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 Graphs have become an important workload in cloud 
systems. 
 
 
 
 
 
 
 
 
 
 
 

1000 Genomes Project reveals human variation   
(L. WILLATT, EAST ANGLIAN REGIONAL 
GENETICS  
SERVICE / SCIENCE PHOTO LIBRARY) 

1000 Genomes Project Open Street Map (Tokyo, Japan) 

A visualization of Tokyo using the SRTM (Shuttle 
Radar Topography Mission) and Open Street Map 
(Ted Ngai) 

A structural protein-protein interaction (Christof Winter 
et al) 

Protein-Protein interaction 

Network of protein interactions in yeast (Roger Guimerà at al, 
2006) 
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Graph of Dina Westland 385 friend’s connections 
from Facebook, J. Christopher Westland, 2009 

A node-link network disgram visualization of  
Twitter users, Derek L. Hansen et al, 2011 

Social Network 
Communication Network Protein-Protein interaction 
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 Relational databases have been used to store 
graph data. 

 Graph data storage and analysis in the form 
of graphs is more effective. 

 Optimized performance 

 Query productivity 

 Many commercial and open source graph 
databases have appeared recently. 

 Graph database services on cloud 
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Cloud services 
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 A type of No-SQL Databases 
 Follow network data model 

 
 

 
 
 
 Have close similarity to RDF (Resource 

Description Framework) stores 
 RDF triples can represent vertices and edges between 

them. 
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Cloud services 
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RDF Stores 

Fuseki 
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 Introduction 
 Research Problem (Graph Database 

Benchmarking) 
 Proposed Solution (XGDBench) 
 Related Work 
 Methodology 
 Evaluation 
 Conclusion 
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 Does not realistically model real application 
scenarios. 

 HPC Scalable Graph Analysis Benchmark 

▪ Focus on some core network analysis features 

 Do not follow a statistical model, hence they 
are not smoothly scalable. 

 Benchmarks from Semantic web 

▪ LUMB, SP2Bench, DBPedia 
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Single-chip Cloud  

Computer (SCC) of Intel  

contains 48 P54C  

Pentium cores (Intel ,2009) 

Intel Xeon Phi 

NVIDIA Tesla 

 Dawn of Exascale computing →2018~2020. 
 Power efficient cloud  

computing systems with huge  
performance per watt values. 

 Completely new programming  
techniques and models are needed. 

 Partitioned Global Address Space  
(PGAS) languages is one approach for 
programming such systems. 
 

PGAS model for Cloud computing systems. 
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 A benchmarking platform for graph 
databases in Exascale systems. 

1. Graph database benchmarking platform 

2. Benchmarking Exascale Clouds 

3. Workload characterization of graph databases 

▪ AllegroGraph, Fuseki, Neo4j, and OrientDB 
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 HPC Scalable Graph Analysis benchmark [2] 

 Does not evaluate features such as object 
labeling, attribute management, etc. 

 A benchmark for graph traversal operations 
in graph databases [23] 

 Our work is purely based on graph database 
servers 
 
 

[27] R. Nambiar, N. Wakou, F. Carman, and M. Majdalany. Transaction processing performance council (tpc): State of the 
 council 2010. In R. Nambiar and M. Poess, editors, Performance Evaluation, Measurement and Characterization of 
 Complex Systems, volume 6417 of Lecture Notes in Computer Science, pages 1–9. Springer Berlin / Heidelberg, 2011. 
 
[2] D. A. Bader, J. Feo, J. Gilbert, J. Kepner, D. Koester, E. Loh, K. Madduri, B. Mann, T. Meuse, and E. Robinson. Hpc 
 scalable graph analysis benchmark. Feb 2009. 
 
[23] L. H. Marek Ciglan, Alex Averbuch. Benchmarking traversal operations over graph databases. In Proceedings of the 3rd 
 International Workshop on Graph Data Management: Techniques and Applications, GDM ’12, 2012. 11 IEEE CloudCom 2012 

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology >  Implementation > Evaluation > Conclusion 



 Benchmarks for Semantic data stores (LUBM [17], 
Berlin [3], DBpedia [24]) 
 Does not use a statistical graph generator model 

 Graph 500 
 Benchmark for data intensive supercomputing 

applications. 
 Current implementation does not consider applications 

such as graph databases. 
 
