all worker threads have finished pro-

cessing heavyweight patterns for the current generation. Then setToProcess and A are

emptied, because they must be assigned the union set, over all threads, of heavyweight

child patterns and distinct heavyweight attributes found in such patterns.

(f) From lines 20 to 24: the information gathered by the different threads is joined to com-

pose the shared A and setToProcess, and the obtained heavyweight patterns are added

to output.

(g) Lines 25: gen is incremented.

4.7.1 Workload Distribution Heuristic

The usage of a heuristic to distribute patterns between threads can significantly improve the

performance of p-AFGMiner, when compared with simply assigning blocks of patterns to

the threads with no care for the order in which they were added to setToProcess (which is

non-deterministic).

The most important parameter that controls how long a pattern p will take to be mined is the

number of instances of its parent pattern that were found in the dataset. If there are more

instances, more EFG look-ups will be necessary to check whether the additional edge or ad-

ditional {edge, node} pair that differentiates p from its parent exists in the neighboring edges

and nodes of the instance. Therefore, any fair workload distribution heuristic for p-AFGMiner

should distribute patterns to threads by keeping the number of parent pattern instances that

each thread will need to process as balanced as possible. Although many heuristics could be

created for that, we chose to implement a simple one that can be computed quickly at run-time.

The need for quick computation is because we want to minimize the run-time overhead of a

workload distribution heuristic in p-AFGMiner. Such overhead can be significant, considering

that a reorganization of setToProcess is necessary.
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Algorithm 11 shows the heuristic. The idea is to first sort setToProcess by decreasing num-

ber of parent pattern instances of each pattern in the set. We then divide setToProcess in

pattern blocks that have size blockSize, plus blockTail trailing patterns. The next step is to

assign each pattern to one of the threads, according to fixed positions that are defined by the

block to which the pattern belongs. Identifying each block from 0 to numBlocks − 1, we

have that, for every block that is associated with an even identifier, patterns are assigned to

threads in decreasing order of their number of parent pattern instances, e.g., the first thread

receives the pattern with highest number of instances, the second thread receives the pattern

with second-highest instances, etc. For every block that is associated with an odd identifier,

patterns are assigned to threads in increasing order of their number of parent pattern instances.

Then trailing patterns are, by default, assigned to the first thread.

This simple O(n) heuristic, where n is the size of setToProcess, is enough to more fairly

balance thread workload because the threads that receive the patterns with highest number of

parent pattern instances for a certain block will receive the patterns with lowest number of

parent pattern instances for the next block, and similarly to other threads. Moreover, blocks

will typically be small in size because the number of available threads in machines that p-

AFGMiner is intended to be used on (common workstations) is not high. Small blocks make

the heuristic sensible: having large blocks could mean a higher difference, in number of in-

stances, between patterns belonging to odd and even blocks. With widely different number of

instances the scheme of alternating pattern assignments based on block identifiers would not

balance the total number of parent pattern instances associated with each thread.

4.8 Implementation Details

Our implementation of AFGMiner and its multi-threaded version uses the Java language, and priori-

tizes run-time performance over memory consumption. EFGs and sub-graph patterns are represented

as classes, the most important of which are LinkedHashMaps that map node identifiers to node

instances and edge identifiers to edge instances. A LinkedHashMap is a data structure in Java

composed of a dynamically-extendable and unsynchronized hash-table plus a doubly-linked list that

runs through it, in order to make it possible to iterate over the hash-table’s elements in insertion or-

der [5]. The identifier of a node is, for the EFGs, dependent on application context and is described

in the chapters about the two applications in which AFGMiner was used. For sub-graph patterns, the

node identifier is its DFS Code, attributed to it by running Algorithm 10. Edge identifiers are pairs

of {from-node-id, to-node-id}, that is, each edge is uniquely identified by the identifier of the nodes

it connects. Identifiers for nodes and edges of EFGs are global, in the sense of being unique accross

the whole dataset, but identifiers for nodes and edges of patterns are only unique in the context of

each pattern.
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Algorithm 11 Distribute Workload(setToProcess, blockSize, blockTail, numThreads)
1: patternSort← sort(setToProcess)
2: for t = 0 to numThreads - 1 do
3: patternsPerThread(t)← ∅
4: end for
5: numBlocks← setToProcess.size()÷ blockSize
6: for blockIdx = 0 to numBlocks - 1 do
7: baseIdx← numThreads× blockIdx
8: for offset = 0 to numThreads - 1 do
9: if (blockIdx+ 1)%2 = 1 then

10: varOffset← offset
11: else
12: varOffset← numThreads− offset− 1
13: end if
14: patternIdx← baseIdx+ varOffset
15: patternsPerThread(offset) ← patternsPerThread(offset) ∪

setToProcess(patternIdx)
16: end for
17: end for
18: extraBlocksIdx← setToProcess.size()− blockTail
19: for i = extraBlocksIdx to setToProcess.size() - 1 do
20: patternsPerThread(0)← patternsPerThread(0) ∪ setToProcess(i)
21: end for
22: setToProcess← ∅
23: for t = 0 to numThreads - 1 do
24: setToProcess← setToProcess ∪ patternsPerThread(t)
25: end for
26: return setToProcess
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When dealing with sets that require insertions of repeated elements to be ignored, e.g., the A set

of distinct heavyweight attributes, we use the LinkedHashSet data structure [6]. LinkedHashSet

is hash-table-based with a doubly-linked list but does not map pairs of values, instead it only

uniquely stores single values and allows for quick iteration over them.

Another detail of our implementation of AFGMiner is that the attributes of a node are represented

as a bit-vector, with each bit being 1 if the attribute in that position is present in the node, and 0 if

the attribute in that position is not present. The position of an attribute is fixed and comes from

its position in an attribute table. The attribute table maps integers that identify each attribute to the

attribute’s name. The name of an attribute is only used when showing the output set of heavyweight

patterns to the user. A bit-vector representation makes matching of two nodes (i.e., the attributes in

one of them are the same or a subset of the attributes in the other) more efficient. The comparison

procedure only requires the bit-vectors to be properly masked and compared all at once. That is faster

than sorting attributes and comparing then one by one, which would be the second-best approach.

Algorithm 12 AFGMiner(DS, A0, maxEdges, maxAttrs, maxFwdEdges, maxBackEdges,
minSup)

1: S ← Find Freq Nodes(DS,A0,maxAttrs,minSup)
2: Q← S
3: output← S
4: A← ∅
5: H ← DFS Codes of all elements in S
6: prevSize← 0
7: while Q 6= ∅ do
8: g ← Q.get first element()
9: currSize← g.size()

10: if prevSize 6= currSize then
11: A← ∅
12: end if
13: prevSize← currSize
14: A← A ∪ g.get distinct attributes()
15: numAttrs← g.get num attributes()
16: if numAttrs ≥ maxAttrs then
17: Q.remove first element()
18: continue
19: end if
20: if g.size() < maxEdges then
21: C ← Expand Subgraph(DS, H , A, maxAttrs, maxFwdEdges, maxBackEdges,

minSup)
22: output← output ∪ C
23: if g.size() 6= maxEdges− 1 then
24: Q← Q ∪ C
25: end if
26: end if
27: Q.remove first element()
28: end while
29: return output
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Algorithm 13 Find Freq Nodes(DS,A0,maxEdges,maxAttrs,minSup)
1: itemsetSize← 1
2: i← 1
3: while itemsetSize ≤ maxAttrs do
4: Si ← Gen Attributed Nodes(itemsetSize,A0)
5: for g ∈ Si do
6: for G ∈ DS do
7: minerState← record g, G
8: matches← Graph Match(minerState, g.entry node(), g.entry node())
9: if matches ≥ 1 then

10: g.DS ← g.DS ∪G
11: end if
12: end for
13: if support(g) ≤ minSup then
14: Si ← Si \ {g}
15: end if
16: end for
17: S ← S ∪ Si

18: i← i+ 1
19: itemsetSize← itemsetSize+ 1
20: end while
21: return S

Algorithm 14 Expand Subgraph(g, H , A, maxAttrs, maxFwdEdges, maxBackEdges,
minSup)

1: C ← ∅
2: if maxFwdEdges = 1 then
3: pivotNode← g.exit node()
4: C ← C ∪Attach New Node(g,H,A, pivotNode,maxAttrs,minSup)
5: else
6: edgeCount← 0
7: for pivotNode ∈ g.node set() do
8: C ← C ∪Attach New Node(g,H,A, pivotNode,maxAttrs,minSup)
9: edgeCount← edgeCount+ 1

10: if edgeCount ≥ maxFwdEdges then
11: break
12: end if
13: end for
14: end if
15: edgeCount← 0
16: for pivotNode ∈ g.node set() do
17: for targetNode ∈ g.node set() do
18: C ← C ∪Attach Edge Only(g,H, pivotNode, targetNode,minSup)
19: edgeCount← edgeCount+ 1
20: if edgeCount ≥ maxBackEdges then
21: break
22: end if
23: end for
24: end for
25: return C
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Algorithm 15 Attach New Node(g,H,A, pivotNode,maxAttrs,minSup)
1: i← 1
2: while i ≤ maxAttrs do
3: Ci ← Gen Attributed Nodes(i, A)
4: for g′ ∈ Ci do
5: targetNode← g′.entry node()
6: g′ ← Grow Subgraph(g, g′, pivotNode)
7: LexSort(g′)
8: g′.set parent locations(g.get found locations())
9: if g′.dfs code() ∈ H then

10: continue
11: end if
12: for G ∈ g.DS do
13: minerState← record g′, G
14: matches← Graph Match(minerState, pivotNode, targetNode)
15: if matches ≥ 1 then
16: g′.DS ← g′.DS ∪ {G}
17: end if
18: end for
19: if support(g′) ≤ minSup then
20: Ci ← Ci \ {g′}
21: else
22: H ← H ∪ g′.dfs code()
23: end if
24: end for
25: C ← C ∪ Ci

