
Miyuru Dayarathna and Toyotaro Suzumura

Suzumura Laboratory
Department of Computer Science
Graduate School of Information Science and Engineering
Tokyo Institute of Technology

5/12/2012

 Graphs have become an important workload in cloud
systems.

1000 Genomes Project reveals human variation
(L. WILLATT, EAST ANGLIAN REGIONAL
GENETICS
SERVICE / SCIENCE PHOTO LIBRARY)

1000 Genomes Project Open Street Map (Tokyo, Japan)

A visualization of Tokyo using the SRTM (Shuttle
Radar Topography Mission) and Open Street Map
(Ted Ngai)

A structural protein-protein interaction (Christof Winter
et al)

Protein-Protein interaction

Network of protein interactions in yeast (Roger Guimerà at al,
2006)

2

Graph of Dina Westland 385 friend’s connections
from Facebook, J. Christopher Westland, 2009

A node-link network disgram visualization of
Twitter users, Derek L. Hansen et al, 2011

Social Network
Communication Network Protein-Protein interaction

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Relational databases have been used to store
graph data.

 Graph data storage and analysis in the form
of graphs is more effective.

 Optimized performance

 Query productivity

 Many commercial and open source graph
databases have appeared recently.

 Graph database services on cloud

3 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

Cloud services

4 IEEE CloudCom 2012

Single instance

AllegroGraph

Graph
Databases

FlockDB

Distributed

Trinity
Titan

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 A type of No-SQL Databases
 Follow network data model

 Have close similarity to RDF (Resource

Description Framework) stores
 RDF triples can represent vertices and edges between

them.

5 IEEE CloudCom 2012

Relational Database Graph Database

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

Cloud services

6

RDF Stores

Fuseki

IEEE CloudCom 2012

Single instance

AllegroGraph

Graph
Databases

FlockDB

Distributed

Trinity
Titan

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Introduction
 Research Problem (Graph Database

Benchmarking)
 Proposed Solution (XGDBench)
 Related Work
 Methodology
 Evaluation
 Conclusion

7 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Does not realistically model real application
scenarios.

 HPC Scalable Graph Analysis Benchmark

▪ Focus on some core network analysis features

 Do not follow a statistical model, hence they
are not smoothly scalable.

 Benchmarks from Semantic web

▪ LUMB, SP2Bench, DBPedia

IEEE CloudCom 2012 8

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

Single-chip Cloud

Computer (SCC) of Intel

contains 48 P54C

Pentium cores (Intel ,2009)

Intel Xeon Phi

NVIDIA Tesla

 Dawn of Exascale computing →2018~2020.
 Power efficient cloud

computing systems with huge
performance per watt values.

 Completely new programming
techniques and models are needed.

 Partitioned Global Address Space
(PGAS) languages is one approach for
programming such systems.

PGAS model for Cloud computing systems.

9 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 A benchmarking platform for graph
databases in Exascale systems.

1. Graph database benchmarking platform

2. Benchmarking Exascale Clouds

3. Workload characterization of graph databases

▪ AllegroGraph, Fuseki, Neo4j, and OrientDB

10 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 HPC Scalable Graph Analysis benchmark [2]

 Does not evaluate features such as object
labeling, attribute management, etc.

 A benchmark for graph traversal operations
in graph databases [23]

 Our work is purely based on graph database
servers

[27] R. Nambiar, N. Wakou, F. Carman, and M. Majdalany. Transaction processing performance council (tpc): State of the
 council 2010. In R. Nambiar and M. Poess, editors, Performance Evaluation, Measurement and Characterization of
 Complex Systems, volume 6417 of Lecture Notes in Computer Science, pages 1–9. Springer Berlin / Heidelberg, 2011.

[2] D. A. Bader, J. Feo, J. Gilbert, J. Kepner, D. Koester, E. Loh, K. Madduri, B. Mann, T. Meuse, and E. Robinson. Hpc
 scalable graph analysis benchmark. Feb 2009.

[23] L. H. Marek Ciglan, Alex Averbuch. Benchmarking traversal operations over graph databases. In Proceedings of the 3rd
 International Workshop on Graph Data Management: Techniques and Applications, GDM ’12, 2012. 11 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Benchmarks for Semantic data stores (LUBM [17],
Berlin [3], DBpedia [24])
 Does not use a statistical graph generator model

 Graph 500
 Benchmark for data intensive supercomputing

applications.
 Current implementation does not consider applications

such as graph databases.

[27] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge base systems. Web Semantics: Science, Services
 and Agents on the World Wide Web, 3(23):158 – 182, 2005.