 
 
 
 

 
 
 

[27] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge base systems. Web Semantics: Science, Services 
 and Agents on the World Wide Web, 3(23):158 – 182, 2005. 
 
[3] C. Bizer and A. Schultz. The berlin sparql benchmark. International Journal On Semantic Web and Information 
 Systems, 2009. 
 
[24] M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo. Dbpedia sparql benchmark - performance assessment with real 
 queries on real data. In International Semantic Web Conference (1)’11, pages 454–469, 2011. 
 
[27] R. Murphy, J. Berry, W. McLendon, B. Hendrickson, D. Gregor, and A. Lumsdaine. Dfs: A simple to write yet difficult to 
 execute benchmark. In Workload Characterization, 2006 IEEE International Symposium on, pages 175 –177, oct. 2006. 
 12 IEEE CloudCom 2012 

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology >  Implementation > Evaluation > Conclusion 



 XGDBench is an extension of Yahoo! Cloud 
Serving Benchmark (YCSB). 

 YCSB is a benchmarking framework for cloud 
data serving systems. 

 The framework is composed of, 

 workload generator client 

 package of standard workloads that cover 
interesting parts of the performance space. 

13 IEEE CloudCom 2012 

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology >  Implementation > Evaluation > Conclusion 



 Synthetic Graph models can be classified in to 
five categories 
 Random graph models (e.g., Erdos Renyi) 

 Preferential attachment models (e.g., Barabasi-Albert) 

 Optimization-based models (e.g., Highly Optimized Tolerance) 

 Tensor-based models (e.g., R-MAT) 

 Internet-specific models (e.g., Inet) 

 The best generator model depends on the 
application area 

 R-MAT Model 
 Graph generated by R-MAT depends 

on few parameters. 

To 
From 

Nodes 

Nodes 

a b 
c d 

b 

d c 

a 

c d 

Scale(n), a, b, c, and d. The sum of a,b,c,d are 1. 
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 X10 
 robust programming model  
 withstand architectural challenges 
 multi-core systems, hardware accelerators, clusters, 

and supercomputers. 
 X10 simplifies the programming model 

 increase in programmer productivity 
 X10 is a strongly typed, object-oriented 

language 
 static type-checking 
 static expression of program invariants. 
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 X10 applications are developed by  
source-to-source compilation. 

 Managed X10 for XGDBench. 
 Distributed data structures (e.g., DistArray) 

 Distributed storage of large graphs that could not 
be stored in single place. 

 
X10 allows for writing extensions  
for XGDBench for future Exascale  

graph stores with less effort. 
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 An approach for modeling the structure of 
networks which have node attributes. 

 MAG naturally models  
 interactions between the network structure 

 node attributes. 
 MAG graphs  

 are analytically tractable 

 have statistically interesting properties. 
 MAG creates realistic attribute graphs much 

suited for benchmarking graph databases. 
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 Two vertices v and u each having a vector v of n 
categorical attributes. 
 

 Each attribute has a cardinality di (i=1,2,…,n) 
 

 There are also n matrices denoted by θi, where 
θi Є di × di for i=1,2,…,n. Each entry of θi is the 
affinity of a real value between 0 and 1. 
 

 The values α, β, and γ are floating point values 
between 0 and 1. 
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 MAG algorithm used in XGDBench 

 simplified version considering the undirected 
graphs. 

 The simplification is achieved by making, 

 each θ symmetric. 

 The node attributes are made binary. 