26: i← i+ 1
27: i← i+ 1
28: end while
29: return C

Algorithm 16 Attach Edge Only(g,H, pivotNode, targetNode,minSup)
1: g′ ← clone g and extend it by creating an edge
2: that connects pivotNode and targetNode of g
3: LexSort(g′)
4: g′.set parent locations(g.get found locations())
5: if g′.dfs code() ∈ H then
6: return ∅
7: end if
8: for G ∈ g.DS do
9: minerState← record g′, G

10: matches← Graph Match(minerState, pivotNode, targetNode)
11: if matches ≥ 1 then
12: g′.DS ← g′.DS ∪ {G}
13: end if
14: end for
15: if support(g′) ≤ minSup then
16: return ∅
17: else
18: H ← H ∪ g′.dfs code()
19: end if
20: return {g′}
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Algorithm 17 Gen Attributed Nodes(itemsetSize,A)
1: S ← generate a set of 0-edge sub-graphs, each one with an attribute set corresponding to one
2: of the distinct group combinations of attributes in A; group size is itemsetSize
3: return S

Algorithm 18 Grow Subgraph(g, g′, pivotNode, targetNode)
1: returns a clone of g with an added
2: edge that connects pivotNode of g to targetNode

Algorithm 19 Graph Match(minerState)
1: if minerState.is goal() = true then
2: minerState.g.calc freq support(minerState.get freq support())
3: minerState.g.calc weight support(minerState.get freq weight support())
4: return 1
5: end if
6: if minerState.is dead end() = true then
7: return 0
8: end if
9: numMatches← 0

10: while minerState.next pair() = true do
11: if minerState.is feasible pair() = true then
12: recState← clone minerState
13: recState.add pair(minerState.latest pair())
14: numMatches← numMatches+Graph Match(recState)
15: end if
16: end while
17: return numMatches

Algorithm 20 Graph Match(minerState, pivotNode, targetNode)
1: MS ← minerState.g.get parent locations()
2: for s ∈MS do
3: V ← Find Candidate Nodes(s, pivotNode, targetNodes)
4: numMatches← 0
5: for v ∈ V do
6: if s.is feasible pair(targetNode, v) = true then
7: sDerived← clone s
8: sDerived.add pair(targetNode, v)
9: sDerived.g.calc freq support(sDerived.get freq support())

10: sDerived.g.calc weight support(sDerived.get weight support())
11: sDerived.g.set found locations(sDerived)
12: numMatches← numMatches+ 1
13: end if
14: end for
15: end for
16: return numMatches
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Algorithm 21 Find Candidate Nodes(s, pivotNode, targetNode)
1: v ← s.get matching node(pivotNode)
2: if pivotNode == targetNode then
3: C ← {v}
4: else
5: C ← v.get children()
6: end if
7: return C

Algorithm 22 Parallel AFGMiner(A0,maxEdges, numThreads)
1: output← ∅
2: gen← 0
3: A← A0

4: setToProcess← A0

5: threadExec← initialize thread pool(numThreads)
6: while gen < maxEdges do
7: blockSize← setToProcess.size()÷ numThreads
8: blockTail← setToProcess.size()%numThreads
9: startIdx← ∅

10: endIdx← blockSize+ blockTail − 1
11: setToProcess ← Distribute Workload(setToProcess, blockSize, blockTail,

numThreads)
12: for t = 0 to numThreads - 1 do
13: threadExec.execute(t, A, setToProcess, startIdx, endIdx)
14: startIdx = (t+ 1)× (blockSize+ blockTail)− t× blockTail
15: endIdx = startIdx+ blockSize− 1
16: end for
17: master thread blocks until worker threads finish their task
18: setToProcess← ∅
19: A← ∅
20: for t = 0 to numThreads - 1 do
21: A← A ∪ get child freq attrs(t)
22: setToProcess← setToProcess ∪ get child patterns(t)
23: output← output ∪ get output(t)
24: end for
25: gen← gen+ 1
26: end while
27: return output
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Chapter 5

HEPMiner: Applying AFGMiner to
Find Heavyweight Execution
Patterns

5.1 Motivation

An important task for a compiler developer is to find new code improvement opportunities. In order

to do that, a developer uses tools to analyze the dynamic behavior of benchmark applications of

interest and applications that are important for clients, and from such analyses identifies improve-

ment opportunities. One of the available tools to accomplish performance analysis of applications

is a profiler. Profilers are able to estimate how many CPU cycles were spent on each part of the

application code. Techniques to capture such information vary in precision and efficiency, but one

of the most frequently used ideas is to sample the program’s execution state at a certain rate. The

information obtained may be, for instance, which instruction was being executed when the sampling

occurred and which hardware events are associated with the execution of that instruction. The num-

ber of times that an instruction, basic block, flow edge, path or method (or a combination of them)

is sampled during a program run, or set of program runs, is considered to be its execution frequency.

Typically, an application has discernible frequently executed methods. Such methods are called

hot or warm methods depending on how their execution frequency compares to other methods.

In contrast, those methods with comparatively low execution frequency are considered cold. For a

developer, knowing which methods are hotter is critical, because those are the ones that the developer

should target in his analysis. Any modifications to such methods, or code transformations that affect

them, will naturally lead to the highest performance changes.

However, it is not always the case that programs have hot, or even warm, methods. For a method

m to be significantly hotter than others, m must either: take a significant amount of time to complete

(in which case it probably contains one or more hot loops); or be called a sufficient number of

times for the total number of cycles spent on m to be significant. While computation-intensive

programs, such as scientific simulations and 3D games, typically contain hot loops where the bulk
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of computations is performed, business applications often display a flat profile. As described in

Section 2.1.2, a profile is considered flat if there are no methods that account for a significant amount

of the program’s run time, i.e., methods are all cold, taking usually no more than 2 or 3% of the

total execution time. In such cases, performance analysis becomes more complicated because the

developer cannot use profiling to determine the methods on which to focus his efforts.

A manual solution to the performance analysis of flat-profile applications is using spreadsheets

to search for relevant patterns of information, as mentioned in Chapter 1. If the patterns found

seem interesting enough, they are used as a guide for performance analyses. Clearly, though, if

the task of searching for interesting execution patterns in profiled data was automated, compiler

developers would save time. In addition, despite the fact that developers use sophisticated formulas

to find patterns, those patterns are only searched if the developer’s intuition indicates that the pattern

actually exists and it is worthy to search for it. Existing significant patterns may thus be completely

ignored by developers. Automating the search for patterns can potentially lead to more patterns

being found, leading to more improvement opportunities being discovered.

HEPMiner is a performance analysis tool built to automatically mine for heavyweight execution

patterns (HEP), i.e., patterns that should be targeted for improvement by a suitable compiler. Such

patterns consume significant execution time in comparison to the rest of the code. An execution

pattern may have only a few instances, or even a single one, and still be considered heavyweight

if its support value is higher than an user-defined threshold T . In contrast, multiple instances of a

pattern may appear in the code. While such instances may individually take up minimal execution

time, when considered together they constitute a performance bottleneck because the calculated

support value is higher than T .

HEPMiner performs mining at the assembly instruction level, and uses AFGMiner to discover

heavyweight patterns. HEPMiner can be applied to any program, as long as it is possible to obtain in-

formation about: (i) the program’s static control flow and dynamic behavior in terms of instructions

executed, (ii) how often the instructions were executed and in which order, and (iii) hardware events

(captured by architecture-specific performance counters) that occurred at each executed instruction.

We tested HEPMiner by mining a profile collected from the DayTrader benchmark running on the

WebSphere Application Server, and having a compiler development team from IBM analyze the

mining results.

5.2 Assembling Execution Flow Graphs

In order to use AFGMiner, HEPMiner needs to process the target program’s profile data to generate

a dataset of EFGs. The EFGs are constructed from information in compiler log files (typically one

per running thread of the profiled program) and a single hardware profile.

The compiler log file contains edge profiling information about the program, i.e., basic blocks

and flow edges of each method and how often they are executed as measured in CPU cycles (tick
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count). The hardware profile contains sequences of instructions and associated hardware events

as captured by performance counters during execution. Each instruction is also associated with

the number of cycles spent executing it and the number of cycles in which each event was active

(necessarily less than, or equal to, their associated instruction cycles).

An in-house IBM tool is used to organize compiler log files and the hardware profile as tables in

an express edition of the IBM DB2 database server. The following tables are created automatically

by the in-house tool:

1. Symbol: Contains a record for each method (called symbol in compiler development parlance)

in the profile. Each method has a unique identifier.

2. Disassm: Contains the raw assembly code of each method in the profile, plus information

such as opcode, operands, and the offset in bytes from the beginning of the method, for each

instruction in the method.

3. IA: The instruction address (IA) table contains the actual profiling information collected dur-

ing run-time.

4. Listing: Contains information from the compiler log files, such as which bytecode and basic

block are associated with each instruction.

5. CFGNode: Contains information about the basic blocks extracted from compiler log files,

such as the basic block’s unique identifier called basic block number (BBN), the method to

which the basic block belongs, and the estimated number of cycles spent executing the basic

block.

6. CFGEdge: Records all information about inter-basic-block edges, such as type of edge (in-

coming, outgoing, incoming edge into exception block, outgoing edge from exception block),

source block, destination block, and edge frequency.

After the tables are created and populated, HEPMiner reads the information and assembles EFGs

one by one. An EFG is created for each method, and an EFG node is created for each assembly

instruction in the profile. Instructions within the same basic block are connected by new edges,

forming paths, and the frequency of such edges is the same as the basic block to which they belong.