[3] C. Bizer and A. Schultz. The berlin sparql benchmark. International Journal On Semantic Web and Information
 Systems, 2009.

[24] M. Morsey, J. Lehmann, S. Auer, and A.-C. N. Ngomo. Dbpedia sparql benchmark - performance assessment with real
 queries on real data. In International Semantic Web Conference (1)’11, pages 454–469, 2011.

[27] R. Murphy, J. Berry, W. McLendon, B. Hendrickson, D. Gregor, and A. Lumsdaine. Dfs: A simple to write yet difficult to
 execute benchmark. In Workload Characterization, 2006 IEEE International Symposium on, pages 175 –177, oct. 2006.
 12 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 XGDBench is an extension of Yahoo! Cloud
Serving Benchmark (YCSB).

 YCSB is a benchmarking framework for cloud
data serving systems.

 The framework is composed of,

 workload generator client

 package of standard workloads that cover
interesting parts of the performance space.

13 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Synthetic Graph models can be classified in to
five categories
 Random graph models (e.g., Erdos Renyi)

 Preferential attachment models (e.g., Barabasi-Albert)

 Optimization-based models (e.g., Highly Optimized Tolerance)

 Tensor-based models (e.g., R-MAT)

 Internet-specific models (e.g., Inet)

 The best generator model depends on the
application area

 R-MAT Model
 Graph generated by R-MAT depends

on few parameters.

To
From

Nodes

Nodes

a b
c d

b

d c

a

c d

Scale(n), a, b, c, and d. The sum of a,b,c,d are 1.
14 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 X10
 robust programming model
 withstand architectural challenges
 multi-core systems, hardware accelerators, clusters,

and supercomputers.
 X10 simplifies the programming model

 increase in programmer productivity
 X10 is a strongly typed, object-oriented

language
 static type-checking
 static expression of program invariants.

15 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 X10 applications are developed by
source-to-source compilation.

 Managed X10 for XGDBench.
 Distributed data structures (e.g., DistArray)

 Distributed storage of large graphs that could not
be stored in single place.

X10 allows for writing extensions
for XGDBench for future Exascale

graph stores with less effort.

16 IEEE CloudCom 2012

X10

C++

Java

Immutable Data: Final variables, value type instances

Local array

section
Distributed Array

Remote array

section

Local

object

Remote

object

Outbound
activities

Inbound
activities

Globally Asynchronous

…

Inbound activity
replies

Outbound
activity replies

Activity
Local
Data

Activity
Local
Data

Activities Activities

… …

(P. Charles, et. al. 2005)

Local array

section
Distributed Array

Remote array

section

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 An approach for modeling the structure of
networks which have node attributes.

 MAG naturally models
 interactions between the network structure

 node attributes.
 MAG graphs

 are analytically tractable

 have statistically interesting properties.
 MAG creates realistic attribute graphs much

suited for benchmarking graph databases.

17 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

v = []

u = []

0

0

0

1

1

1

0

0

α0

β0 ϒ0

β0 α1

β1 ϒ1

β1 α2

β2 ϒ2

β2 α3

β3 ϒ3

β3

Θ =

P[v,u] = α0 × β1 × ϒ2 × α3

Node

attributes

Attribute

matrices

Link

Probability

+

Attribute Graph P[v,u] = Π
n

i = 1

Θ [ai(u), ai(v)]
i

18 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Two vertices v and u each having a vector v of n
categorical attributes.

 Each attribute has a cardinality di (i=1,2,…,n)

 There are also n matrices denoted by θi, where
θi Є di × di for i=1,2,…,n. Each entry of θi is the
affinity of a real value between 0 and 1.

 The values α, β, and γ are floating point values
between 0 and 1.

19 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 MAG algorithm used in XGDBench

 simplified version considering the undirected
graphs.

 The simplification is achieved by making,

 each θ symmetric.

 The node attributes are made binary.

A student-only subset of the Reed

College Facebook network

(Amanda L. Traud et al., 2012)

20 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

Information that can be
treated as Yes/No questions

 Makes the θi to be a 2 × 2 matrix.
 We assume that all the affinity matrices are

equal (i.e., θi = θ).