A student-only subset of the Reed  

College Facebook network 

(Amanda L. Traud et al., 2012) 
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Information that can be 
treated as Yes/No questions 

 Makes the θi to be a 2 × 2 matrix. 
 We assume that all the affinity matrices are 

equal (i.e., θi = θ). 
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Algorithm 1 mag(nVertices, nAttributes, attribThresh, pThresh, theta) 

1: nodeAttribs ←  randZeroOrOne(nVertices, nAttributes,  

                                                        attribThreshold) 

2: result ← ones(nVertices, nVertices) 

3: for i ← 0 to nVertices do 

4:    for j ← 0 to nVertices do 

5:          for k ← 0 to nAttribs do 

6:               if nAtt[i,k] = nAtt[j,k] then  

7:                   if nAtt [i,k] = 0 then 

8:                       result[i,j] = result[i,j] * theta[0] 

9:                   else 

10:                     result[i,j] = result[i,j] * theta[3] 

11:                 end if 

12:              else 

13:                 if nAtt[i,k] = 0 and nAtt[j,k] = 1 then 

14:                       result[i,j] = result[i,j] * theta[1] 

15:                 else if nAtt[i,k] = 1 and nAtt[j,k] = 0 then 

16:                       result[i,j] = result[i,j] * theta[2] 

17:                 end if 

18:             end if 

19:         end for 

20:    end for 

21:end for 

22: for i ← 0 to nVertices do 

23:      for j ← 0 to nVertices do 

24:               if result[i,k] > pThresh then 

25:                    result[i,k] = 1 

26:               else 

27:                     result[i,k] = 0 

28:               end if 

29:      end for 

30: end for 

31: return (result) 
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The probability of an 
edge between pairs of 

vertices is controlled by 
the product of individual 

attribute-attribute 
affinities. 
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 Graph database applications for social 
networking services. 

 Online Social Networks (OSN) is one  
of the rapidly growing application areas. 

 Data storage and analysis is conducted on cloud 
infrastructures. 

 OSNs represent a general representative 
application of graph databases. 
 

23 IEEE CloudCom 2012 
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 Massive graphs will be handled online 
 Graphs will be partially loaded in to memory 
 The workloads will include both read/update 

operations. 
 
 

 Therefore we included a read-heavy workload 
(0.95 probability of read and 0.05 probability 
of write operations) 
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In most of the applications read operations will dominate the workload. 
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 Friendship graphs of online social 
networks change at a slower rate 
compared to their 
node properties. 

 Performance of attribute 
update operation is more 
important compared to 
node/edge update. 

 Benchmarking platform needs to be scalable to 
store data in-memory for update operations. 
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 Graph databases 

 data encoded in its graph structure that could be 
obtained by traversing them. 

 Use a traversal algorithm 

 most frequently executed against the graph database. 

 Listing friends of friends is one of frequently 
used traversal operations on OSNs. 

 Execute breadth-first search (BFS) from a particular 
vertex for detecting the connected component of a 
graph. 
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Operation Description 

Read Read a vertex and its properties 

Insert Inserts a new vertex 

Update Update all the attributes of a vertex 

Delete Delete a vertex from the DB 

Scan Load the list of neighbors of a vertex 

Traverse Traverse the graph from a given vertex using BFS. This 
represents finding friends of a person in social networks. 
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 Data Loading Phase 
 Generates an attribute graph using MAG algorithm 

 load the graph data to the server. 
 Transaction Phase 

 Invokes the basic operations on the loaded graph data. 
 Update operation on the graph data  

 preserves the power-law distribution. 

 Update operations are conducted only on the attributes 
that are not related to calculation of probability of an edge. 

 Insert operations of the vertices preserves the power-law 
structure. 
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A : Update heavy 

Workload A is a mix of 50/50 read/update workload. Read operations query a vertex V and reads all 

the attributes of V. Update operation changes the last login time of Attributes related to vertex affinity 

are not changed. 

B : Read mostly 

A mix of 95/5 read/update workload. Read/update operations are similar to A. 

C : Read only 

Consists of 100% read operations. The read operations are similar to A. 

D : Read latest 

This workload inserts new vertices to the graph. The inserts are made in such a way that the power law 

relations of the original graph are preserved. 

E : Short Ranges 

This workload reads all the neighbor vertices and their attributes of a Vertex A. This represents the 

scenario of loading the friendliest of person A on to an application. 
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 Evaluated 
 Degree distribution 

 graph community structure of MAG model 
 Power-law distribution – Degree distribution of 

many real world graphs (web, social networks, 
etc.) satisfy power-law distribution. 
 