The nodes at the end of each basic block are connected to the first nodes of all subsequent basic

blocks as determined by edges in the method’s CFG, and the frequency of these edges is set to

the frequency of the corresponding CFG edges. The weight of each EFG node is the number of

sampling ticks associated with the corresponding assembly instruction that the node represents, and

the attributes of a node are the attributes associated with the same instruction.

Performance counters can mostly be directly converted into attributes (i.e., integer values). How-

ever, the fact that the z196 architecture has many hardware events, and, as a consequence, many pos-

sible attributes, makes it hard to know which attributes are actually relevant in the search for those
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specific patterns that lead to the development of new compiler-based code transformations. Using

the experience of compiler developers at IBM, we were able to reduce the number of attributes in-

cluded in the mining process and thus minimize the number of patterns that, although heavyweight,

offer little insight to compiler developers and architects. Examples of patterns eliminated from the

mining process are those that appear on nearly every node, or patterns that represent catch-all situa-

tions.

Each attribute in HEPMiner is identified by an integer value, because integers are cheaper to

compare and store in memory. An attribute table is used to look up the actual attribute names during

output printing or when debugging the tool’s mining process. In addition, not all attributes are

based on performance-counter information only. Some attributes require more involved calculation

methods or can only take on one of a finite number of discrete values. Examples follow.

1. The prologue of a method is a code stub automatically inserted by the compiler prior to actual

method code. These prologues set up the environment to run the method. In HEPMiner, if an

instruction has an offset lower than a certain threshold, it is considered to be part of the method

prologue and is thus assigned a Prologue attribute. It is interesting for compiler developers to

know that an instruction is part of the prologue because such instructions are more likely to

incur instruction and data cache misses.

2. If an instruction is the entry point of a method called by code that has been JITted (i.e., trans-

lated into native code by the JIT compiler), the JITtarget attribute is added to that instruction.

Such an entry point differs from the entry point executed when the method is called from

interpreted code, and is interesting for compiler developers because it can help them detect

performance differences when methods are called from interpreted versus native code.

3. The Opcode attribute is the opcode of the instruction with which it is associated, and ties

hardware events to the instruction being executed when the events happened.

4. The InlineLvl attribute indicates the inlining level of an instruction. An instruction may have

an inlining level of one if it is from an inlined method, an inlining level of two if it is from a

method inlined inside an inlined method, etc. This attribute is important for compiler devel-

opers because excessive inlining may cause performance degradation.

Figure 5.1 shows a HEPMiner-specific EFG node.

5.3 Experimental Design

We tested HEPMiner with the DayTrader benchmark running on the WebSphere Application Server.

The machine used was an Intel Core 2 Quad CPU Q6600 running at 2.4 GHz and with 3 GB of RAM.

The operating system installed in the machine was a Microsoft Windows XP Professional Edition,

Service Pack 3.

73



Figure 5.1: HEPMiner-specific EFG node.

All experiments used the same dataset. Data was collected by running DayTrader for four min-

utes, after around two minutes of burn-in time to allow enough WebSphere code to be JITted (as

described in Section 2.2). Enough burn-in time has passed when WebSphere has a steady through-

put, indicated by throughput rates displayed on the screen. The dataset consists of approximately 8

GB of compiler log data and 450 MB of hardware profile data.

The variables that are changed from experiment to experiment are described below.

1. Threshold. The threshold T , also called the support value or minimum support (MinSupport)

restricts the number of patterns considered to be heavyweight when running AFGMiner. The

higher the threshold value, the lower the number of patterns considered heavyweight. We

test thresholds values of 0.001, 0.003 and 0.005. For example, a value of 0.001 means that

only patterns whose support value is higher than 0.1% of the total weight or total frequency

values of the dataset, whichever is higher, are considered heavyweight. The total weight of

the dataset is the sum of the weights of all of its nodes, and the total frequency of the dataset

is the sum of the frequencies of all of its edges.

2. Minimum Method Hotness (MMH). If an EFG is to be included in the set of EFGs mined by

AFGMiner, it must have a hotness value higher than a set MMH value. Hotness of an EFG is

the ratio between the total weight of an EFG and the total weight of the dataset. We test MMH

values of 0.001, 0.003 and 0.005. For example, an MMH of 0.001 means that only those EFGs

whose total weight is higher than 0.1% of the total weight of the dataset are mined. The MMH

value is useful to restrict the number of EFGs being considered for mining.

The tested algorithms are FGSP (FlowGSP without location registration, but with all adapta-

tions described in Chapter 3), FGSP-locreg (FlowGSP with location registration), AFGMiner-iso

(version of AFGMiner without location registration), AFGMiner-locreg (AFGMiner with location

registration), AFGMiner-edgecomb (AFGMiner with location registration and edge combination),

p-AFGMiner-2 (parallel version of AFGMiner-locreg, with two threads), p-AFGMiner-4 (parallel

version of AFGMiner-locreg, with four threads), p-AFGMiner-6 (parallel version of AFGMiner-

locreg, with six threads), p-AFGMiner-8 (parallel version of AFGMiner-locreg, with eight threads).
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Below is a summary of the experiments performed and of the aspects of the algorithms that they

analyze.

1. Comparative run-time analysis. This experiment compares all the algorithms with a MMH

of 0.001 for each of the three aforementioned threshold values, collecting mining time only

(i.e., excluding data loading time). It also compares all the algorithms using a threshold of

0.001 and the three MMH values mentioned previously.

2. Run-time growth analysis. This experiment collects data from the previous experiment to

analyse how mining run-time grows for each of the algorithms when the number of patterns

found and the dataset size grows.

3. Data loading-time analysis. Data loading time is the time it takes to assemble EFGs from

DB2 tables. This experiment measures the data loading time for AFGMiner according to

the number of threads used to read the database. The experiment measures the data loading

times of AFGMiner-locreg (single thread), p-AFGMiner-2, p-AFGMiner-4, p-AFGMiner-6

and p-AFGMiner-8.

4. Memory consumption analysis. This experiment collects heap memory consumption statis-

tics (average, minimum and maximum consumed memory) and analyzes the reasons for differ-

ences in consumption patterns between the algorithms. The data is collected by instrument-

ing the code of AFGMiner-locreg, AFGMiner-edgecomb, p-AFGMiner-2, p-AFGMiner-4,

p-AFGMiner-6 and p-AFGMiner-8 with calls to Java’s run-time system.

5. Pattern quality analysis. Compares the number of patterns found for all nine threshold/MMH

value combinations, for both AFGMiner and FlowGSP. We then perform an analysis on the

relevancy of patterns found and how such patterns helped compiler developers.

5.4 Performance Analysis

Below the experimental results and analysis are presented, ellaborating on each of the experiments

summarized above.

5.4.1 Comparative Run-time Analysis

MMH Number of Methods
0.001 278
0.003 58
0.005 23

Table 5.1: Number of Methods Per MMH
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Algorithms MinSup = 0.0005 MinSup = 0.0003 MinSup = 0.001
FGSP 25.90 27.70 16.46

FGSP-locreg 25.80 25.53 16.30

Table 5.2: Mining Time Comparison for MMH = 0.001 (in minutes)

MMH MinSup = 0.001 MinSup = 0.003 MinSup = 0.005
0.001 16.46 16.16 16.31
0.003 15.84 - -
0.005 15.88 - -

Table 5.3: Mining Times for FlowGSP-locreg (in minutes)

Figure 5.2: Mining time comparison for AFGMiner varying the support value.

Figure 5.3: Mining time comparison for AFGMiner varying the MMH.

In order to compare how the algorithms perform in terms of run-time, the MMH was varied so

that the number of methods (EFGs) in the dataset could similarly vary. The number of methods for

each MMH value adopted is shown in Table 5.1. Of the 1244 methods profiled in DayTrader, only

23 execute for 0.5% or more of the execution time. The sharp increase in the number of methods

in the dataset when MMH drops from 0.003 to 0.001 confirms that most methods in this application

have a low frequency of execution, a typical characteristic of an application with a flat profile.
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MMH MinSup = 0.001 MinSup = 0.003 MinSup = 0.005
0.001 700.16 132.53 98.83
0.003 72.55 - -
0.005 58.57 - -

Table 5.4: Mining Times for AFGMiner-iso (in minutes)

Table 5.2 compares the mining time of FGSP and FGSP-locreg, when keeping the MMH con-

stant at 0.001 and varying the support value. The performance improvement of FGSP-locreg over

FGSP is marginal, although always present. Lower support values (0.0005 and 0.0003) were tested

in order to find out if the performance improvement of FGSP-locreg over FGSP is higher when

the number of patterns found by both algorithms increases significantly. However, the performance

improvement is marginal even in such cases. An explanation is that, although FGSP-locreg visits a

lower number of EFG nodes when mining for patterns, the management of the data structures that

contain the information about pattern instances from the previous generation is costly in terms of

run-time.

Table 5.3 and Figure 5.2 show the mining times of FGSP-locreg and all the AFGMiner versions,

respectively, when the MMH is kept constant at 0.001 and the support value varies. Not all combi-

nations of MMH and support values are shown in the table. At first sight, it seems that the mining

times for FGSP-locreg, for the same support values, are lower than the mining times for AFGMiner-

locreg. However, from Figure 5.7 it can be seen that the number of patterns found by FGSP-locreg

is lower than found by AFGMiner for the same support values, which explains the lower run-times

of FGSP-locreg. If we consider a closer value for number of patterns found (e.g., 60 patterns found

by FGSP-locreg when the support is 0.001 and 185 patterns for AFGMiner-locreg when the support

value is 0.005), the mining time of AFGMiner is lower than FGSP-locreg’s, even if the latter has

found only a third of the patterns. An analysis of all data points reveals that AFGMiner-locreg is

approximately three times faster than FGSP-locreg when mining for a similar number of patterns.