21 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

Algorithm 1 mag(nVertices, nAttributes, attribThresh, pThresh, theta)

1: nodeAttribs ← randZeroOrOne(nVertices, nAttributes,

 attribThreshold)

2: result ← ones(nVertices, nVertices)

3: for i ← 0 to nVertices do

4: for j ← 0 to nVertices do

5: for k ← 0 to nAttribs do

6: if nAtt[i,k] = nAtt[j,k] then

7: if nAtt [i,k] = 0 then

8: result[i,j] = result[i,j] * theta[0]

9: else

10: result[i,j] = result[i,j] * theta[3]

11: end if

12: else

13: if nAtt[i,k] = 0 and nAtt[j,k] = 1 then

14: result[i,j] = result[i,j] * theta[1]

15: else if nAtt[i,k] = 1 and nAtt[j,k] = 0 then

16: result[i,j] = result[i,j] * theta[2]

17: end if

18: end if

19: end for

20: end for

21:end for

22: for i ← 0 to nVertices do

23: for j ← 0 to nVertices do

24: if result[i,k] > pThresh then

25: result[i,k] = 1

26: else

27: result[i,k] = 0

28: end if

29: end for

30: end for

31: return (result)

22

The probability of an
edge between pairs of

vertices is controlled by
the product of individual

attribute-attribute
affinities.

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Graph database applications for social
networking services.

 Online Social Networks (OSN) is one
of the rapidly growing application areas.

 Data storage and analysis is conducted on cloud
infrastructures.

 OSNs represent a general representative
application of graph databases.

23 IEEE CloudCom 2012

Graph
Database

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Massive graphs will be handled online
 Graphs will be partially loaded in to memory
 The workloads will include both read/update

operations.

 Therefore we included a read-heavy workload
(0.95 probability of read and 0.05 probability
of write operations)

24

In most of the applications read operations will dominate the workload.

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Friendship graphs of online social
networks change at a slower rate
compared to their
node properties.

 Performance of attribute
update operation is more
important compared to
node/edge update.

 Benchmarking platform needs to be scalable to
store data in-memory for update operations.

25

Alice

Bob

alice@gmail.com

bob@gmail.com

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Graph databases

 data encoded in its graph structure that could be
obtained by traversing them.

 Use a traversal algorithm

 most frequently executed against the graph database.

 Listing friends of friends is one of frequently
used traversal operations on OSNs.

 Execute breadth-first search (BFS) from a particular
vertex for detecting the connected component of a
graph.

26 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

27

Operation Description

Read Read a vertex and its properties

Insert Inserts a new vertex

Update Update all the attributes of a vertex

Delete Delete a vertex from the DB

Scan Load the list of neighbors of a vertex

Traverse Traverse the graph from a given vertex using BFS. This
represents finding friends of a person in social networks.

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

28

XGDBench Client

M
A

G
 W

o
rk

lo
ad

G
en

er
at

o
r Client Threads

Stats G
ra

p
h
 D

B

In
te

rf
ac

e
L

ay
er

Graph DBs in Cloud

OrientDB

AllegroGraph

Neo4j

Fuseki Graph Data Structure

Graph Data Structure

Place

0

Place

1

Place

n

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Data Loading Phase
 Generates an attribute graph using MAG algorithm

 load the graph data to the server.
 Transaction Phase

 Invokes the basic operations on the loaded graph data.
 Update operation on the graph data

 preserves the power-law distribution.

 Update operations are conducted only on the attributes
that are not related to calculation of probability of an edge.

 Insert operations of the vertices preserves the power-law
structure.

29 IEEE CloudCom 2012

y(x) = Ax-ϒ y

x (0,0)

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

30

A : Update heavy

Workload A is a mix of 50/50 read/update workload. Read operations query a vertex V and reads all

the attributes of V. Update operation changes the last login time of Attributes related to vertex affinity

are not changed.

B : Read mostly

A mix of 95/5 read/update workload. Read/update operations are similar to A.

C : Read only

Consists of 100% read operations. The read operations are similar to A.

D : Read latest

This workload inserts new vertices to the graph. The inserts are made in such a way that the power law

relations of the original graph are preserved.

E : Short Ranges

This workload reads all the neighbor vertices and their attributes of a Vertex A. This represents the

scenario of loading the friendliest of person A on to an application.

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Evaluated
 Degree distribution

 graph community structure of MAG model
 Power-law distribution – Degree distribution of

many real world graphs (web, social networks,
etc.) satisfy power-law distribution.

 Plotted the degree distribution of a graph with
1000 vertices produced by XGDBench generator
.

31

y(x) = Ax-ϒ

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

32

MAG Epinions Social Network

MAG creates a degree distribution that is similar to a power-law
distribution.

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Graph databases
 designed to store colorful graphs (With node/edge

attributes)
 The generator should create such realistic

graphs to generate realistic workload scenarios.
 Implemented R-MAT version of XGDBench

 Replaced data generator algorithm with R-MAT
algorithm.

 Randomly populate the vertex attributes to
mimic the attribute graphs produced by MAG
model.

33 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 We used five graphs from each model with R-
MAT scale (n) 10 to 14.