 Plotted the degree distribution of a graph with 
1000 vertices produced by XGDBench generator 
. 

31 

y(x) = Ax-ϒ 
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MAG Epinions Social Network 

MAG creates a degree distribution that is similar to a power-law 
distribution. 
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 Graph databases 
 designed to store colorful graphs (With node/edge 

attributes) 
 The generator should create such realistic 

graphs to generate realistic workload scenarios. 
 Implemented R-MAT version of XGDBench 

 Replaced data generator algorithm with R-MAT 
algorithm. 

 Randomly populate the vertex attributes to 
mimic the attribute graphs produced by MAG 
model. 
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 We used five graphs from each model with R-
MAT scale (n) 10 to 14. 

 R-MAT graph was generated  
with the parameters 

 For MAG we used a probability threshold of 
0.25. 

 Each graph had 4 attributes per vertex. 
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a 0.6 

b 0.15 

c 0.15 

d 0.1 
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 Community cluster analysis on each graph using 
Cytoscape. 

 The vertices in the top three resulted clusters were further 
clustered using vertex attributes. 

 Next, Take the percentages of vertex counts in each 
cluster and rank them based on their percentage values. 

 Cluster Prominence Metric (Cp) the difference between 
the largest sub cluster and the second largest sub cluster. 
 

 
 
 The communities creates by MAG represented 

phenomenon of social affinity that is present in real social 
networks. 
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The graphs generated by MAG model had sub clusters with higher 
prominence. 
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MAG R-MAT 

Vertices  

(Scale) 
Edges 

Cluster 

prominence 

(Cp) 

Edges 

Cluster 

prominence 

(Cp) 

1024 (10) 23077 24.00 2704 6.33 

2048 (11) 121298 23.33 3912 3.33 

4096 (12) 413281 29.33 1218 1.33 

8192 (13) 1634377 26.67 8782 3.33 

16384 (14) 6363791 36.67 15974 3.67 
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Name Data Model Programming Language Version JVM Heap 
Size (GB) 

OrientDB Network Java v1.0rc9 2 

Neo4j Network Java community v1.6.1 4 

Fuseki RDF Java v0.2.1 2 

AllegroGraph RDF LISP v4.6 - 

CPU 
Two Intel Xeon X5670 @2.93GHz, each CPU has 6 cores (total 

12 cores) 

RAM (GB) 54 

HDD (GB) - 

Network SDR Infiniband × 2 

SSD (GB) 120 

OS SUSE Linux Enterprise Server 11 SP1 

File System Lustre 

Graph databases 

Specifications of a single node on Tsubame 2.0 

XGDBench Client 
Graph Database  
server 
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 Done on Tsubame 2.0 cloud computing 
environment. 

 Used two nodes, one node ran the graph 
database server the other node ran the 
XGDBench. 

 XGDBench was set up to use 8GB heap for 
X10 runtime. 

 Use X10 2.2.2 which was build with fully 
optimized settings. 

 Graph sizes used for evaluation was 1024. 
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 XGDBench’s graph generator model is much 
suited for evaluating performance of graph 
databases. 

 Attribute graphs produced by MAG follow 
Power-law distribution 

 Most of the current graph databases are not 
distributed. 

 Number of vertices (1024) 
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 XGDBench is a graph database benchmarking 
platform for Exascale clouds. 

 The data generator of XGDBench is based on MAG 
model  
 enables realistic modeling of attribute graphs. 

 XGDBench implemented using X10 
 enables easy extension of the framework in future. 

 Evaluated the applicability of MAG model for graph 
database benchmarking 
 conducted a performance evaluation. 

 From the community cluster analysis we observed 
that MAG model creates much realistic attribute 
graphs compared to the popular R-MAT model. 

43 IEEE CloudCom 2012 

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology >  Implementation > Evaluation > Conclusion 



 Conduct thorough evaluation of graph 
databases using XGDBench. 

 Implement travers operation based 
workloads. 

 Investigate the reason why graph databases 
perform poorly and find methods to improve 
their performance. 
 

44 IEEE CloudCom 2012 

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology >  Implementation > Evaluation > Conclusion 



45 IEEE CloudCom 2012 