Although AFGMiner-locreg is faster than FGSP-locreg, AFGMiner-iso is much slower than both

for any support value or MMH. For example, the mining times reported in Table 5.4 indicate that

AFGMiner-iso takes more than 11 hours to complete the mining process for MMH of 0.001 and

support value of 0.001, while AFGMiner-locreg takes approximately 40 minutes (Figure 5.2). Not

all combinations of MMH and support value are shown in the table.

AFGMiner-edgecomb is, in general, slower than AFGMiner-locreg because AFGMiner-locreg

generates candidate patterns that have an attribute set p in their newly added node only after test-

ing if the candidate patterns that have subsets of p as attribute set have been mined and considered

heavyweight. In contrast, AFGMiner-edgecomb typically generates more candidate patterns than

AFGMiner-locreg when the number of patterns in a certain generation is high. That is because

AFGMiner-edgecomb combines all edges of a generation of parent patterns into candidate patterns

for the next generation, but without the candidate pruning described above. However, as the sup-

77



port value increases, the difference in performance between AFGMiner-edgecomb and AFGMiner-

locreg decreases because the number of candidate patterns that have to be generated by AFGMiner-

edgecomb also decreases.

5.4.2 Run-time Growth Analysis

Figure 5.2 show the data table and plot comparing mining times for AFGMiner-locreg, p-AFGMiner-

2, p-AFGMiner-4, p-AFGMiner-6 and p-AFGMiner-8 when varying the support value and keeping

the MMH constant at 0.001. The plot shows that the mining time decreases with the increase in

number of threads, although the performance improvement becomes less substantial as the support

value increases. The mining time also grows in inverse proportion to increases in support value (i.e.,

grows linearly with the number of patterns found).

Figure 5.3 show the data table and plot comparing mining times for AFGMiner-locreg, p-

AFGMiner-2, p-AFGMiner-4, p-AFGMiner-6 and p-AFGMiner-8 when varying the MMH and

keeping the support value constant at 0.001. The plot shows that the mining time increases rapidly

with the number of attributed flow graphs to mine, for all number of threads used.

5.4.3 Data Loading Time Analysis

Figure 5.4: Data loading time comparison for AFGMiner.

The time to load data from DB2 into RAM, and to assemble EFGs, is significant when compared

with the mining time. As the support value is increased, data loading time dominates the total run-

time because the mining time becomes lower. Moreover, as the number of threads is increased, the

loading time decreases However, there is no significant change in loading time when MMH varies,

because the loading time itself can be mostly attributed to DB2 queries, and not to the processing of

query results that (i.e., EFG assembling).
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5.4.4 Memory Consumption Analysis

Figure 5.5: Memory consumption comparison for AFGMiner varying the MMH.

Figure 5.6: Memory consumption comparison for AFGMiner varying the support value.

Memory consumption was measured by calling a Java function that returns the amount of heap

memory occupied by the caller program. For each run of HEPMiner, the function was called after

the processing of each generation of patterns. The maximum and minimum memory consumption

values for the run were chosen from the values obtained after each generation, and the average

memory consumption value was calculated as the average of these same values. From Figure 5.5

and 5.6, memory consumption in AFGMiner grows with the number of EFGs included in the dataset,

with the support value having little influence. The entire dataset, already in graph format, is kept

in the RAM along with all mining-specific data structures, which is why the number of EFGs is the

major determinant in the amount of consumed memory.

5.4.5 Pattern Quality Analysis

The number of patterns found grows in inverse proportion to the support value, and grows propor-

tionally to the MMH (Figures 5.7, 5.8). The growth in patterns found may seem quadratic from the

data shown, but it is actually hard to make a general prediction about it because the growth behavior

for number of patterns depends solely on the dataset.
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Figure 5.7: Number of patterns found by FlowGSP and AFGMiner, when varying the support value.

Figure 5.8: Number of patterns found by FlowGSP and AFGMiner, when varying the MMH.

Analysis by IBM Expert

Results obtained by AFGMiner when run over DayTrader were analyzed by a compiler engineer

from IBM, and conclusions originated by discussions between the author of this thesis and the

engineer. The discussions loosely followed an interview format, and occurred across one entire

year. They were conducted both in-person at the IBM Software Laboratory in Toronto and over

teleconferences.

The compiler engineer found HEPMiner a useful tool and was able to not only validade results

according to previous knowledge about the benchmark, but also make new observations about the

run-time behavior of DayTrader when executed by the z196 hardware.

1. AFGMiner found sub-graph patterns that contain an edge from a branch instruction leading

to a node that has instruction cache misses as one of its attributes. Reviewing the instances of

such patterns shows that this edge represents the taken path from the branch, which confirms

with the expert’s expectation that instruction cache misses should be observed only on the
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taken branch target.

2. From prior analysis, the expert at IBM knows that 30% of overall ticks in JITted code are

assigned to method prologues, and 40% of instruction cache misses are correlated with method

prologues. This was confirmed in the results output by AFGMiner.

3. A J9Class is an object used by virtual call dispatches, checkcast’s and instanceof ’s in Java.

The J9 object header contains a field with the class type, and this field has lower-order bits used

to compose miscellaneous flags. Whenever a J9Class object is accessed, a NILL instruction is

generated to mask out the low-order flags. The NILL instruction has the property of causing

pipeline stalls due to the calculation of addresses when address-generation interlock occurs,

and interlock occurs if the J9Class is subsequently dereferenced. The expert at IBM was

able to validate heavyweight patterns in which the NILL instruction was present followed by

attributes related to address-generation interlock. Then the expert was able to link the patterns

to instances in which masking of a J9Class object was followed by dereference of such object.

4. An attribute that represents a non-taken, correct-direction branch prediction was found to be

dominant by AFGMiner. The fact that this attribute shows up highlights that the JIT compiler

performs well when ordering basic blocks to optimize for fall-through paths. The most heavy-

weight sub-graphs are dominated by this attribute, along with attributes related to address-

generation interlock. This discovry led to the creation of performance counters that take into

account the ratio of taken and non-taken branches, and according to the IBM expert was a

very good confirmation to the compiler development team.

5. The output by AFGMiner shows patterns with low support value, that have a certain attribute

that is actually an instruction that is part of an asynchronous check sequence. This check se-

quence is used as a cooperative point in the method to allow for garbage collection and/or JIT

compilation-related sampling mechanisms that determine which method is being executed.

Such checks are placed at method entries and within hot loops. The expert at IBM confirmed

that, given that DayTrader is a very flat benchmark, it is correct that the pattern should have

such a low support.

6. Various sub-graph patterns found by AFGMiner highlight switch-statements. Switch state-

ments are not very common in the DayTrader code, but the JIT compiler does have an oppor-

tunity to convert between branch tables and if-statements when handling conditionals, or even

to use a combination of both. Considering that such patterns had relatively low support but

were still present, that confirms the characteristics of DayTrader.

7. One of the most common attributes highlighted by AFGMiner for DayTrader was a compare

with immediate and trap instruction, used to compare against NULL values. In the z196,

typically the compiler generates implicit NULL check instructions, making the compare and
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trap instruction less common in theory. The fact that this instruction was found to be common

was surprising to the IBM expert and is being investigated.

8. An attribute associated with the NOP (no-operation) instruction was highlighted by AFG-

Miner to be part of a common pattern, and this finding was surprising to the IBM developer.

Upon investigation, the expert found that the two main causes of NOPs are: (i) padding to

get proper alignment for direct calls - this alignment is used to guarantee atomic patching of

the displacement offset of the instruction, after recompilation; (ii) virtual guard NOP’ing -

inlining or direct call based on a single implementation of the target method, given current

class hierarchy. If a future class is loaded that violates this assumption, the compiler converts

the NOP to an always-taken branch.

9. The relative support values for a sequence of three attributes, present in several patterns, were

found to be interesting by the IBM expert. The attributes are an address-generation interlock,

followed by a directory or data cache miss, and then an instruction used to load a compressed

referenced field from an object. He implemented the pattern in the compiler’s instruction

scheduler to try to reduce the address generation interlock as much as possible, but did not

measure any observable improvements to DayTrader. The issue is still under investigation by

developers at IBM.

To summarize, HEPMiner was able to find valid and useful patterns, as confirmed by IBM’s JIT

Compiler team. AFGMiner-locreg with any number of threads provides better run-time performance

than AFGMiner-iso and all versions of FlowGSP, while AFGMiner-iso has the worst performance

of all algorithms. In terms of memory consumption, the size of the dataset to be mined, and not the

used data structures, is the major influence in how much memory is occupied.
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Chapter 6

SCPMiner: Applying AFGMiner to
Find Heavyweight Source-code
Patterns

Application developers often work on performance-sensitive applications. They measure the per-

formance of such applications in order to detect the fragments of source-code that take up more

execution time than others. The idea is to rewrite such fragments or move the fragments in such a

way that the resulting compiled code is more efficient. In contrast to compiler developers, however,

application developers do not necessarily have the required knowledge to analyze low-level profiles

that relate performance measurements to control flow or to hardware behavior, i.e., edge profiles,

path profiles and hardware-instrumented profiles. As a consequence, application developers typi-

cally profile their applications using tools such as tprof (see Section 2.1.2) to collect memory and

run-time data that are associated with higher-level program constructs, e.g., functions and source-

code lines.

Although higher-level profiling tools, such as tprof, work well for the identification of perfor-

mance bottlenecks in applications that have discernible hot (or at least warm) methods, they do not

help developers in the analyses of flat-profile applications. Thus, developers that need to improve

the performance of applications with flat profiles, such as large business applications, need a new

tool. Such tool should be able to indicate the source-code fragments that, if modified, will result in

application performance improvements.