 R-MAT graph was generated
with the parameters

 For MAG we used a probability threshold of
0.25.

 Each graph had 4 attributes per vertex.

34

a 0.6

b 0.15

c 0.15

d 0.1

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Community cluster analysis on each graph using
Cytoscape.

 The vertices in the top three resulted clusters were further
clustered using vertex attributes.

 Next, Take the percentages of vertex counts in each
cluster and rank them based on their percentage values.

 Cluster Prominence Metric (Cp) the difference between
the largest sub cluster and the second largest sub cluster.

 The communities creates by MAG represented

phenomenon of social affinity that is present in real social
networks.

35

The graphs generated by MAG model had sub clusters with higher
prominence.

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

36

MAG R-MAT

Vertices

(Scale)
Edges

Cluster

prominence

(Cp)

Edges

Cluster

prominence

(Cp)

1024 (10) 23077 24.00 2704 6.33

2048 (11) 121298 23.33 3912 3.33

4096 (12) 413281 29.33 1218 1.33

8192 (13) 1634377 26.67 8782 3.33

16384 (14) 6363791 36.67 15974 3.67

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

37

Name Data Model Programming Language Version JVM Heap
Size (GB)

OrientDB Network Java v1.0rc9 2

Neo4j Network Java community v1.6.1 4

Fuseki RDF Java v0.2.1 2

AllegroGraph RDF LISP v4.6 -

CPU
Two Intel Xeon X5670 @2.93GHz, each CPU has 6 cores (total

12 cores)

RAM (GB) 54

HDD (GB) -

Network SDR Infiniband × 2

SSD (GB) 120

OS SUSE Linux Enterprise Server 11 SP1

File System Lustre

Graph databases

Specifications of a single node on Tsubame 2.0

XGDBench Client
Graph Database
server

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Done on Tsubame 2.0 cloud computing
environment.

 Used two nodes, one node ran the graph
database server the other node ran the
XGDBench.

 XGDBench was set up to use 8GB heap for
X10 runtime.

 Use X10 2.2.2 which was build with fully
optimized settings.

 Graph sizes used for evaluation was 1024.

38 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

39

0

100

200

300

400

500

600

Allegrograph Neo4j OrientDB Fuseki

T
h

ro
u

g
h

p
u

t
(o

p
er

a
ti

o
n

s\
s)

Average Throughput for Data

Loading

0

50

100

150

200

250

300

350

400

Allegrograph Neo4j OrientDB Fuseki

T
h

ro
u

g
h

p
u

t
(o

p
er

a
ti

o
n

s\
s)

Average Throughput for Workload A

(a) (b)

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

40

0

50

100

150

200

250

300

350

400

450

Allegrograph Neo4j OrientDB Fuseki

T
h

ro
u

g
h

p
u

t
(o

p
er

a
ti

o
n

s\
s)

Average Throughput for Workload C

0

50

100

150

200

250

300

350

400

450

Allegrograph Neo4j OrientDB Fuseki

T
h

ro
u

g
h

p
u

t
(o

p
er

a
ti

o
n

s\
s)

Average Throughput for Workload B

(c) (d)

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

41

0

50

100

150

200

250

300

350

Allegrograph Neo4j OrientDB Fuseki

T
h

ro
u

g
h

p
u

t
(o

p
er

a
ti

o
n

s\
s)

Average Throughput for Workload D

0

50

100

150

200

250

300

Allegrograph Neo4j OrientDB Fuseki
T

h
ro

u
g

h
p

u
t

(o
p

er
a

ti
o

n
s\

s)

Average Throughput for Workload E

(e) (f)

IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 XGDBench’s graph generator model is much
suited for evaluating performance of graph
databases.

 Attribute graphs produced by MAG follow
Power-law distribution

 Most of the current graph databases are not
distributed.

 Number of vertices (1024)

42 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 XGDBench is a graph database benchmarking
platform for Exascale clouds.

 The data generator of XGDBench is based on MAG
model
 enables realistic modeling of attribute graphs.

 XGDBench implemented using X10
 enables easy extension of the framework in future.

 Evaluated the applicability of MAG model for graph
database benchmarking
 conducted a performance evaluation.

 From the community cluster analysis we observed
that MAG model creates much realistic attribute
graphs compared to the popular R-MAT model.

43 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

 Conduct thorough evaluation of graph
databases using XGDBench.

 Implement travers operation based
workloads.

 Investigate the reason why graph databases
perform poorly and find methods to improve
their performance.

44 IEEE CloudCom 2012

Introduction > Research Problem > XGDBench > Related Work > Benchmarking GDBs > Methodology > Implementation > Evaluation > Conclusion

45 IEEE CloudCom 2012