SCPMiner is an experimental tool built for application developers. It was created as a prototype

to know whether is is possible to apply AFMiner to the problem of finding source-code patterns that

are heavyweight (those patterns that take up significant execution time when the individual execution

times of each of their instances are considered in aggregation). The tool follows a sequence of

phases with the goal of extracting static and dynamic data about the target program, and uses this

data to create EFGs whose nodes represent basic blocks (same as the ones present in the CFGs of

the program) with feature vectors associated with them. For each basic block, its feature vector
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contains attributes that characterize the source-code fragments that generated the basic block during

compilation. SCPMiner then performs cluster analysis to group similar basic blocks together. Basic

blocks are in the same cluster if they have similar feature vectors. After clustering, a single attribute

is associated to each of the nodes in the same cluster. Then, AFGMiner is used to mine the dataset

of EFGs.

A source-code pattern represents multiple source-code fragments that have similar functionality.

The goal of SCPMiner is to discover the aggregated execution time of all instances of each source-

code pattern. Those patterns that have an aggregated execution time higher than an user-defined

threshold are heavyweight. They are output to the user by associating each heavyweight pattern to

all the source-code lines that generated the basic blocks that compose its instances. An integrated

development environment may choose to display the instances in order of their weight, within a

given function or module, etc. Figure 6.1 shows a high-level scheme of how SCPMiner works.

Figure 6.1: High-level architecture of SCPMiner.

The development of SCPMiner was inspired by the need of IBM’s Multi-core Performance Tool-

ing Team for a tool that helps application developers analyze flat-profile applications. It is an ex-

perimental tool and the main goal of its development was the design and implementation of all the

phases that lead from application source-code to the discovery of heavyweight source-code patterns.

Improvements to the tool, in order to make its results as useful as possible to application developers,

were not a priority and should be pursued by future research. The rest of this chapter describes each

one of the steps followed by the tool, as well as experiments made to test it, both in terms of its

performance and the quality of results obtained.
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6.1 Phase 1: Server-side Profile Collection

SCPMiner follows a server-client architecture and targets C/C++ applications. The tool requires

that the target application’s executable file and source-code be located in the server. As shown in

Figure 6.1, the implementation of SCPMiner for this thesis uses a 64-bit Power7 server running

IBM’s AIX operating system [7] [1] and its client-side works on 32 and 64-bit architectures with

Linux or Windows as operating system.

The first phase of the tool aims at collecting profile information about the application while

it runs. A script, invoked by the client-side of the tool, calls tprof on the executable file. TProf

generates an XML-based report file (with extension .etm) that contains the number of times each

instruction is executed, and the client-side tool downloads this report from the server.

6.2 Phase 2: Assembly-based Basic Block Creation

The tprof report downloaded by the client-side of the tool is parsed and basic blocks composed of

assembly instructions are created from the obtained information. The basic blocks are connected by

edges also using information from the tprof report. Thus, assembly-based CFGs, one for each of the

target application methods, are generated.

Each basic block in an assembly-based CFG has a number of ticks associated with it. A basic

block is assigned the number of ticks (execution count) of the instruction that has the maximum

number of ticks out of all the instructions that compose it. This strategy is based on the fact that if

an instruction that is part of a basic block is executed, all the other instructions that are part of the

basic block are necessarily executed. Thus, even if the profiler is unable to capture the same tick

counts for all such instructions, the maximum tick count provides a lower-bound on the number of

times the block was actually executed.

It is possible that a basic block is not assigned any tick counts, because no instructions that

compose it have been interrupted by tprof when they were executing. In such a case, the basic

block is flagged as a “dummy node”, with the same meaning of the “dummy node” concept used in

AFGMiner.

SCPMiner also associates with each basic block the list of instruction addresses of all the assem-

bly instructions that are part of the block, as obtained from the tprof report.

6.3 Phase 3: From Instruction Addresses to Source-code Lines

The client-side of the tool then generates an XML-based file (with extension .dump) that associates

each basic block in the dataset of assembly-based CFGs to the addresses of the instructions that

are part of the block. The tool uploads this file to the server, and invokes a script that generates a

debug-version of the target application executable file, if one does not already exist. Then the script

calls debugProxy on this debug version of the executable, with the .dump file as input.

85



DebugProxy is a C++ program that calls a specific portion of a debugger engine developed at

IBM. This portion, called informally rdr, reads a debug-version executable file and organizes it in

data structures that allow for the debug information to be queried through a set of functions, the rdr

API. The goal of debugProxy is to determine the source-code line associated with a certain instruc-

tion address. For every instruction address in the .dump file, debugProxy obtains its corresponding

source-code line and then writes it to another XML-based file (with extension .out dump). The

.out dump file associates each basic block in the dataset of assembly-based CFGs with the source-

code lines that generated the assembly instructions that are part of the block.

The executable file read by rdr is a debug-version one. When compiling an application in de-

bug mode, compilers typically are unable to apply many of the code transformations that they do

when compiling a release version of the same application because such code transformations delete,

merge, and split the original code and may add new code. Thus, when there is a requirement to

keep an accurate association between source-code lines and generated instructions, not all trans-

formations can be performed. The tool runs over an executable file compiled in release mode but

query about source-code lines using an executable file compiled in debug mode, there may be lit-

tle correspondence between some of the instructions extracted from the tprof report file (and that

have their addresses in the .dump file and queried for by debugProxy), and those that exist in the

debug-version executable. In such a case, when writing the .out dump file debugProxy flags that the

instructions have no associated source-code lines, and in Phase 5 estimates which line(s) to assign

to the instruction.

6.4 Phase 4: Forming Execution Flow Graphs

SCPMiner creates EFGs by statically analyzing the target application’s source-code. It uses the

parsing library from Eclipse C/C++ Development Toolkit (CDT) [2] to generate the AST for the

entire application. SCPMiner then uses a customized version of a classic algorithm called AST

threading to, in a single traversal of the AST, simultaneously create basic blocks and the control-

flow edges that connect them, separate the blocks and edges in flow graphs and compute the feature

vector of each one of the created basic blocks. Each basic block is also associated with the source-

code lines that have been joined to compose the block.

6.4.1 Feature Vector Details

The feature vector of a basic block is computed from the characteristics of the source-code fragments

that are part of the block. SCPMiner collects independent and dependent features. Independent fea-

tures have fixed positions in the feature vector and are present in every target application. Dependent

features vary from application to application and are positioned in the feature vector after all the in-

dependent features. The dependent features are the number of uses, declarations and definitions

of variables and constants of each existing data type in the application, no matter if the data type
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is primitive, built-in or user-defined. The customized AST threading algorithm will calculate the

number of uses, declarations and definitions of each type that are present in the set of source-code

lines associated with the block. Therefore, if the number of types declared, defined and/or used by

the application in any way is x, then the number of dependent features in the feature vector of every

basic block will be 3x.

Below is the description of all independent features used by SCPMiner to characterize a basic

block.

1. Number of operations that involve NULL pointers.

2. Field reference (constructs such as variable.field).

3. Number of literal expressions.

4. Number of array accesses.

5. Number of function calls.

6. Whether the basic block has a continue statement.

7. Whether the basic block has a break statement.

8. Number of assignment operations.

9. Number of binary AND operations.

10. Number of binary OR operations.

11. Number of binary XOR operations.

12. Number of division operations.

13. Number of comparison (==) operations.

14. Number of comparison (>=) operations.

15. Number of comparison (<=) operations.

16. Number of comparison (&&) operations.

17. Number of comparison (||) operations.

18. Number of subtraction operations.

19. Number of modulo operations.

20. Number of multiplication operations.

21. Number of comparison (! =) operations.
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22. Number of addition operations.

23. Number of shift-left (<<) operations.

24. Number of shift-right (>>) operations.

25. Number of ”address-of” (&) operations.

26. Number of unary subtraction (−) operations.

27. Number of unary negation (!) operations.

28. Number of unary addition (+) operations.

29. Number of unary decrement (−−) operations.

30. Number of unary increment (++) operations.

31. Number of “sizeof” operations.

32. Number of unary dereference (∗) operations.

33. Number of “throw” operations (used when throwing exceptions).

34. Number of tilde operations.

35. Number of “typeid” operations.

6.5 Phase 5: Joining Dynamic and Static Information

After the EFGs are created by using the customized AST threading algorithm, the next step is to add

tick information to the nodes of each EFG. The heuristic to add tick information works as follows. It

attempts to associate the assembly-based basic blocks formed during server-side dynamic analysis

with the basic blocks (nodes) from EFGs. An association is made between an assembly-based basic

block and an EFG basic block when they both have at least one source-code line in common, and in

such a case the tick count of the assembly-based basic block is added to the tick count of the EFG

basic block (initially zero).

When considering all associations, the sum of tick counts of all assembly-based basic blocks

with which an EFG basic block has source-code lines in common is assigned to this EFG basic

block. This heuristic causes a potential overestimation in the number of ticks assigned to each EFG

basic block, therefore the tick count of each EFG block is divided by the number of assembly-based

basic blocks that contributed ticks to it, to decrease overestimation effects. The algorithm below

describes the heuristic steps in more detail.

Figure 6.2 shows an EFG node after the process of joining static and dynamic information.
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Algorithm 23 JoinDynamicStaticInfo(DS, ASM DS)
1: for each EFG node N in the dataset DS of EFGs do
2: for each assembly-based basic block B in the dataset ASM DS of CFGs do
3: if the intersection between the sets of source-code lines of B and N is non-empty then
4: N.tickCount← N.tickCount+B.tickCount
5: N.asmBBCount← N.asmBBCount+ 1
6: end if
7: end for
8: N.tickCount← N.tickCount÷N.asmBBCount
9: end for

Figure 6.2: EFG node in SCPMiner, before cluster analysis and labeling.

6.6 Phase 6: Cluster Analysis and Basic Block Labeling

Now each node in the dataset of EFGs has a weight (tick counts) and a vector of features asso-

ciated with it. Next SCPMiner identifies heavyweight patterns, whose instances are sub-graphs

composed of EFG nodes and the edges that connect such nodes. However, in order to know if a

certain sub-graph is an instance of a pattern, we cannot simply test if the sub-graph is an exact

match of the pattern. The comparison of the feature vectors of two nodes (to decide if they match),

is actually comparing the source-code fragments that those vectors represent and checking if the

meaning/functionality of the fragments is similar enough for the sub-graphs to be considered part

of a pattern. Therefore, SCPMiner must perform approximate matching of patterns and pattern

instances.

To make the mining phase more efficient, SCPMiner pre-processes the dataset of EFGs by ap-

plying cluster analysis, using the hierarchical clustering algorithm described in Section 2.6.3. After

all EFG nodes in the dataset have been grouped into disjoint clusters, each one is assigned the iden-

tifier number of the cluster to which they belong. Each cluster has an identifier number which is

associated with it as it is created. The cluster identifier becomes the only attribute of the EFG node,

and the EFG node weight becomes the value of this attribute. In this manner, AFGMiner is applied

to this pre-processed dataset of EFGs seamlessly.

Figure 6.3 shows an EFG node after cluster analysis.

89



Figure 6.3: EFG node in SCPMiner, after cluster analysis and labeling.

6.7 Phase 7: Mining for Patterns Using AFGMiner

Finally, after cluster analysis is performed in the dataset of EFGs it can be mined for heavyweight

patterns. The support threshold is chosen by the user. Candidate patterns are created by combining

the set of existing attributes, i.e., the existing cluster identifier numbers, in attribute sets of increasing

size, and checking whether they exist in the dataset. From that point on, the patterns found that are

considered heavyweight are grown as described in the AFGMiner chapter.

6.8 Phase 8: Associating Heavyweight Patterns with Source-
code Lines

Heavyweight source-code patterns found by AFGMiner are output by showing to the user the in-

stances of such patterns. Each pattern is represented by its lists of instances, with each instance

being described by the set of source-code lines to which each of its composing EFG nodes are as-

sociated. In this way, the application developer using SCPMiner needs only to check the sets of

source-code lines being pointed to by each of the pattern instances, how they connect to each other

(by observing the control flow edges indicated by the instances) and what is the support value of the

pattern itself. They can then have insights about such patterns and change the identified source-code

lines to improve the performance of the analyzed application.

6.9 Experimental Design

SCPMiner was tested on an AMD Athlon II Neo K125 running at 1.70 GHz and with 4 GB of RAM,

of which 3.75 GB were usable. The operating system installed in the machine was a 64-bit Windows

7 Home Premium, Service Pack 1.

Four benchmarks from the SPEC CPU2006 [14] suite, bzip2, gobmk, mcf and namd, were ana-

lyzed in terms of:

1. Run-time performance. The total execution time of SCPMiner is measured, along with

the execution times of each one of the phases of the tool: dynamic data collection (Sec-
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tions 6.1, 6.2 and 6.3), static data collection (Section 6.4), joining of static and dynamic data

(Section 6.5), cluster analysis (Section 6.6) and mining (Section 6.7).

2. Quality of patterns found. An expert developer from IBM’s Multi-core Performance Tool

Team analyzed the patterns output by SCPMiner, using the source-code of such benchmarks

and previous knowledge about them.

Below are descriptions of the four benchmarks.

401.bzip is a file compression program, and is heavy in integer computations. All compression

and decompression happens entirely in memory. The execution of bzip2 used one of its reference

workloads, namely a program source-code in a tar file.

445.gobmk is a program that plays Go and executes a set of commands to analyze Go positions.

It is one of the benchmarks heavy in integer-based computations of the SPEC CPU2006 suite. The

input files for gobmk are all Go games in a standard format, and the input file used in the run of

gobmk analyzed by SCPMiner was trevorc.

429.mcf is derived from MCF, a program used for single-depot vehicle scheduling in public mass

transportation. For the considered single-depot case, the problem can be formulated as a large-scale

minimum-cost flow problem, solved with a network simplex algorithm accelerated with a column

generation. The network simplex algorithm is a specialized version of the well-known simplex

algorithm for network-flow problems. The linear algebra of the general algorithm is replaced by

simple network operations that can be performed very quickly, such as finding cycles or modifying

spanning trees. The algorithm is heavy in pointer and integer arithmetic. The reference (ref ) input

was used for the run analyzed by SCPMiner.

444.namd is derived from the data layout and inner loop of NAMD, a parallel program for the

simulation of large biomolecular systems. Almost all of the execution time is spent calculating

inter-atomic interactions in a small set of functions. This set was separated from the bulk of the

code to form a compact benchmark for SPEC CPU2006. This computational core achieves good

performance on a wide range of machines, but contains no platform-specific optimizations. The

benchmark is heavy in floating-point calculations. The reference (ref ) input was used for the run

analyzed by SCPMiner.

In the next section, the performance of SCPMiner when running the four benchmarks is ana-

lyzed in quantitative and qualitative terms. For all tests, a dendrogram height of three was randomly

selected. When the tool is used by developers, they should selected the dendrogram height experi-

mentally. In Section 6.11, potential improvements to SCPMiner are discussed.

6.10 Performance Analysis

Table 6.2 shows the run-times for each of the benchmarks. gobmk was the benchmark that took the

longest time to run. The slowest phase was the cluster analysis, that took more than a full day to
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complete. The long time required for the cluster analysis makes SCPMiner impractical for the target

users of the tool. The expectation is that application developers would be unwilling to wait so long

for a program analysis to complete, even if such analysis facilitates improvements in application

performance.

In all benchmarks but gobmk the time to collect and process dynamic data is dominant over the

mining time, indicating that, in SCPMiner, server-client communication over the network is one of

the performance bottlenecks.

The cluster analysis time in gobmk is much longer than the dynamic data collection time because

gobmk generates a dataset with a higher number of EFG nodes than the other benchmarks. While

gobmk produces 10176 nodes, namd and bzip2 produce only 2167 and 2056 respectively. gobmk

also contains the highest number of source-code lines over all the tested benchmarks. The number

of basic blocks (represented as EFG nodes in SCPMiner) in a program with a reasonable number

of branches is proportional to the number of source-code lines. Table 6.1 shows the number of

source-code lines for each of the benchmarks.

The size, measured in source-code lines, of the program being analyzed by SCPMiner is a good

predictor of its execution time when the program is big enough for the impact of the dynamic-data

collection phase to be minimized. Although the mining time increases with the number of source-

code lines, such increase is slower than the increase in clustering time as the number of source-code

lines grows. Thus, the cluster analysis phase is an important performance bottleneck of SCPMiner

and any attempts at making the tool practical for use by application developers should focus on

implementing the clustering algorithm to be more time-efficient than its current version.

Benchmark Number of source-code lines
bzip2 7057

gobmk 174467
mcf 2057

namd 4589

Table 6.1: Source-code lines for each tested SPEC benchmark.

bzip2 gobmk mcf namd
Number of patterns 750 2324 61 2781

Total run-time 13.88 min 25.17 hours 2.65 min 4.97 hours
Dynamic data collection time 3.64 min 5.11 min 2.53 min 8.83 min

Static data collection time 0.01 min 0.12 min 0.01 min 0.06 min
Join time 6.83e−4 min 0.01 min 7e−5 min 0.01 min

Cluster analysis time 10.08 min 24.17 hours 0.1 min 4.69 hours
Mining time 0.15 min 48.85 min 0.02 min 7.83 min

Table 6.2: Times for benchmark experiments using SCPMiner
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6.10.1 Pattern Quality Analysis

An expert from IBM analyzed the patterns output by SCPMiner and the instances linked to each

pattern. He compared source-code lines associated with the instances of those patterns with highest

support values to those source lines indicated by a tool being developed by the Multi-core Perfor-

mance Tooling Team. This tool highlights those source-code lines in a program that receive the

highest number of ticks when the program is profiled by tprof. The tool is, thus, only useful when

the profile of analyzed applications is not flat. As a consequence, for purposes of validation the four

benchmarks we analyzed do not have flat profiles, so that the results of SCPMiner and the Multi-core

Team tool can be more easily compared.

Below are the main findings of the IBM expert.

1. The top patterns of each one of the benchmarks had instances whose associated source-code

lines were also indicated by the Multi-core Team tool. This validates that SCPMiner is able

to find patterns that are relevant because they take a significant fraction of the execution time.

2. However, there were many patterns that were indicated as heavyweight due to the accumulated

support value from each of their instances, but that do not seem relevant to the application

developer. In all cases in which a pattern did not seem relevant to the IBM expert, it was

because he did not consider the pattern instances to be related to one another in any meaningful

way, and therefore would not consider the instances to form a pattern if he were to analyze

the programs himself. In other words, the cluster analysis implemented in SCPMiner presents

mixed results, not completely aligned with the perception that application developers have of

what a pattern should be.

The next section discusses possible changes in SCPMiner that have the potential to better align

the results of the tool with the expectations of application developers. They should be the target of

future research.

6.11 Potential Improvements to SCPMiner

The IBM expert pointed out that not only operation and type-related features should be used to

distinguish patterns, but also control-flow features related to programming language constructs, i.e.,

features that indicate if a source-code line contains an if-statement, is part of a loop, etc. Including

control-flow information adds new challenges to the collection of features, which, in the current

prototype of SCPMiner, occurs during AST threading and is only able to capture features that can

be directly attributed to basic blocks. Control-flow features are not tied to basic blocks, but to CFG

regions instead. A region in a CFG is any set of nodes with a header node (also called entry point),

in which the nodes in the region can only be accessed by accessing the header node first. The

features can also be tied to even higher-level abstractions (such as ASTs) in case there is a need to
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distinguish between specific iteration-related constructs, e.g., while-statements and for-loops. As

a consequence, if this approach is to be followed, another type of attributed flow graph should be

created that is able to represent, in the same graph, both control-flow features and those features that

can be directly linked to specific basic blocks.

While an EFG has the control-flow information encoded in its edges, the clustering strategy

adopted by SCPMiner does not take this control-flow information into account. A possibility is to

use two attributed flow graphs to represent each profiled method in the target application. One is

the EFG itself. The other is a partial reduction of the EFG to single-entry/single-exit regions. This

partial reduction can be stopped at the level where nodes correspond to the programming language

constructs they represent.

An easier improvement to SCPMiner is to simply focus on the cluster-analysis algorithm. Not

only the algorithm could be made more time and space-efficient by a less-naive implementation,

but also other distance functions could be tested. Although not usual in hierarchical clustering, a

threshold could be used to indicate the maximum distance allowed between two clusters for them

to be joined. This change could avoid the problem of unrelated source-code lines being considered

instances of the same pattern. Finally, features could be eliminated from the feature set used to

characterize a basic block, in order to decrease noise in the feature space. In the current prototype,

there might be a high number of features that are not essential to distinguish patterns and end up

producing clustering results of mixed quality. Good candidates for feature removal are all features

related to uses, definitions and declarations of built-in types, and common operations such as an

assignment.
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Chapter 7

Related Work

In this chapter we contrast AFGMiner and its applications to previous work in the following related

areas: sub-tree mining, sub-graph mining, clone detection and dynamic analysis of programs using

performance counters.

7.1 Sub-tree Mining

CMTreeMiner [13] is an algorithm that mines for both closed and maximal frequent sub-trees in

datasets in which information may be represented as rooted unordered trees. Similarly to AFGMiner,

the algorithm is built based on a canonical form for sub-trees which makes it possible to prune the

search space when expanding frequent sub-trees. It is also polynomial, in contrast to other frequent

sub-tree mining algorithms. However, CMTreeMiner differs from AFGMiner in that AFGMiner

mines sub-graphs, which include sub-trees but also cyclic substructures in directed, attributed and

potentially large graphs.

FATMiner [15] is a frequent sub-tree mining algorithm that takes into account attributes of tree-

structured data. Thus, it is able to mine multi-relational databases that have a tree-like structure, and

also XML-based data. It shares similarities with AFGMiner in that FATMiner performs mining in

two distinct but interleaving steps that its authors call global mining and local mining. The global-

mining step consists of a traditional rooted-tree mining algorithm, that first searches for candidate

sub-trees composed of a single node, and then extends these candidates edge-by-edge if they consid-

ered frequent. A similar process happens in AFGMiner, except that the candidates are sub-graphs.

The local mining process of FATMiner computes the frequent attribute set of every node of can-

didate sub-trees in the following way: whenever a candidate tree T formed by k nodes is generated

in the global mining step, the local mining algorithm determines the first attribute set A1 of vk,

where vk is the node that was added to T as part of the sub-tree extension process. If A1 in vk is not

frequent, then the version of T with A1 as attribute set of vk is pruned. Otherwise all super-trees of

this version of T are computed. When there are no more frequent extensions of this version of T

left to be generated, the next attribute set of vk is computed and the testing process described above
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repeats. For both global and local mining in FATMiner, a depth-first search through the enumeration

lattice, called Search Tree in this thesis, is performed.

AFGMiner performs global and local mining in an interleaved fashion, similarly to FATMiner.

However, the differences are: (i) in AFGMiner the enumeration lattice (Search Tree) is traversed

using iterative breadth-first search with eager pruning instead of depth-first search; (ii) attributes

are only included in the computation of an attribute set when they are considered frequent in the

previous algorithm iteration; and (iii) AFGMiner performs the global mining step for sub-graphs,

instead of sub-trees only.

7.2 Sub-graph Mining

A variety of sub-graph mining algorithms exist. They all have different strategies to handle the

challenges of sub-graph mining, described in subsection 2.6.2: (i) how to represent the graphs in

such a way as to make search faster and facilitate pruning, (ii) how to generate candidate sub-graphs

avoiding redundancy as much as possible, and (iii) how to search for candidate sub-graphs quickly.

For (i), the possibilities are representing graphs using adjacency lists, adjacency matrices, hash-

maps or a combination of them. The canonical form adopted to detect redundant sub-graphs is

also important. Two general approaches to canonical graph representation used by the algorithms

mentioned in this section are: describing the edges and nodes of a graph in a (possibly string-based)

code, that can then be lexicographically ordered to generate a canonical code that is the same for

all graphs isomorphic to the first graph; and representing the graph as a matrix, with its rows and

columns transformed in such a way as to create a canonical matrix that is the same for all graphs

isomorphic to the first graph.

For (ii), the general strategy is to extend sub-graphs that are frequent by adding to them either an

edge that connects two of its nodes or a new edge and new node to one of its existing nodes. Another

aspect is the order in which candidate sub-graphs are generated. A level-by-level approach may be

followed, in which all candidate sub-graphs of same size (in number of edges) are generated before

any of them is extended, thus minimizing redundancy. The second option is a depth-first approach

in which, as long as a sub-graph is frequent, it is repeatedly extended before any other sub-graph

has the chance of being, itself, extended. A third approach is to merge frequent sub-graphs into new,

larger candidate sub-graphs of variable size.

For (iii), searching for sub-graph matches may be done by using any sub-graph isomorphism

algorithm. In order to perform a faster search, embeddings of frequent sub-graphs (i.e., instances in

the dataset that match each sub-graph) may be recorded so that the children of such frequent sub-

graphs can be found by simply checking for extensions of each embedding. The use of embeddings

trades memory consumption for speed. In addition, traversal of the Search Tree may be performed

depth-first or breadth-first, with all nodes of the Search Tree that are on the same level containing

sub-graphs with the same number of edges.
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Section 2.6.2 already extensively describes gSpan. The main difference between AFGMiner and

gSpan is that AFGMiner is able to handle multiple node attributes and has been tailored for directed

graphs, although as long as an appropriate sub-graph isomorphism algorithm is used when matching

candidate sub-graphs to dataset graphs, it can also work for undirected graphs. Another difference is

that AFGMiner uses breadth-first search with eager pruning when generating candidate sub-graphs,

while gSpan follows a depth-first approach [43]. An improved version of gSpan, gRed, modifies the

canonical labeling system of gSpan to detect cases where it is guaranteed that a candidate pattern is

not frequent, thus eliminating the need to mine for it in the dataset [9].

FSP is based on depth-first search just as gSpan, but it improves its canonical representation and

similarities between sibling sub-graphs in order to reduce the number of isomorphism tests. FSP

differs from AFGMiner in the same aspects as gSpan does [19].

AGM is a mining algorithm, based on breadth-first algorithm and adjacency matrices, that uses

transformation matrices to convert the adjacency matrices of graphs into their canonical form and

detect redundant candidates [27]. AcAGM is an improvement on AGM that converts the adjacency

matrices used to identify candidate sub-graphs into codes similar to the ones used in gSpan and

AFGMiner [27].

FFSM, like AGM, uses adjacency matrices, however, it adopts depth-first search when mining

for candidate sub-graphs [24]. Its novelty is the introduction of embeddings that make the mining

process faster, even if they increase memory requirements. AFGMiner-locreg also uses embeddings,

though its definition of embedding differs from FFSM. In FFSM, an embedding does not take into

consideration the edge relations for each instance of the sub-graph because mined graphs are undi-

rected; in contrast AFGMiner has to record the complete mapping between sub-graph patterns and

instances, which makes the embeddings more memory-consuming.

SUBDUE uses the minimum description length (MDL) principle to discover substructures that

compress the database and are representative of the entire data. MDL produces a hierarchical de-

scription of the structural regularities in the data. Similarly to AFGMiner, it mines directed graphs,

however such directed graphs are not attributed [21].

Gaston is based on the fact that substructures typically mined for in datasets, such as sub-paths,

sub-trees, and sub-graphs, are contained in each other. This property allows the search to be split

into steps of increasing complexity. A frequent path, tree and graph miner are thus integrated into a

single algorithm. Gaston follows the breadth-first approach to search, and, similarly to AFGMiner,

was implemented with and without embeddings. The authors of Gaston name the use of embeddings

EL (embedding lists) and the gSpan-based approach of maintaining a set of active graphs for which

occurrences are repeatedly computed RE (recomputed embeddings). In contrast to AFGMiner, how-

ever, Gaston only mines for patterns in non-attributed, undirected and unweighted graphs [35].

LEAP is a graph-pattern mining framework that aims at finding the most important patterns of a

dataset directly. LEAP exploits the correlation between structural similarity and significance simi-
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larity by searching for dissimilar patterns in order to find the most significant pattern quickly. LEAP

solves the problem of optimal graph pattern mining, in which the idea is to find those sub-graphs

in the dataset that maximize a given objective function. When the objective function is frequency,

as measured either by occurrence counting or, as in AFGMiner, by calculating instance weights,

LEAP solves the frequent sub-graph mining problem or a variation of it. Thus the optimal graph-

pattern mining problem is a general version of the frequent sub-graph mining problem. However,

it does not mine directed, weighted and attributed graphs, which makes LEAP no replacement for

AFGMiner [44].

Borgelt introduces a family of canonical descriptions of graphs that can be exploited to make

frequent sub-graph mining more efficient [11]. The canonical descriptions are a generalization of

gSpan’s (and AFGMiner’s) canonical labeling system, but differ from it in that gSpan’s system is

defined by a depth-first traversal of the sub-graph, i.e., by defining a depth-first search tree from the

sub-graph. In contrast, Borgelt allows for any systematic way of describing the sub-graph by one of

the sub-graph’s spanning trees.

Worlein et al. present a quantitative comparison between classical sub-graph mining algorithms,

including the aforementioned gSpan, FFSM and Gaston [42] . According to their study, Gaston is

the fastest of the algorithms. However, gSpan, the second-fastest, scales better for larger datasets,

which justifies the choice of gSpan as a basis for AFGMiner.

Finally, Horvart et al. present a sub-graph mining algorithm for outerplanar graphs, which are

a strict generalization of trees [23]. The algorithm runs in incremental polynomial time due to the

properties of outerplanar graphs, i.e., they are similar enough to trees. This work contrasts with

AFGMiner in that it does not handle directed, weighted and attributed graphs. However, similarly

to AFGMiner, it targets a more tractable class of graphs when mining, and is thus able to run in

incremental polynomial time.

7.3 Clone Detection

As explained in Section 2.7, clone detection is applied in software engineering and uses pattern-

mining concepts and algorithms. The general approach to the problem has its analogous in pattern

mining, and as a consequence, can be compared to the steps in SCPMiner to find heavyweight

source-code patterns.

1. Modeling potential clone parts. Potential clone parts or fragments in clone detection are the

equivalent of potential pattern instances in pattern mining. SCPMiner models such potential

pattern instances as a graph.

2. Extracting features of each fragment. The feature-extraction step in clone detection is neces-

sary to compare code fragments and decide whether they are clones. This decision is based on
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the degree of similarity between the fragments. The way features are represented is thus cru-

cial for a more efficient and accurate detection of clones, and is a key differentiator element of

both clone-detection and pattern-mining algorithms. In SCPMiner, features are extracted by

traversing the AST of the program being analyzed and associating such features to the basic

blocks formed during AST threading.

3. Computing the similarity between fragments. In clone detection, such similarity metrics as

tree editing distance and graph isomorphism may be used, but they are computationally ex-

pensive. Another approach, more efficient specially for approximate matching of fragments,

is to use a feature vector: structural information about the potential clone parts is recorded and

each type of information occupies a fixed position in the vector. In SCPMiner, feature vectors

are associated with each EFG node and the squared Euclidean distance of these vectors is used

for comparisons between vectors.

4. Grouping similar fragments into clone groups. In clone detection, clone groups are the equiv-

alent of patterns in pattern mining. The difference is that there are no candidate clone groups

that can be composed and then mined for in the dataset of potential clone fragments; instead,

an analysis of all clone fragments must be performed (e.g., by cluster analysis), and such

fragments are grouped according to their features and the similarity measure adopted by the

detection algorithm. SCPMiner performs an initial analysis of the whole dataset, clustering

EFG nodes according to the similarity between their feature vectors (as measured by Ward’s

method).

Jiang et al. [29] present a clone detection tool called Deckard. The clone detection algorithm

created by Jiang et al. for Deckard, similarly to SCPMiner, converts the source-code of the pro-

gram to be analyzed into its AST. The algorithm characterizes sub-trees of the AST as vectors of

source-code characteristics that capture structural information about the represented code. It then

uses efficient hashing and near-neighbor querying for numerical vectors to cluster such sub-trees

into code clones. SCPMiner, analogously, converts the AST into a set of CFGs with source-code

characteristics associated with each basic block composing the CFGs, and clusters the blocks as an

initial step to find source-code patterns. However, SCPMiner does not use a sophisticated cluster-

ing scheme such as Deckard’s. Adapting Deckard’s clustering scheme to SCPMiner would in all

likelihood greatly improve the quality of patterns found by AFGMiner.

Pham et al. present two algorithms, eScan (exact matching) and aScan (approximate matching)

that are able to detect clones and clone groups using a graph-based representation of software mod-

els [37]. The algorithms are used in the context of Model-Driven Engineering, where software is

built by using visual modular representations of source-code components. Both eScan and aScan

use a sub-graph mining algorithm to search for potential clones, just as SCPMiner uses AFGMiner

in its mining step.
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Both eScan and aScan rely on sub-graph isomorphism to detect exact code-fragment matches.

SCPMiner uses sub-graph isomorphism after labeling EFG nodes during cluster analysis, when

applying AFGMiner on the resulting dataset of EFGs. aScan detects fragments that are similar

enough to be considered clones by using Exas, a vector-based representation and feature extraction

method that can approximate the structure within a sub-graph [34]. SCPMiner is similar to aScan

in that it also uses feature vectors. However, while features in aScan are meant to describe the

topological structure of sub-graphs and the operations that happen in the code fragments associated

with such sub-graphs, in SCPMiner the features describe all relevant characteristics that enable

differentiation in terms of functionality between source-code fragments associated with basic blocks.

Thus, features include statistics on number and type of operations performed by the code fragments

and variable types present in the fragments, but no topological structure information is used.

7.4 Applications of Dynamic Analysis

AFGMiner, as applied in the HEPMiner tool, is used to mine for execution patterns in JITed applica-

tions that have flat profiles and run in WebSphere Application Server 2.2 (chapter 5). Nagpurkar et

al. present an example of how hardware-instrumented profiling helps in the performance characteri-

zation of WebSphere. They run WebSphere in Power5-based multiprocessor systems, and emphasize

how flat are the profiles collected from WebSphere: no single method accounts for more than 2% of

the total execution time, and the largest contributor from Java code is merely 0.525% [33].

Dreweke et al. apply sub-graph mining to help compiler developers in their program improve-

ment efforts [16]. They presents a novel approach to an existing code transformation called pro-

cedural abstraction. Procedural abstraction extracts duplicate code segments into a newly created

method in order to decrease code size. Their approach consists of composing data flow graphs

from the target program and mining, using gSpan, for frequent sub-graph patterns that represent the

code segments to be extracted. HEPMiner differs from this work in that it is not an interprocedural

compiler code transformation, but rather an external performance analysis tool that helps compiler

developers to reach conclusions about the performance of applications of interest, and detect im-

provement opportunities.
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Chapter 8

Conclusion

This research started with the premise that it is possible to automatically discover operation patterns

that are distributed throughout the source code of a computer program. Although each instance

of a pattern may not take a significant amount of time, collectively all instances of the patterns

contribute to the total execution time of the program and the pattern can be considered a performance

bottleneck. We defined the problem of finding operation patterns dispersed throughout the source

code of a program as Profile-based Program Analysis. The solution to the proposed problem was

to transform the profile information collected from program runs into a dataset of attributed flow

graphs, and then to develop a new algorithm to mine for patterns that happen as sub-paths and

sub-graphs of flow graphs in the dataset and also have high support.

As part of the solution, this thesis defined heavyweight patterns and the problem of Heavyweight

Pattern Mining. It presented AFGMiner, a heavyweight pattern mining algorithm that is generic

enough to be applied to any problem that requires mining of attributed flow graphs, and is able

to find both sub-path and sub-graph patterns. AFGMiner was improved from its original version

that uses a traditional sub-graph isomorphism algorithm to another, AFGMiner-locreg, that uses

the concept of location registration, otherwise known as embeddings, to facilitate the search for

patterns with an increasing number of edges. A version of AFGMiner that uses an approach of

edge combination instead of attribute combination only was also created, and proven to not be as

efficient as AFGMiner-locreg. In addition, a parallel version of AFGMiner-locreg was implemented

and tested, using a workload distribution heuristic.

AFGMiner was compared against a previous, simpler attributed flow graph mining algorithm

called FlowGSP, that can only find sub-path patterns. FlowGSP was also improved to include loca-

tion registration, but the experimental evaluation proved that AFGMiner-locreg is more efficient and

finds more patterns.

The Profile-based Program Analysis problem was then modeled as a problem of Heavyweight

Pattern Mining. Two tools, HEPMiner and SCPMiner, were created to apply AFGMiner to the

program analysis problem and their use confirmed the usefulness and efficiency of the algorithm.

The results of both tools were analyzed by experts from the IBM Toronto Software Laboratory.
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HEPMiner, that targets compiler developers as users, was tested by running it on the DayTrader

bechmark, using IBM’s z196 mainframe architecture. Results show that AFGMiner was able to find

useful patterns: some confirmed the knowledge compiler developers had about the compiler and the

target architecture, others found previously unknown correlations between hardware events. Others

yet led to changes in the compiler’s instruction scheduling heuristic so as to better tailor the code

generation process to the architecture. In addition, HEPMiner was found to be time-efficient enough

when mining DayTrader, so it can be used in practice by compiler developers.

SCPMiner, targeting application developers, was tested by running it on four SPEC CPU2006

benchmarks. The clustering analysis phase was found to be the major performance bottleneck for

this tool, taking an impractical amount of time to complete for the gobmk benchmark, due to this

benchmark having a significant number of source-code lines (hundreds of thousands) and thus pro-

ducing a high number of EFG nodes that should be clustered and mined. According to the results

analysis provided by IBM developers, the quality of patterns found by the tool is mixed, and we

concluded that this is due to many of the used source-code features not being distinguishing enough

of the functionality presented by different basic blocks. In addition, the clustering algorithm imple-

mentation could be improved.

The new data mining algorithm proposed, together with the development and experimental eval-

uation of the practical program analysis tools that can be used by compiler/architecture developers

and application developers, confirm the premise adopted at the beginning of this research work. It is

indeed possible to use attributed flow graph mining to find operation patterns that are spread along

program source-code and represent non-obvious performance bottlenecks on which developers can

focus on when trying to make applications faster.

However, there is more work to be done. Improvements to the AFGMiner algorithm could be

made, such as using better workload distribution heuristics for its parallel version. One possibility

of better heuristic is to also take into account the number of attributes present in each heavyweight

pattern, when deciding the number of heavyweight patterns to be given to each thread. In addition,

the algorithm could explore statistics techniques to only search for patterns that have more likelihood

to be heavyweight, by for example, as a pre-processing step, composing a histogram of the number

of times each attribute occurs in the dataset. For the program analysis tools specifically, a promising

future research for SCPMiner would be to adapt the clustering scheme and the source-code features

described by Jiang et al. [29] for the tool, thus improving the grouping of basic blocks in terms of

their functionality and obtaining more meaningful results when mining.
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